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Short Abstract

Denoising, super-resolution and structure enhancement are classical image
processing applications. The motive behind their existence is to aid our visual
analysis of raw digital images. Despite tremendous progress in these fields,
certain difficult problems are still open to research. For example, denoising
and super-resolution techniques which possess all the following properties, are
very scarce: They must preserve critical structures like corners, should be
robust to the type of noise distribution, avoid undesirable artefacts, and also
be fast. The area of structure enhancement also has an unresolved issue: Very
little efforts have been put into designing models that can tackle anisotropic
deformations in the image acquisition process. In this thesis, we design novel
methods in the form of partial differential equations, patch-based approaches
and variational models to overcome the aforementioned obstacles. In most
cases, our methods outperform the existing approaches in both quality and
speed, despite being applicable to a broader range of practical situations.
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Kurzzusammenfassung

Entrauschen, Superresolution und Strukturverbesserung sind klassische An-
wendungen der Bildverarbeitung. Ihre Existenz bedingt sich in dem Be-
streben, die visuelle Begutachtung digitaler Bildrohdaten zu unterstützen.
Trotz erheblicher Fortschritte in diesen Feldern bedürfen bestimmte schwierige
Probleme noch weiterer Forschung. So sind beispielsweise Entrauschungs-
und Superresolutionsverfahren, welche alle der folgenden Eingenschaften be-
sitzen, sehr selten: die Erhaltung wichtiger Strukturen wie Ecken, Robus-
theit bezüglich der Rauschverteilung, Vermeidung unerwünschter Artefakte
und niedrige Laufzeit. Auch im Gebiet der Strukturverbesserung liegt ein
ungelöstes Problem vor: Bisher wurde nur sehr wenig Forschungsaufwand
in die Entwicklung von Modellen investieret, welche anisotrope Deforma-
tionen in bildgebenden Verfahren bewältigen können. In dieser Arbeit en-
twerfen wir neue Methoden in Form von partiellen Differentialgleichungen,
patch-basierten Ansätzen und Variationsmodellen um die oben erwähnten
Hindernisse zu überwinden. In den meisten Fällen übertreffen unsere Meth-
oden nicht nur qualitativ die bisher verwendeten Ansätze, sondern lösen die
gestellten Aufgaben auch schneller. Zudem decken wir mit unseren Modellen
einen breiteren Bereich praktischer Fragestellungen ab.
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Abstract

Structure preservation and enhancement are two of the most important pil-
lars of image processing research. There is a fine but key difference between
their definitions. In structure preservation, one is interested in removing un-
desirable structures but preserving the desirable ones. The latter structures
are not significantly altered. In structure enhancement, on the other hand,
the desirable structures are significantly altered in order to better visualise
them. In this thesis, we consider denoising and super-resolution among the
structure preservation applications. We also deal with enhancement of cell
structure images obtained using electron microscopy.

Single-frame Denoising. In this application, one tries to obtain a noise-free
image from a single raw noisy image. Patch-based methods are approaches
which rely on information from a large number of pixels. Consequently, such
models produce good denoising results. However, they also tend to form
artefacts and require a-priori knowledge about noise statistics. We present
a novel approach that avoids the above drawbacks. In particular, we design
an iterative non-linear filter that operates on smooth patch reorderings for
artefact avoidance. The non-linearity solely encapsulates the properties of
a signal but not the noise distribution. Thus, our method is applicable to
several synthetic and practical world noise models. Despite excluding noise
statistics within the non-linearity, our technique is competetive with state-of-
the-art synthetic noise removal approaches which use such information. We
also present experiments on practical electron microscopy data where our
method outperforms others.

Our above model considers disc-shaped patches. In this thesis, we ad-
ditionally evaluate sector- and stripe-shaped patches. The sector-shaped
modelling in particular uses one-sided derviatives unlike most of the existing
filters. The superior structural adaptivity of anisotropic neighbourhoods like
sectors and stripes resulted in better preservation of critical structures like
edges and corners.

Multi-frame Denoising. Here, we propose three extensions for single-frame
patch-based filters when there exist multiple frames of the same scene. The
first of these extensions employs reference patches on every frame, thus uti-
lizing the complete available information. The remaining two techniques use
a separable spatio-temporal filter to reduce interactions between dissimilar
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regions, hence mitigating artefacts. In order to deal with object movement
within different frames of a dataset, we combine all our extensions with mo-
tion estimation algorithms. Two of our proposed multi-frame filters outper-
form existing extensions on most occasions by a significant margin. They are
also competetive with a state-of-the-art learning-based technique. Moreover,
a separable spatio-temporal design makes one of our methods the fastest
among several filters.

