
In F. Lauze, Y. Dong, A. B. Dahl (Eds.):
Scale Space and Variational Methods in Computer Vision.

Lecture Notes in Computer Science, Vol. 10302, 590-601, Springer, Cham, 2017.

The final publication is available at link.springer.com

Evaluating Data Terms for Variational
Multi-frame Super-resolution

Kireeti Bodduna and Joachim Weickert

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science,

Saarland University, 66041, Saarbrücken, Germany.
{bodduna,weickert}@mia.uni-saarland.de

Abstract. We present the first systematic evaluation of the data terms
for multi-frame super-resolution within a variational model. The various
data terms are derived by permuting the order of the blur-, downsample-,
and warp-operators in the image acquisition model. This yields six dif-
ferent basic models. Our experiments using synthetic images with known
ground truth show that two models are preferable: the widely-used warp-
blur-downsample model that is physically plausible if atmospheric blur
is negligible, and the hardly considered blur-warp-downsample model.
We show that the quality of motion estimation plays the decisive role
on which of these two models works best: While the classic warp-blur-
downsample model requires optimal motion estimation, the rarely-used
blur-warp-downsample model should be prefered in practically relevant
scenarios when motion estimation is suboptimal. This confirms a widely
ignored result by Wang and Qi (2004). Last but not least, we propose
a new modification of the blur-warp-downsample model that offers a
very significant speed-up without substantial loss in the reconstruction
quality.
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1 Introduction

Generating high resolution (HR) images is one of the main objectives of photog-
raphy. These images show more details of the scene which is crucial for many
applications such as surveillance, medical or satellite imaging. Instead of opting
for expensive high precision optics, the other way is to enhance the resolution
after capturing. While there exist methods to enhance the resolution of a single
image [9, 12, 23], which is referred to as single-frame super-resolution, a more
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common technique is to acquire several low resolution (LR) images of the same
scene and combine the information from them into a single HR image. This
process is known as super-resolution (SR) reconstruction.

Super-resolution is an inverse problem where we are trying to recover the

unknown HR image. Given N LR images
{
fkL
}N
k=1

of resolution NL = L1 × L2,
we want to find a HR image fH of resolution NH = H1×H2 where NH = NL×z
(z is the zoom factor). This HR image fH should minimize the following energy
function :

E(fH) =

N∑
k=1

|Pk(fH)− fkL|2 (1)

where Pk(fH) is the projection of the HR image onto the LR scale and |.|
denotes the Euclidean norm. The projection operator Pk(fH) is modeled by a
sequence of linear transformations: Blurring, motion warping and downsampling
are the three operators that describe the relation between the HR scene and the
LR realizations of the scene. The order of these operators is decided keeping in
mind the image acquisition procedure. The procedure of acquiring digital images
is modeled as follows [8]:

fkL = DBcamWkBatmpfH + ek (2)

The HR scene fH undergoes an atmospheric blurring matrix Batmp (size:
NH × NH) first. The objects in the scene are assumed to be moving with the
camera as the frame of reference. This motion is modeled by a warping operator
Wk (size: NH × NH). The moving objects then undergo a blurring due to the
point spread function (PSF) of the camera is modeled by Bcam (size: NH×NH).
Finally the HR scene is downsampled by the camera detector system which is
modeled with the help of the operator D (size: NL×NH). An additive noise vec-
tor ek of size NL is assumed. This entire process leads to a single LR realization
fkL of size NL. It should be mentioned that the blurring and the downsampling
operators do not have an index k as the atmospheric conditions and the camera
conditions are assumed to be same for all the LR realizations.

The seminal work on multi-frame super-resolution goes back to Tsai et al.
[20]. The standard observational model for SR reconstruction that is widely
followed [1, 2, 5, 7, 10, 11, 13–16, 16, 18, 19, 24] was first proposed and represented
in a matrix-vector formulation by Elad et al. [6]:

fkL = DBWkfH + ek (3)

One can see that the atmospheric blurring operator from Equation 1 has been
dropped. Dealing with an extra blurring matrix might be a bit cumbersome both
with respect to the number of parameters in the model and the computational
burden. Also, on the other hand it is not a bad assumption to assume that the
camera blur is the dominant one amongst the two type of blurs, especially in
cases where images are obtained from microscopes.
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Our contribution. Evaluating the SR observational models that either de-
viate or do not deviate from the image acquisition process in terms of ordering
of the operators, is still an open research field. Very few works [18, 21, 25] have
concentrated their research on this particular problem. Variational models are
known for the many degrees of freedom they provide while modeling various
problems. In this work, we make use of this liberty provided by variational mod-
els to systematically evaluate the different SR data terms. These different SR
data terms are derived by modifying the image acquisition model but are math-
ematically still plausible. We only focus on the data term as the discussions for
the smoothness terms are similar to that of other applications like image denois-
ing and optic flow. Finally, we also propose a new modified observational model
which helps to save a lot of computational time.

