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Abstract. Focus fusion methods combine a set of images focused at dif-
ferent depths into a single image where all parts are in focus. The quality
of the fusion result strongly depends on a decision map that determines
the in-focus areas. Most approaches in the literature achieve this by lo-
cal decisions without explicitly enforcing smoothness of the depth map.
The goal of our paper is to introduce a modern regularisation strategy
where we assume that neighbouring pixels in the resulting image have
a similar depth. To this end, we consider a partial differential equation
(PDE) for the depth map. It combines a robustified data fidelity term
with an anisotropic diffusion strategy that involves a matrix-valued dif-
fusion tensor. Experiments with synthetic and real-world data show that
this depth map regularisation can improve existing fusion methods sub-
stantially. Our methodology is general and can be applied to improve
many existing fusion methods.
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1 Introduction

Certain applications such as microscopy and macro photography create images
with a very limited depth of field. To overcome this problem, a common approach
is to acquire a set of images with focal planes at different depths, and to fuse
these data into a single image that is in focus everywhere. This is called focus
fusion.

We categorise the focus fusion techniques into two main groups: The first
group of methods performs a multiresolution decomposition of the input images.
This is done by transforming the image set into a particular domain, e.g. a
pyramid domain [1, 2] or a wavelet domain [3, 4]. Then they identify the in-focus
areas and combine them into a single composite image. In the last step, this
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composite is transformed back into the original image domain. These methods
suffer from the drawback that fusion in the transformed domain may result in
undesirable artefacts in the original domain.

The second group of algorithms operates in the image domain directly. In
contrast to the decomposition approaches, they rely on the original intensities
and, hence, reproduce the image structures without any modification. An intu-
itive idea is to select for each pixel the input frame that is in focus according to
some sharpness criterion [5]. Then these pixels are directly combined within a
single composite image. However, this direct pixel fusion is prone to unpleasant
seams in the final result.

The following approaches have been proposed to deal with this drawback.
Wang et al. [6] and Pop et al. [7] explicitly model a smoothness assumption
of the fused image by formulating an appropriate energy or partial differential
equation (PDE), respectively. However, in this case the resulting image may loose
important structures due to the inherent smoothing. Another way is to apply
the smoothness constraint not on the final image itself, but on the per-pixel
decision. In this regard, a common approach is to first construct an initial noisy
map using a simple criterion, and segment it afterwards with a segmentation-
based algorithm [8–10].

Our Contributions. The goal of our paper is to address these problems of di-
rect pixel fusion methods. We avoid unpleasant seams by introducing a modern
regularisation strategy of the depth map such that neighbouring pixels corre-
spond to similar depth values. In contrast to the segmentation approaches in
[8–10] that create piecewise constant depth maps, our method aims a piecewise
smooth results. Thus, it is able to handle pixels that are in focus between two
frames. This causes not only more realistic depth maps, but also allows smooth
transitions in the fused image.
Our method is based on a PDE model that features a robust data term in con-
junction with a sophisticated anisotropic diffusion term. It relies on a diffusion
tensor that allows joint image- and depth-driven regularisation: Image edges de-
termine the direction of depth map discontinuities, while the smoothing across
these discontinuities is steered by the magnitude of the depth map gradient. We
show that this novel strategy leads to substantially better fusion results than
methods that do not incorporate smoothness assumptions on the depth field.
In contrast to decomposition methods that may change the underlying images
structures by transforming them into another domain, our method relies on the
unmodified intensity values and, hence, is able to reproduce the sharp image
structures accurately.

Organisation. Our paper is organised as follows: Sec. 2 introduces our new
approach for focus fusion. In Sec. 3, we show experimental results of the method
on a synthetic as well as on a real–world image set. The paper is concluded with
a summary in Sec. 4.
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2 Our Focus Fusion Method

Let f(x, z) be a 3-D volume, where x :=(x, y)>∈Ω denotes the location within a
rectangular image domain Ω ⊂ R2 and z ∈ R denotes the depth. Consequently,
the n input images f(x, zk) with k = 1, . . . , n represent slices of this volume,
where we assume zk to be distributed equidistantly. To remove noise, we pres-
mooth each image via a convolution with a Gaussian of standard deviation σ.
This results in fσ. Our goal is to find a depth map d : Ω→ [1, n] that selects
for each location x the frame that is in focus. To this end, we formulate a PDE
that models the similarity to a precomputed depth map dinit, combined with an
anisotropic smoothness constraint.

2.1 Initial Depth Map

Let us now construct the initial depth map that is later embedded in the simi-
larity assumption of our PDE. We exploit the fact that the sharp regions most
probably correspond to the locations where the gradient has the largest magni-
tude. Since each frame corresponds to a certain depth, selecting a gradient at
each location can be understood as deciding for the corresponding depth. Thus,
it is possible to estimate a depth map of the resulting image.