Multi-frame Super-resolution. In this application, one is interested in com-
puting a high-resolution image from multiple ones with a lower spatial reso-
lution. A so called observational model depicts the relation between a high-
resolution image and its low-resolution counterparts. In this context, we
present the first systematic evaluation of the observational models for multi-
frame super-resolution. This has led to significant improvements in terms
of both quality and speed. Moreover, obtaining high-resolution images from
data corrupted with clipped noise is algorithmically challenging. So far such
issues have hardly been tackled, and the few existing approaches use simplis-
tic models. To this end, we show the usefulness of two techniques which have
a better ability to adapt to the structural information within noisy data.

Structure-aware Image Enhancement. Connecting interrupted line-like struc-
tures is a frequent problem in image processing. Here we focus on the specific
needs that occur in 3D biophysical data analysis in cryo-electron microscopy
(cryo-EM). We introduce a powerful framework by combining a specific semi-
local Hough transform with a directional evolution equation. The Hough
transform allows to find the principal directions in which the structures exist
in a robust way. The evolution equation is designed as a partial differen-
tial equation that smoothes along these principal directions. We evaluate
the structure enhancement performance of our method on both synthetic
and cryo-EM data. In contrast to a classical image enhancement model, our
method can also handle the anisotropic deformations in the image acquisition
process of cryo-EM.

Throughout this thesis, within the applications of denoising, structure
enhancement, and super-resolution, we make several extensive evaluations.
These are motivated from a point of view of quality as well as computational
burden. On both fronts, we have made a significant progress in contrast to
existing works.

6



Acknowledgements

First and foremost, I sincerely thank my supervisor Prof. Joachim Weickert,
for providing me an opportunity to write a doctoral thesis in his lab. His
guidance not only helped me in discovering scientific knowledge but also in
learning optimal ways of presenting it to the audience. Several challenging
conversations with him saved some crucial time and also led to a better
understanding of my own work.

This thesis was funded by four agencies: The German research founda-
tion (through a Gottfried Wilhelm Leibniz prize that was awarded to Prof.
Weickert), Saarland University, University of Frankfurt, and the Saarbrücken
Graduate School of Computer Science. I especially want to thank Prof. Achil-
leas Frangakis and Dr. Michelle Carnell, in this respect. Prof. Frangakis’
contribution was also vital in understanding the image processing require-
ments of the microscopy community. Dr. Carnell was always available for a
counselling session at the graduate school.

I also want to thank the members of both Mathematical Image Anal-
ysis (MIA) and the Frangakis groups for creating an apt environment for
conducting research. Especially the technical discussions I had with my col-
laborator Dr. Marcelo Cardenas were always insightful. Also, the feedback
from Dr. Matthias Augustin, Dr. Pascal Peter, Dr. Sabine Müller and Tobias
Alt on draft versions of my thesis was very helpful. The friendly assistance
provided by our administrative staff at MIA, Ellen Wintringer and Peter
Franke, aided me in concentrating solely on research activities.

Prof. Rajesh Siddavatam was my first research supervisor. The moti-
vation he provided and the confidence he had in me were invaluable. My
friends and relatives in India and Germany always helped me in recharging
my batteries. Last but not least, without the support of my parents Padmaja
and Venugopal Bodduna as well as my brother Virinchi, this journey would
have been even more difficult.

7



Contents

1 Introduction 15
1.1 Goals and Contributions . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Single-frame Image Denoising . . . . . . . . . . . . . . 18
1.1.2 Multi-frame Image Denoising . . . . . . . . . . . . . . 24
1.1.3 Multi-frame Super-resolution . . . . . . . . . . . . . . . 25
1.1.4 Structure-aware Image Enhancement . . . . . . . . . . 28

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 A Review of Image Acquisition, Noise Models and
Error Measures 32
2.1 Image Acquisition Techniques . . . . . . . . . . . . . . . . . . 33

2.1.1 Acquiring Images Through Photon Capture . . . . . . 34
2.1.2 Acquiring Images Through Electron Capture . . . . . . 34

2.2 Noise Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Additive White Gaussian Noise . . . . . . . . . . . . . 36
2.2.2 Poissonian Noise . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Poissonian-Gaussian Mixture Noise . . . . . . . . . . . 38

2.3 Connections between Image Acquisition Techniques and Noise
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Statistical Measures of Image Quality . . . . . . . . . . . . . . 41
2.4.1 Mean Squared Error . . . . . . . . . . . . . . . . . . . 41
2.4.2 Peak Signal-to-noise Ratio . . . . . . . . . . . . . . . . 42
2.4.3 Fourier Ring Correlation . . . . . . . . . . . . . . . . . 43