Paper structure. The outline of this paper is as follows: We propose various
SR observational models and introduce the optic flow method used in calculating
the warping matrix in Section 2. The experiments and discussions on the results
from the experiments are presented in Section 3. We consolidate the conclusions
from the performed experiments and discussions in Section 4.

2 Modeling and Theory

2.1 Optic Flow

The warping matrix in Equation 2 represents the displacements that the objects
in the HR scene have undergone before being captured as a LR image by the
camera. We make use of a simplified version of the popular optic flow method
by Brox et al. [4] to estimate this matrix (we omit gradient constancy and just
consider grey value constancy). This method is designed specifically for handling
large displacements by using a theory of multi-scale warping. Also, the method
does not assume a particular type of motion and hence it is a very good fit for
estimating the warping matrix. We consider one of the LR images to be the
reference image. The warping matrix is calculated for every reference image -
LR image pair. In the following we briefly sketch the main ideas behind this
optic flow method.

Let x := (x, y, t)T denote the position vector and w = (u, v, 1)T the un-
known displacement vector field. Penalizing the deviations from the grey value
constancy and enabling interaction between pixels can be modeled by the fol-
lowing continuous energy functional :

E(u, v) =

∫
Ω

(
Ψ(|f(x + w)− f(x)|2 + αOF (Ψ(|∇u|2 + |∇v|2)

)
dx (4)

where Ω is the image domain, f denotes the image sequence and ∇ repre-
sents a spatio-temporal gradient. To tackle the effect of outliers on a quadratic
energy, an increasing convex function Ψ(s2) is applied for a robust convex energy
functional such as Ψ(s2) =

√
s2 + ε2 with a small positive constant ε required
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Table 1: Proposed SR observational models along with the mean squared error
(MSE) values of the obtained reconstructed SR image for TS1 using flows F1
and F2. The optimized parametric values are also shown.

# Observational
Model

MSE
(F1)

MSE
(F2)

σ
(F1)

σ
(F2)

α
(F1)

α
(F2)

1 DBWkfH = fk
L 103.26 170.11 0.57 0.59 0.002 0.006

2 DWkBfH = fk
L 121.76 171.27 0.65 0.61 0.004 0.005

3 BDWkfH = fk
L 120.63 193.23 0.63 0.65 0.009 0.06

4 WkDBfH = fk
L 116.46 164.15 0.57 0.51 0.0008 0.0004

5 BWkDfH = fk
L 120.12 173.93 0.58 0.55 0.0004 0.0007

6 WkBDfH = fk
L 121.91 173.51 0.61 0.56 0.0008 0.0005

for retaining the convex property of the energy functional after the application
of Ψ . Moreover, αOF is the regularization parameter. The goal is to find a w
which minimizes the above energy functional.

The multi-scale warping approach is integrated in the Euler-Lagrange equa-
tions of the above energy functional. It involves a downsampling operation, which
allows linearisation of the grey value constancy assumption, thus leading to a
linear system of equations. More specific details about the parameters and the
optic flow method itself can be found in the paper by Brox et al. [4].

2.2 Evaluated SR Observational Models

In this section, we propose the super-resolution observational models that deviate
from the image acquisition procedure mentioned in Equation 2. These Models 1-
6 are specified in Table 1. The modifications that lead to the deviations from the
imaging physics are a combination of dropping one of the blurring operators and
permuting the operators. It should be mentioned that the warping and blurring
matrices are space variant and hence none of the three operators (blur, warp
and downsample) commute with each other. This also assures that none of the
proposed models are equivalent to each other. The aim is to test which of the
models gives the best SR reconstruction results.

For the evaluation of different observational models, we embed them in a
variational framework. As mentioned in Section 1, we capitalized on the flexibil-
ity of the variational models for evaluating different data terms. Let us consider
Model 1. The energy that has to minimized in order to obtain an SR image using
the standard observational model (Model 1) is given by

E(fH) =
1

2

N∑
k=1

|DBWkfH − fkL|2 +
1

2
α|A1fH |2 (5)

where A1 is a discrete approximation of the gradient. A higher value of α
would give rise to an SR image with a smoother gradient. The Euler-Lagrange
equation of this energy functional is given by
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Fig. 1: Generation of Test Set 1 (TS1).