Two types of locations cause a problem while estimating the initial depth
map: homogeneous regions that hardly have any texture, and regions that are
never in focus, such as the background. Here the gradients have approximately
the same magnitude in all frames, and thus, the final decision is highly influenced
by noise. Accordingly, the initial depth map appears noisy within these locations.
An example of such a noisy initial depth map obtained from the real-world image
set is shown in Fig. 2d. Here, black pixels correspond to the closest frame and
white pixels refer to the farthest frame.

Confidence Function. To separate reliable pixels from noisy ones in the initial
depth map, we use a confidence function as proposed in [11]. It is defined as

c(x) =

{
1 if |∇fσ(x, dinit(x))| > T
0 else

(1)

where ∇:=(∂x, ∂y)> denotes the spatial gradient operator, and T is a threshold.
(In the case of colour images, we define the combined gradient magnitude as
the square root of the sum over all squared gradient entries.) An example of the
previously shown initial depth map after gradient thresholding (σ = 1.0, T = 40 )
is presented in Fig. 2e. Here, red colour denotes unreliable pixels that have been
eliminated. The proposed confidence function leaves only reliable locations in
the initial depth map and thus allows a better modelling. We see that the depth
map may become very sparse, but the filling-in effect of the smoothness term of
our new model will allow to reconstruct a dense depth map from these sparse
data.
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2.2 Our PDE-Based Approach

Let us now discuss our PDE-based approach that allows to find the desired depth
map. The underlying idea is that there is a spatial continuity between the parts
selected from different frames. This means that for each pixel the neighbouring
pixels most probably should be chosen from a similar depth level. Thus, we apply
a smoothness constraint on the resulting depth map.

We are searching for the depth map d(x) which minimises an energy func-
tional of the form

E (d) :=
1

2

∫
Ω

(
c (x) · M (d (x)) + α S (∇d (x))

)
dx , (2)

where c(x) is the proposed confidence function, and α > 0 is the smoothness
parameter. The data term M(d(x)) assumes that d(x) should be similar to the
initial depth map dinit(x). Furthermore, to reduce the influence of outliers we
use the regularised L1-norm Ψ(s2) :=

√
s2 + ε2 as a penalisation function, where

s denotes the data constraint and ε > 0 is a small constant. The data term is
finally given by

M(d(x)) := Ψ
(

(d (x)− dinit (x))
2
)
. (3)

A simple smoothness term enforcing d(x) to vary smoothly in space is given by

S(∇d(x)) := |∇d(x)|2 . (4)

Minimisation by Gradient Descent. Applying gradient descent to minimise
the energy (2) with data term (3) and smoothness term (4) yields the following
evolution for d(x, t):

∂td = α ∆d − c · Ψ ′ ((d− dinit)2) · (d− dinit). (5)

The desired minimiser is obtained as the steady state for t→∞.

Anisotropic Modification. The smoothness term (4) leads to the homoge-
neous diffusion operator ∆d in (5). It smooths in all directions without respect-
ing image structures. To overcome this problem, we replace it by an anisotropic
diffusion term that is inspired by the optic flow approach of Zimmer et al. [12].
It allows an adaptation of the diffusion process to the image edges, which are
characterised by the eigenvectors v1,v2 of the structure tensor [13]

Jρ,σ := Kρ ∗
(
∇fσ(x, d) ∇f>σ (x, d)

)
. (6)

Here Kρ is a Gaussian of standard deviation ρ, and ∗ denotes the convolution
operator. We assume that v1 belongs to the larger eigenvalue of Jρ,σ.
To steer the diffusion process by the directions v1,v2 that point across and along
the image edges respectively, we construct a diffusion tensor

D := (v1v2)

(
g
(
(v>

1 ∇d)2
)

0
0 1

)(
v>
1

v>
2

)
, (7)
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where g is the Perona-Malik diffusivity [14]

g(s2) :=
1

1 + s2/λ2
(8)

with contrast parameter λ > 0. It allows to smooth strongly along edges, while
reducing the diffusion across edges. We obtain the desired anisotropic evolution
by replacing ∆d in (5) by its anisotropic counterpart div (D∇d):

∂td = α div (D (v1,v2,∇d) ∇d) − c · Ψ ′ ((d−dinit)2) · (d−dinit) . (9)

The steady state of this evolution depends on the initialisation. Based on our
experiments we recommend to initialise it with the depth of the middle frame.

This is our final model for anisotropic depth map smoothing with a robus-
tified fidelity term. It performs a joint image- and depth-driven diffusion in
adaptive directions.