3 A Review of Image Denoising Methods 45
3.1 Gaussian Noise Elimination . . . . . . . . . . . . . . . . . . . 47

3.1.1 Cartesian Domain Filters . . . . . . . . . . . . . . . . . 47
3.1.2 Transformed Domain Filters . . . . . . . . . . . . . . . 53

8



Contents

3.1.3 Dual Domain Filters . . . . . . . . . . . . . . . . . . . 56
3.2 Poissonian Noise Elimination . . . . . . . . . . . . . . . . . . 57
3.3 Baseline Denoising Filters Considered . . . . . . . . . . . . . . 58

I Single-frame Image Denoising 62

4 Disc Diffusion - A Non-local Diffusion Model 63
4.1 Modelling and Theory . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Continuous Modelling of Disc Diffusion . . . . . . . . . 64
4.1.2 Discrete Modelling of Disc Diffusion . . . . . . . . . . . 66

4.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 68
4.2.1 Datasets and Methods for Evaluation . . . . . . . . . . 68
4.2.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Eliminating Synthetically Generated Noise . . . . . . . 70
4.2.4 Eliminating Real-world Noise . . . . . . . . . . . . . . 71

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Non-linear Filtering on Fast Patch Reorderings 74
5.1 Modelling and Theory . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Fast Patch Reordering Stage . . . . . . . . . . . . . . . 78
5.1.2 Non-linear Smoothing Stage . . . . . . . . . . . . . . . 78
5.1.3 Correspondences with Disc Diffusion . . . . . . . . . . 81

5.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 82
5.2.1 Datasets and Methods for Evaluation . . . . . . . . . . 82
5.2.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . 82
5.2.3 Synthetic Noisy Data . . . . . . . . . . . . . . . . . . . 83
5.2.4 Electron Microscopy Data . . . . . . . . . . . . . . . . 93

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Sector Diffusion - A Corner Preserving Diffusion Model 100
6.1 Modelling and Theory . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Continuous Modelling of Sector Diffusion . . . . . . . . 102
6.1.2 Discrete Modelling of Sector Diffusion . . . . . . . . . . 104

6.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 108
6.2.1 Datasets and Methods for Evaluation . . . . . . . . . . 108
6.2.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . 109

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9



Contents

7 Importance of Filter Shape in Denoising: Stripe Diffusion 114
7.1 Modelling and Theory . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Non-symmetric Stripe Diffusion . . . . . . . . . . . . . 117
7.1.2 Symmetric Stripe Diffusion . . . . . . . . . . . . . . . . 119

7.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 120
7.2.1 Datasets and Parameter Selection . . . . . . . . . . . . 120
7.2.2 Additive White Gaussian Noise . . . . . . . . . . . . . 121
7.2.3 Clipped-Additive White Gaussian Noise . . . . . . . . 122

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

II Multi-frame Image Denoising 126

8 Multi-frame Extensions of Patch-based Filters 127
8.1 Modelling and Theory . . . . . . . . . . . . . . . . . . . . . . 130

8.1.1 Filters for Single-frame Image Datasets . . . . . . . . . 130
8.1.2 Multi-frame Extensions of Single-frame Filters . . . . . 131
8.1.3 Optical Flow Methods . . . . . . . . . . . . . . . . . . 134

8.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 136
8.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . 136
8.2.3 Perfectly Registered Datasets . . . . . . . . . . . . . . 139
8.2.4 Non-registered Datasets . . . . . . . . . . . . . . . . . 146

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

III Multi-frame Super-resolution 151

9 Evaluating Super-resolution Observational Models
and Regularisers 152
9.1 Modelling and Theory . . . . . . . . . . . . . . . . . . . . . . 157

9.1.1 Super-resolution Observational Models . . . . . . . . . 158
9.1.2 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . 158
9.1.3 Edge-enhancing Diffusion . . . . . . . . . . . . . . . . 159

9.2 Experiments on Noise-free Datasets . . . . . . . . . . . . . . . 161
9.2.1 Image Datasets . . . . . . . . . . . . . . . . . . . . . . 161
9.2.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . 162
9.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . 163

10



Chapter 0

9.2.4 More Efficient Model . . . . . . . . . . . . . . . . . . . 166
9.3 Experiments on Noisy Images . . . . . . . . . . . . . . . . . . 167

9.3.1 Image Datasets. . . . . . . . . . . . . . . . . . . . . . . 168
9.3.2 Parameter Selection. . . . . . . . . . . . . . . . . . . . 168
9.3.3 Smoothness Term Evaluation. . . . . . . . . . . . . . . 169
9.3.4 Data Term Evaluation. . . . . . . . . . . . . . . . . . . 170