N∑
k=1

W T
k BTDT (DBWkfH − fkL)− α|A2fH | = 0 (6)

where A2 is the discrete approximation of the Laplacian. We have used a
Gaussian blurring kernel throughout this paper to model the blurring operator
B. Since B describes a space invariant Gaussian blur, the transposed matrix
BT is the same as B. The matrix DT is the upsampling operator while D is
the downsampling operator. For mathematical consistency, DT and D should
be implemented with the same interpolation technique. We have used the area
based interpolation technique for upsampling and downsampling processes. The
matrix Wk represents the forward warping matrix while W T

k denotes backward
warping. We have implemented warping using bilinear interpolation.

We use a gradient descent scheme with parameters τ (the time step size)
and `max (the number of iterations) to solve the Euler-Lagrange equations of
all the proposed models in Table 1. The gradient descent scheme applied to the
Euler-Lagrange equation of the standard model is given by

f `+1
H = f `H + τ

(
αA2f

`
H −

N∑
k=1

W T
k BTDT (DBWkf

`
H − fkL)

)
. (7)

3 Experiments

3.1 Image Datasets

To evaluate the performance of the methods mentioned in Table 1, we have gen-
erated two LR test image sequences. More specifically, we have simulated the
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(a) Original Image (b) Area upsampled refer-
ence frame

(c) Model 1 (MSE: 103.26)

Fig. 2: SR reconstructed image of TS1 using F1 as optic flow.

image acquisition process of a HR scene on two ground truth HR images. The
shapes image has a texture background taken from the texture image database of
the Massachusetts Institute of Technology which is available at the following link:
http://vismod.media.mit.edu/vismod/ imagery/VisionTexture/vistex.html. We
refer to the ’shapes’ image sequence as Test Set 1 (TS1). The second image
sequence which is composed of self generated text is referred to as Test Set 2
(TS2). The ground truth of both image sequences is a 512 × 512 greyscale im-
age. Figure 1 shows the generation of the image sequence TS1 from its ground
truth. We have simulated a deformation type of motion with sub-pixel displace-
ments using a combination of sine and cosine waves with randomly selected
amplitude. It is well known that sub-pixel displacements are a requirement for
super-resolution [17]. The ground truth image in TS2 undergoes a similar degra-
dation process but without atmospheric blur. A zooming factor of z = 3 was
used in both image datasets.

3.2 Parameters

Optic flow parameters: The model parameters are αOF (smoothness/ regu-
larization parameter for optic flow) and σOF (Gaussian pre-smoothing standard
deviation). We have assumed a scenario where the ground truth optic flow is not
available (which is generally the case) for selecting the optic flow parameters.
Hence, we select sub-optimal optic flow model parameters by confirming visually
that the images are properly registered. The numerical parameters are η (down-
sampling factor), η1 (we use 10 inner fixed point iterations), η2 (10 outer fixed
point iterations) and ω (we select 1.95 for the SOR over-relaxation parameter).
For evaluation purposes, we consider the same optic flow parameters for different
data terms used for a particular image dataset.
SR parameters: We have optimized the two model parameters α (for regu-
larization) and σ (standard deviation of the Gaussian kernel for blurring) with
respect to the mean squared error (MSE) as the ground truth SR image is avail-
able. This helps in evaluating the performance of different SR data terms. The
numerical parameters are `max and τ . A decay of the norm of the residue by a
factor of 10−5 was used as the stopping criterion for iterations. We also utilize
a Fast Explicit Diffusion (FED) scheme [22] to accelerate the explicit gradient
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Table 2: Proposed SR observational models along with the MSE values of the
obtained reconstructed SR image for TS2 using both ground truth (GT) and
sub-optimal flow (SOF). The optimized parametric values are also shown.

# Observational
Model

MSE
(GT)

MSE
(SOF)

σ
(GT)

σ
(SOF)

α
(GT)

α
(SOF)

1 DBWkfH = fk
L 10.85 173.18 0.34 0.42 0.0002 0.003

2 DWkBfH = fk
L 23.42 162.86 0.35 0.45 0.0005 0.002

3 BDWkfH = fk
L 77.92 248.38 0.50 0.55 0.0009 0.005

4 WkDBfH = fk
L 250.35 294.00 0.31 0.33 0.001 0.0006

5 BWkDfH = fk
L 422.82 451.70 0.42 0.43 0.002 0.001

6 WkBDfH = fk
L 423.52 451.91 0.42 0.43 0.002 0.002

descent scheme. We observed that τ = 0.1 was a stable time step size for all the
proposed observational models through backtracking search.