Implementation. We implement the anisotropic evolution equation (9) with an
explicit finite difference scheme, where the space discretisation of the divergence
expression uses the stencil from [15]. In order to avoid any stability deteriorations
by the data term, we approximate the expression (d−dinit) outside the argument
of Ψ ′ in an implicit way. This still allows an explicit update of d without any
need to solve linear or nonlinear systems of equations.

Colour Images. It is easy to extend our model to colour images. We exchange
the structure tensor Jρ,σ in (6) by the combined structure tensor [16, 17]

Kρ ∗
∑
i

∇f iσ(x, d) ∇f iσ
>
(x, d) , (10)

where f i (x, d) represents colour channel i.

2.3 Image Fusion

After computing the optimal depth map by means of our PDE, we can easily
construct the fused image by combining the colour values directly from the
source images. However, our approach computes the continuous depth map that
represents the corresponding depth for every pixel, while we have a discrete
number of images. Therefore, results at non-integer depth values are obtained
by linear interpolation. For colour images, the fusion is performed channelwise.

3 Experimental Results

We test our model with two image sets. For the first experiment we use two
synthetically generated images where the ground truth is known (Fig. 1a, 1b).
For the second experiment we used a commonly available1 real-world image set
Fig. 2a, 2b).

1 http://grail.cs.washington.edu/projects/photomontage/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Results for the synthetic data set. (a) Frame 1 with small focal length. (b)
Frame 2 with large focal length. (c) Ground truth depth map. Brighter grey tones
describe larger depth values. (d) Ground truth image (all-in-focus). (e) Initial depth
map. (f) Fused image obtained with initial depth map. (g) Depth map of our approach.
(h) Our fused image.

Synthetic Data Set. The image set consists of two frames of size 400×400. In
the first frame the foreground is in focus, in the second frame the background.
For this synthetic images ground truth data is available, thus it is possible to rate
the quality of our result in terms of an error measure. Figure 1 depicts the ground
truth depth map and the all-in-focus image (Fig. 1c, 1d), the initial depth map
and the corresponding image (Fig. 1e, 1f), as well as the final smoothed depth
map and the resulting image (Fig. 1g, 1h). The initial depth map is not reliable,
thus it produces an unsharp result with a mean squared error (MSE) 535.42.
The final depth map obtained with our approach is very close to the ground
truth depth map, and the fused image is sharp with an MSE of 45.88.

Real–World Data Set. The image set consists of 13 images of size 1344×1021
pixels with increasing focal length. Figure 2 demonstrates the results: In the
middle row we observe the depth maps corresponding to the different stages of
our algorithm (the initial, the thresholded, and the final depth map). We can
see that the final depth map is nicely segmented, the noise is removed, and we
obtain the desired piecewise smooth result. In the bottom row we observe the
magnified details of the fused image obtained with the initial depth map (Fig.
2g), the details of the fused image obtained with our approach (Fig. 2h) as well
as the fused image itself (Fig. 2i). Comparing the details we see that the result
of our approach is sharper, the fine details are well-preserved, and it contains
much less noise.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Results for the real-world data set. (a)-(c) Input frames 3, 7, and 13. (d) Initial
depth map. Brighter pixels correspond to farther frames. (e) Thresholded depth map.
Red colour denotes unreliable pixels that have been removed. (f) Final depth map.
(g) Zoom into the fused images obtained with initial depth map. (h) Zoom with final
depth map. (i) Fused image.

4 Conclusions and Outlook

We have identified depth map regularisation as an important aspect of focus
fusion that has hardly been explored in the literature so far. Applying concepts
of modern PDE-based smoothing methods such as robustified fidelity terms and
anisotropic smoothness terms, it was possible to improve the quality of the fusion
result substantially.
This approach is very general since it can be combined with many fusion criteria.
The fact that we have chosen a gradient-based depth map initialisation and direct
pixel fusion was for didactic reasons only, since we wanted to keep the method
as simple as possible.
Last but not least, focus fusion is only one special application of image fusion.
Our approach can also be extended to other fusion tasks such as exposure fusion
or superresolution. This is part of our ongoing research.
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Update for the paper
Focus Fusion with Anisotropic Depth Map Smoothing

On page 3, Subsec. Confidence Function: An example of the previously
shown initial depth map after gradient tresholding (σ = 1.0, T = 40) is pre-
sented in Fig. 2e.

On page 7, Fig. 2: Fig. 2e changed according to the parameters above, Fig.
2f obtained with the time step size τ = 0.25 and 2500000 iterations, Fig. 2h
changed according to the final fused image, Fig. 2i changed according to the
final depth map.

The small time step size and a large number of iterations ensure that the
algorithm has converged and a steady state of the evolution equation Eq. 9 has
been reached.