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

IV Structure-aware Image Enhancement 173

10 Hough-based Evolutions for Structure Enhancement 174
10.1 Modelling and Theory . . . . . . . . . . . . . . . . . . . . . . 178

10.1.1 A General Directional Data Evolution . . . . . . . . . 179
10.1.2 Hough Transform-based Directional Data Evolution . . 180
10.1.3 Modifying Classical Ideas for Adapting to Cryo-EM Data181
10.1.4 Numerical Algorithm . . . . . . . . . . . . . . . . . . . 183

10.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 183
10.2.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . 183
10.2.2 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . 186
10.2.3 Real-world Data . . . . . . . . . . . . . . . . . . . . . 188

10.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

11 Conclusions and Outlook 192
11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12 Bibliography 195

13 Own Publications 258

14 Abbreviations 261

15 List of Symbols 263

11



Chapter 1

Introduction

In scientific research, we try to gain new insights about physical and abstract
concepts. Several manifestations of these understandings are employed in our
everyday life as well as back-channelled for furthering scientific research itself.
Imaging applications are very good examples of how we are utilising scien-
tific knowledge to satisfy our daily needs and also to push the limits of our
perception. We use these applications in our cell phones besides employing
them in microscopy and astronomy (Figure 1.1).

Figure 1.1: Images acquired in various walks of life. Left: Cell phone images.
Centre: Astronomical analysis [1]. Right: Microscopic analysis (Courtesy of
Lasse Sprankel - Goethe University of Frankfurt).

However, depending on the physical conditions that are present while
acquiring desirable imaging data, there is always a possibility of collecting
undesirable information. The manifestation or visualisation of such infor-
mation depends heavily on the specific application. Thus, it is important
that we clearly define the application at hand along with the desirable and
undesirable data associated with it. For example, in the images correspond-
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Chapter 1

ing to astronomy and microscopy in Figure 1.1, we can observe unpleasant
granular data which one refers to as unstructured noise. As the name sug-
gests, such a noise degradation does not have a definite spatial structure.
There also exist degradations that have a definite structure, which are re-
ferred to as structured noise. However, in this thesis, we specifically deal
with the former kind which covers a vast majority of imaging applications.
Among these unstructured degradations, there exist several subcategories.
The formal specification of each one of them is called a noise model.

Depending on the type of degradation, we design mathematical techniques
that compute noise-free images which give us the best visualisation of the
physical world. These methods are called image denoising filters. While
removing noise from a single image is referred to as single-frame denoising,
eliminating it from multiple images of the same scene is known as multi-frame
image denoising.

The above denoising applications produce an output image of the same
spatial resolution as the input. Super-resolution techniques, on the other
hand, have the ability to increase the spatial resolution of images as well as
recover lost information due to camera optics. When one tries to produce
such high resolution images from multiple low resolution images of the same
scene, the specific application is called multi-frame super-resolution. The
same task when performed under the presence of noise, is referred to as
robust multi-frame super-resolution.

Ideas from single-frame denoising methods can be extended to multi-
frame denoising as well as robust multi-frame super-resolution. This signifies
their importance in image processing research. Moreover, all the approaches
for above applications are designed from a point of view of preserving image
structures while removing noise (Figure 1.2). Such techniques are known as
structure preserving filters. Astronomy [2–4], microscopy [5–10], seismology
[11] and medical imaging [12] are some important examples of areas that
require such approaches.

Many methods that focus on preserving structural discontinuities treat
all possible directions equally. However, we also encounter situations where
removing discontinuities in a particular direction leads to better perception
of images. In such cases, we perform a smoothing along a particular local
direction which enables structure enhancement (Figure 1.2). In contrast to
structure preserving techniques, this is a less explored field and referred to as
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1.1. Goals and Contributions

Figure 1.2: Left: Noisy image. Centre: Ideal output of a structure preserv-
ing filter with noisy image on left as input. Right: Ideal output of a structure
enhancing technique with noise-free image in the centre as input.

structure enhancing image processing. Fingerprint images, artistic paintings,
computed tomography scans, and clothing fibre images have been enhanced
by such algorithms [13].

Chapter Structure. We divide the rest of this Chapter into two parts.
In Section 1.1, we describe our goals and contributions pertaining to both
structure preserving and enhancing image processing research. In Section
1.2, we present the organisation of this thesis.