It should be mentioned that modifications of the variational SR reconstruc-
tion method we used are definitely possible. For better results, we can use more
complex optic flow models, anisotropic blurring kernels, robust data terms,
discontinuity-preserving anisotropic smoothness terms and more sophisticated
interpolation strategies. However, the aim of our work is to compare the perfor-
mance of the data terms. To this very end, we keep things simple by assuming
a noise-free scenario. For comparison purposes, we have integrated all our mod-
els on a common platform. It uses the same variational framework and default
parameter settings for the optic flow algorithm.

Both image sequences had 13 images and we have used the last image as the
reference image in both cases. An area upsampled reference image was used as
an initialisation for the solution of the gradient descent scheme.

3.3 Results and Discussion

As explained in Section 3.2, we have selected the optic flow parameters by con-
firming that the images are properly registered, assuming the real world scenario
where the ground truth flow is not known. To emphasize the importance of a
good optic flow for super-resolution, we have performed the experiments on TS1
using two different sets of optic flow parametric values. The first set of optic flow
parameters with η = 0.5, σOF = 0.3, αOF = 8.0 is represented as F1. The optic
flow parametric set η = 0.5, σOF = 0.3, αOF = 30.0 is denoted by F2. We have
selected the parametric values of F2 such that the corresponding image regis-
tration was inferior when compared to the image registration with F1. It should
be remembered that TS1 is generated by simulating both atmospheric blur and
camera blur. From Table 1, we can conclude two things from the reported MSE
values. Firstly, the best SR reconstructed image using F1 is better than the best
SR reconstructed image using F2. This is not a surprising result since better
optic flow leads to better image registration and hence a better reconstructed
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(a) Original Image (b) Area upsampled refer-
ence image

(c) Model 1 (GT, 10.85)

(d) Model 2 (GT, 23.42) (e) Model 1 (SOF, 173.18) (f) Model 2 (SOF, 162.86)

Fig. 3: SR reconstructed images of TS2 along with MSE and flow.

SR image. Secondly, the ranking of the data terms with respect to the MSE
value has changed with change in optic flow. This is more surprising than the
first conclusion. With a better optic flow, the standard SR observational model
(Model 1) gives the best results by a fair margin. If the optic flow is bad (F2),
this is no longer the case. Thus, this experiment emphasizes the importance of
optic flow in both quality of the reconstructed image and the ranking of the data
terms. Figure 2 shows the reconstructed image of TS1 using F1 and Model 1.

From the above discussion, we could think that, to conclude correctly about
the ranking of the proposed SR observational models in Table 1, the ground truth
optic flow has to be used. Hence for TS2, we have used both ground truth (GT)
optic flow and sub-optimal optic flow (SOF) with η = 0.9, αOF = 15.0, σOF =
0.3. One needs to remember that TS2 has been generated without simulating
atmospheric blur. This is the general case scenario where camera blur is dominant
over atmospheric blur. Table 2 shows the MSE values of the reconstructed SR
image of TS2 while Figure 3 shows the reconstructed images. We can conclude
that the standard observational model gives the best results for the ground truth
optic flow. This is similar to the observation in the previous experiment where
Model 1 gave the best results for better optic flow F1. On using SOF as the optic
flow parametric values, Model 2 gave the best results. It can be observed that the
error in the best reconstructed image using GT is much smaller than the error
in the best reconstructed image using SOF. This reinforces the critical nature
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(a) Area upsampled refer-
ence image

(b) Model 1 (F1, 103.26) (c) Model 2.1 (F1, 97.05)

(d) Area upsampled refer-
ence image

(e) Model 2 (SOF, 162.86) (f) Model 2.1 (SOF, 172.03)

Fig. 4: SR reconstructed images of TS1 and TS2 using Model 2.1.

of motion estimation in SR reconstruction. The main reason behind Models 1
and 2 performing better is that they are the closest to the image acquisition
model in Equation 2. In other words, the only manipulation they undergo while
they are derived from the image acquisition model is dropping one of the blur
operators but they do not undergo any swapping of operators like in Models 3-6.
The lesson to be learnt from this experiment is that the observational model
needs to stay as close as possible to the imaging physics. Now, is this a trivial
result? We will be answering this question shortly.