1.1 Goals and Contributions

In this part, we introduce our contributions to four applications: Single-
frame denoising, multi-frame denoising, multi-frame super-resolution, and
image structure enhancement. We present each of these topics by answering
two specific questions: What are the weaknesses in the present state-of-the-
art techniques that have been designed for these applications? What are the
the main ideas and tools that we use in this thesis to solve these problems?
We begin with single-frame filters.

1.1.1 Single-frame Image Denoising

In this application, a single noisy image is used to construct a noise-free
one. In order to accomplish this, one generally makes certain assumptions
about the properties of noise-free images and noise models associated with
the image acquisition process. The non-local Bayes (NLB) [14] and 3D block
matching (BM3D) [15] approaches are among the most popular and better
performing single-frame filters today. Both these techniques are non-local
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Noisy BM3D NLB Original

Figure 1.3: NLB and BM3D produce undesirable artefacts in homogenous regions.

and patch-based: “Non-local” because they make use of information from
distant regions in an image. “Patch-based” means they assume that similar
pixels have similar neighbourhoods around them. The efficient usage of a
large amount of information makes such methods very robust. Additionally,
NLB and BM3D explicitly model the noise distribution within their frame-
works. All these factors lead to the production of superior noise-free images.
However, both of these techniques have three problems:

• Information between dissimilar regions in an image might be exchanged.

• Both of these filters can perform an incomplete noise elimination for
high noise amplitudes.

• The explicit assumption about a particular noise model sensitises them
towards being applicable to other noise distributions.

The first two among the above factors are responsible for existence of
undesirable structures in the denoised images, which we refer to as artefacts
(Figure 1.3). Patch-based methods like NLB and BM3D exist on one side
of the spectrum of image denoising approaches. On the other side, we have
the diffusion-based methods. These filters are modelled using partial differ-
ential equations that control the grey value distribution in an image with
respect to time. They have the ability to circumvent artefacts in homoge-
neous regions of reconstructed images [16] while remaining robust to the kind
of noise distribution. However, non-local extensions of these techniques have
not yet been thoroughly studied. This brings us to the first goal of this thesis.

Goal 1. Design a non-local diffusion-based approach which is robust to the
noise model and also possesses the ability to avoid artefacts in filtered images.
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1.1. Goals and Contributions

Our Contribution. We start with a classical diffusion-based idea proposed
by Weickert [17]. In this work, the author analysed an anisotropic image
evolution process which is capable of preserving edges very well. In order to
utilise more information within the filtering process than what is used in [17],
we introduce its non-local extension which we call disc diffusion (DD).

Even though the iterative nature of the DD framework does not leave any
traces of noise in homogeneous regions, it has a couple of drawbacks:

• It is sub-optimal for denoising real world images which contain signifi-
cant amounts of texture information.

• Although DD has a non-local formulation, it still cannot effectively use
information which is very far away like patch-based approaches.

There is another interesting non-local solution existing in the literature
which seems promising in avoiding these drawbacks: Ram et al. [18,19] pro-
posed to employ a smooth patch-based reordering of pixels and subsequently
filter them. This idea is powerful enough to produce results of BM3D quality
by just using a very basic filter. However, the patch reordering is computa-
tionally very expensive and basically requires to solve a travelling salesman
problem. Hence, our second goal evolved:

Goal 2. Design a method which combines ideas from sophisticated diffusion-
based filtering and simplified patch-based pixel reorderings.

Our Contribution. In order to reduce the computational burden, we em-
ploy a simple sort operation for patch reordering. However, this comes at
the expense of some disordered pixels which can lead to a loss in recon-
struction quality. To compensate for this factor, we use a filtering technique
that rewards both patch and pixel similarities in a multiplicative manner.
Such a combination results in an approach that is robust in situations when
one of the similarity assumptions is violated due to the presence of noise.
The specific pixel similarity implementation that we use, is inspired from
diffusion-based methods. Thus, this novel filter is robust to the kind of noise
distribution and also avoids artefacts. Keeping in mind the ingredients of our
model, we name it as non-linear filtering on fast patch reorderings (NFPR).

NFPR can be considered as a patch-based extension of the disc diffusion
approach. However, there is still scope for improvement in terms of analysing
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Noisy EED Original

Figure 1.4: Top: EED removes fine structures along an edge. Bottom: EED also
does not properly preserve the corners in comparison to the original image.

shapes other than a disc. This would help in superior performance of the
filter in textured regions.

First, let us consider another approach that has seen broader applica-
tions, the edge-enhancing diffusion (EED) framework by Weickert [13]. It
tries to enhance the quality of an image by smoothing along the edge struc-
tures present in it. However, edges represent one-dimensional discontinuties.
Corners, on the other hand, are formed when multiple edges intersect. Even
though EED is able to preserve edges, its design is not suitable to achieve the
same for corners. This can be clearly seen in Figure 1.4, where fine structures
along an edge and corner regions are disturbed by EED. In general there is
a lack of corner preserving filters, as this is a difficult modelling task in con-
trast to edge preservation. It is important to fill this gap as corners form a
siginificant part of textured regions in an image.

Goal 3. Design a diffusion-based technique that has the capability to pre-
serve both corners and edges, in the presence of noise.

Our Contribution. We divide a disc-shaped neighbourhood into sectors.
This particular shape has a superior ability to adapt to corner regions in the
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1.1. Goals and Contributions

Disc diffusion Sector diffusion Stripe diffusion

Figure 1.5: Structure element shapes for various diffusion techniques.

image. We then perform smoothing within these sectors for preserving the
corners. We call the resulting method sector diffusion (SD).

Our SD approach incorporates one-sided derivatives in its continuous
model unlike EED. To our knowledge, diffusion filters that are explicitly
based on one-sided derivatives have not been described in the literature so
far. The division of a disc into sectors is a direct consequence of using one-
sided derivatives. Such ideas are mathematically very challenging and could
open the door to several new directions of research.

Although sectors are suitable for preserving corners, they have a smaller
number of pixels than a disc. The percentage of pixels in an image that
belong to corner regions is rather low. Thus, if we adopt a sector-shaped
neighbourhood for all regions in the image, this would lead to a sub-optimal
result in terms of overall denoising performance. One of the solutions for
this is to calculate a seperate shape-adaptive neighbourhood for every pixel
in the image [20–23]. However, computing a different shape for every pixel
is computationally very expensive. This brings us to our next goal.

Goal 4. Design a structure element which acts as common ground in be-
tween a disc and a sector.

Our Contribution. The new structure element shall cover a larger area
than a sector, but show a better ability to catch anisotropic behaviour than
a disc. Stripes satisfy both of these requirements. Thus, we introduce the
stripe-shaped structure element in a diffusion-based context. Figure 1.5
shows the disc-, sector-, and stripe-shaped structure elements.

This brings us to the end of our contributions in this thesis pertaining to
single-frame denoising. Now, we move on to its multi-frame counterpart.
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1.1.2 Multi-frame Image Denoising

Computing a single denoised image from multiple corrupted images of the
same scene is called the multi-frame image filtering problem. We encounter
this scenario in video denoising as well as when we acquire multiple images in
highly noisy applications like microscopy. Most multi-frame filters, unsurpris-
ingly, are extensions of ideas borrowed from the single-frame scenario. The
currently best performing multi-frame extensions employ combined spatio-
temporal filtering ideas [24–26]. However, separation of spatial from temporal
information can lead to artefact avoidance as it reduces interactions between
dissimilar regions. Furthermore, a systematic evaluation of multi-frame ex-
tensions is also missing.

Goal 5. This particular goal is a combination of two objectives:

• Design a multi-frame extension which separates spatial from temporal
information while filtering.

• Complete a comprehensive evaluation of multi-frame denoising tech-
niques.

Our Contribution. In order to achieve the above objectives, we propose
the following two solutions, respectively:

• We use filter-then-average and average-then-filter methodologies for
separating spatial from temporal data. This leads to artefact reduction.

• Our comprehensive and systematic evaluation includes three kinds of
experiments. Firstly, we evaluate our proposed multi-frame extension
on three different single-frame methods - NLB, BM3D, and NFPR.
This provides evidence in order to consider our technique as a general
one for extending single-frame patch-based filters. Secondly, we per-
form the above experiments for three kinds of frequently encountered
noise distributions. This gives an idea of the best available approach
for various practical situations. Thirdly, in order to deal with object
movement within a multi-frame dataset, we have made use of robust
motion compensation methods.

This concludes our contributions that are related to denoising. In the
upcoming part, we deal with super-resolution techniques.
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Figure 1.6: The degradations undergone by a high resolution scene in the process
of acquiring a low-resolution image.

1.1.3 Multi-frame Super-resolution

The particular difference between multi-frame super-resolution and multi-
frame denoising is that, in super-resolution we try to increase the spatial size
of the images. We also make an effort to recover information which was lost
due to camera optics. Formally, we try to compute a high resolution scene
from multiple low resolution realisations of it. The relation between both
resolutions is encoded in a so-called observational model. The standard ob-
servational model for super-resolution (SR) reconstruction was first proposed
and represented in a matrix-vector formulation by Elad et al. [27]. It encom-
passes a sequential modelling of the degradations due to blurring, motion,
and downsampling (Figure 1.6).