Zhang et al. [25] and Rockefort et al. [18] have discussed the application of
both observational Models 1 and 2 but only when affine motion is assumed.
Wang et al. [21] provide a short but insightful work. They also discuss Models
1 and 2 in the case where camera blur is dominant over atmospheric blur. They
do not have constraints on the type of motion. With the help of simple counter
arguments based on the theory of operator commutability, they prove that, in
the case where motion has to be estimated from the LR images (similar to the
case where sub-optimal flow has been used for TS2), SR reconstruction using
Model 1 introduces a systematic error. Model 2 does not introduce this error
and hence it should be preferred over Model 1. The other case is the one where
the motion between the HR scenes is known (similar to the case where we have
used ground truth flow). In such a case Model 1 gives better results than Model
2 as there is no systematic error. Wang et al. also support their arguments
with experimental validations. One can see that by observing the MSE values
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and the reconstructed images of TS2, the experimental validations of [21] are
confirmed. However, by using a multi-scale warping approach, we have employed
a more advanced variational motion estimation method than the one [3] by Wang
et al. [21]. This still doesn’t guarantee that the standard observational model
performs better. Also, they discard the smoothness term in evaluating Models 1
and 2. Thus, with our experiments, we can additionally conclude that inclusion
of a regularization term does not change the ranking of the models with respect
to SR reconstruction. One could expect to reduce this performance gap between
the two Models 1-2 by using even better optic flow.

Thus, going back to the unanswered question above, it is not confirmed that
if we deviate from the image acquisition process but still follow a mathemat-
ically plausible observational model, we are bound to get worse results. The
arguments in the above paragraph support this statement. In such a case it is
really necessary that one verifies all mathematically plausible models. Thus, our
contribution of evaluating all the six models is not a trivial experiment. However,
it turned out that Models 3-6 are outperformed by Models 1-2.

Eventhough Model 2 does not outperform Model 1 by a large margin (while
using sub-optimal flow), when we retrospect the reported works on super-resolution
after [21] was reported, it is surprising that in most of the works the standard
observational model has been used [1, 2, 10, 11, 14, 15, 24]. Model 2 has not been
considered as a possible observational model.

3.4 More Efficient Model

Now we propose another mathematically plausible model derived from Model 2
and discuss what could be the advantages of using it. The following is the repre-
sentation of what we denote as Model 2.1: BfH = W T

k DTfkL. It is clear that it
is dervied from Model 2 as the ordering of operators is the same. However, it is
definitely different from Model 2 itself as warping and downsampling are inter-
polation operations. Interpolation in general is not an invertible operation. This
model also deviates from the imaging physics but is still a mathematically plau-
sible model. The gradient descent of the Euler-Lagrange equation corresponding
to the energy using Model 2.1 in the data term, is given by:

f `+1
H = f `H + τ(αA2f

`
H − (NBTBf `H −C)) (8)

where C =
∑N
k=1 B

TW T
k DTfkL can be precomputed. Such a precomputation

is not possible with Model 2.
Figure 4 shows the reconstructed images using Model 2.1. The parameters

σ = 0.64, α = 0.006 were selected for TS1 and σ = 0.59, α = 0.002 were selected
for TS2 after optimizing for the MSE with respect to the ground truth SR
image. We can conclude from the Figure 4 that the reconstructed HR images
obtained using Model 2.1 are not far off from Models 1 and 2 in terms of image
reconstruction quality. However, it was observed that because of being able to
pre-compute C, the gradient descent of Model 2.1 is twenty-five times faster for
TS1 and eighteen times faster for TS2 when compared to the gradient descent
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schemes of Models 1 and 2 respectively. This can be a decisive advantage in time
critical applications.

4 Conclusion and Outlook

Super-resolution requires to model three physical penomena: blur, warp, and
downsample. In our paper, we have performed the first systematic evaluation of
the influence of the order of these three operators on the result of a variational
super-resolution model. This has led to the surprising result that it is not always
the physically most plausible and most widely used model which performs best
in a practical setting when motion estimation may suffer from errors. Thus, it
is worthwhile to consider also alternative models. Moreover, we saw that closely
related models can lead to algorithms with strongly differing efficiency: By re-
formulating the blur-warp-downsample model we managed to come up with a
novel model that was 18–25 times more efficient. These insights emphasize the
fundamental importance of careful model design.

A possible future work would be to confirm the evaluation performed in this
paper also for the case of color images. We are also going to apply our super-
resolution algorithms to real world images from biophysics that suffer from severe
noise and the absence of ground truth data.
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