The physical phenomena mentioned in the above figure are represented
by mathematical operators in the observational model. One can see that the
low resolution images are blurred versions of the high resolution scene. In
order to compute the latter, we try to invert the acquisition process. To this
end, we compute the motion on the low resolution blurred images and its up-
sampled version is approximated as high resolution motion. Both utilisation
of blurred images as well as motion computation itself may lead to errors
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which paves way for our next goal.

Goal 6. Find the best order of operators in the observational model to min-
imise the above mentioned errors while computing a high resolution scene.

Our Contribution. We systematically evaluate all possible permutations
of the standard SR observational model in order to identify the one which
leads to reduction in errors. To this end, we exploit the flexibility provided
by variational models. We encode various combinations of the observational
model within these models.

While the above mentioned variant of super-resolution did not take into
account the presence of noise, there also exist situations where noise reduc-
tion and resolution enhancement are simultaneously required. This is the
robust multi-frame super-resolution problem. Both operator permutations
and image filtering algorithms need to be investigated in this scenario.

Goal 7. Evaluate the various permutations of the SR observational model in
the presence of noise. Additionally, investigate the advantage of a non-local
denoising technique in the SR scenario.

Our Contribution. We evaluate all possible combinations of the stan-
dard SR observational model in a noisy layout. The particular noise model
employed also covers over- and under-exposed imaging conditions. Further-
more, we also use the sector diffusion and edge-enhancing diffusion operators
for regularisation purposes.

Denoising and super-resolution strategies are structure preserving algo-
rithms as explained in Figure 1.2. In the following, we discuss their less
known structure enhancing counterpart.

1.1.4 Structure-aware Image Enhancement

The classical coherence enhancing diffusion (CED) technique [13, 28] is the
best example of a structure enhancing method. It is another partial differen-
tial equation-based framework like EED, which enhances coherent structures
in an image. An example for fingerprint data is shown on the left side of
Figure 1.7. However, CED is unable to account for the special limited angle
image acquisition of cryo-electron microscopy (cryo-EM). Here, the acquired
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2D FINGERPRINT DATA 3D CRYO-EM DATA
Input CED Input: xy Input: xz, yz CED

Figure 1.7: Left: Coherence enhancement with CED on fingerprint image (Cour-
tesy of Joachim Weickert). Right: CED is not suitable for cryo-EM data (Cour-
tesy of Achilleas Frangakis).

data is prone to directional blurring and noise degradations (right side of
Figure 1.7). Since CED is misdirected by the blur in the z direction, it is
unable to produce the desired structure enhancement in the xy planes. Thus,
the final goal of this thesis evolved:

Goal 8. Design a model for processing data acquired through special limited
angle cryo-EM techniques: It should be able to enhance image structures like
CED and also be robust with respect to noise.

Our Contribution. We introduce the Hough-based image evolution frame-
work. It is a combination of a general directional image evolution process
with the classical Hough transform [29–32]. The latter method is generally
used to detect complex patterns in images. We use a semi-local version of it
to find the local direction in which the image structures exist. This is fol-
lowed by steering the smoothing process according to the directional image
evolution. The flexible and robust nature of the Hough transform is majorly
responsible in dealing with the data acquisition problems in cryo-EM.

This ends the brief discussions on our goals and contributions pertaining
to both structure preservation and enhancement. In the ensuing section, we
present the organisational structure of the thesis.

1.2 Thesis Structure

We begin by reviewing a couple of widely used image acquisition procedures,
in Chapter 2. Here, we also introduce our mathematical notations. This
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is followed by a formal review of the noise models associated with image
acquisition and also the various statistical measures of image quality.

In Chapter 3, we briefly review the huge amount of research on image
denoising filters. Our presentation puts a highlight on the particular noise
distributions and physical assumptions underlying the design of these filters.
The novel results in this thesis are presented in four parts:

Part I - Single-frame Image Denoising. We introduce the disc dif-
fusion model in Chapter 4 as a non-local extension of a classical anisotropic
diffusion method. In Chapter 5, we present the non-linear filtering on fast
patch reorderings approach. It is basically a patch matching-based extension
of disc diffusion. This is followed by the introduction of the sector diffusion
technique in Chapter 6, where we showcase the corner preservation ability
of this model. Subsequently, we propose the stripe diffusion approach in
Chapter 7. This particular chapter will help us understand the importance
of filter shapes in image denoising.

Part II - Multi-frame Image Denoising. In Chapter 8, our novel multi-
frame extensions of patch-based filters are introduced. We perform a sys-
tematic and comprehensive evaluation of these strategies for three different
types of synthetic noise distributions.

Part III - Multi-frame Super-resolution. In Chapter 9, we perform
an extensive evaluation of the super-resolution observational model. Here,
we also evaluate the ability of sector diffusion and EED as SR regularisers in
a noisy scenario.

Part IV - Structure-aware Image Enhancement. Chapter 10 con-
tains a description of our Hough-based evolution technique for cryo-EM data
processing.

A joint summary of the main conclusions from this thesis is presented in
Chapter 11, together with outlooks on further research directions. At the
end of the thesis, one can find information regarding bibliography, list of
symbols, abbreviations, and own publications.
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A Review of Image Acquisition,
Noise Models and
Error Measures

In Chapter 1, we briefly introduced the various goals of this thesis along
with our contributions in achieving them. It is time that we begin to learn
more details about these topics. A natural place to start would be to get ac-
quainted with the procedures through which one acquires digital images. As
almost all image aquisition is noisy, this naturally leads to questions about
the formal representations of noise models associated with specific acqui-
sition techniques. Hence, in this chapter, we cover topics related to both
acquistion and associated noise models. Additionally, we also review three
standard statistical error measures that help quantify the quality of images.

Chapter Structure. In Section 2.1, we review a couple of standard image
acquisition methodologies. In the ensuing Section 2.2, we formulate the com-
mon noise models that are considered in the image processing community.
In Section 2.3, we connect noise models with acquisition procedures. Finally,
in Section 2.4, we review the statistical measures of image quality.

2.1 Image Acquisition Techniques

In this thesis, we consider digital images acquired using two basic proce-
dures: The well-known photon capture and the less-known electron capture.
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Figure 2.1: Juxtaposition of the resolving power of our eye, light microscopes,
and electron microscopes (Courtesy of Science Learning Hub - Pokapū Akoranga
Pūtaiao, University of Waikato. www.sciencelearn.org.nz).

Electrons can have a much smaller wavelength when compared to visible ra-
diation. Hence, the resolution of the resulting images is considerably much
higher than those acquired using light microscopy or other visible radiation
capturing hardware. Figure 2.1 shows the relative resolving power of these
two techniques as well as our own eye. However, the high resolving power
of electrons often comes at the expense of having a larger amount of noise.
Thus, depending on the task at hand, one uses these two techniques accord-
ingly. In the following, we briefly describe both methods.

2.1.1 Acquiring Images Through Photon Capture

The phenomenon by which one acquires a digital image through photon-
based capturing, is described by a series of physical processes [33–49]. The
scene which is to be imaged, radiates photons (either by itself or by reflecting
an already existing beam) which are cast onto the image acquisition device.
The photons are then directed by the camera lens onto the semiconductor
elements of a charge-coupled device (CCD) sensor or a complementary metal
oxide semiconductor (CMOS) sensor. At this stage, the photons are con-
verted into electrical charges which are amplified and further converted into
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digital numbers. Each digital number represents the intensity at every pixel,
which is the fundamental square element of a sensor. The final raw image
one obtains is a collection of intensities at all the pixels. In a CCD sensor,
the above analog to digital conversion is performed for every row separately.
On the contrary, in a CMOS sensor, the conversion to voltage followed by
amplification is calculated at every pixel. It it thus obvious that in both
these processes the amount of accumulated charge decides the value of inten-
sity at each pixel in the acquired images. Now we move on to the electron
acquisition counterpart of this procedure.

2.1.2 Acquiring Images Through Electron Capture

Gathering imaging data using electron beams is a property of electron mi-
croscopy techniques [50, 51]. Here, an electron beam is incident on a sample
which is to be imaged. After the beam passes through the sample, there exist
both unscattered and scattered electrons. We can categorise the latter type
into elastic and inelastic scattering both of which possess information about
the atoms they have interacted with, in the sample. This data is encoded in
the amplitude and phase factors of the scattered electrons which is converted
into digital numbers through CCD, CMOS or hybrid pixel detectors [52–57].

Even though raw images acquired through the above methodologies fall
under the discrete data category, in order to process them we also utilise
knowledge from continuous mathematics. It is thus evident that we need a
notation to clearly differentiate between various elements from both discrete
and continuous mathematics. To this end, we use the convention presented
in Table 2.1, throughout this thesis.

According to the above notational style, we represent the positions of
the pixels in raw images as discrete sampling points Ω in a continuous im-
age domain Ω ⊂ R2. The discrete and continuous collections of intensities
throughout this domain are represented by f and f , respectively. Now, we
are ready to formally review various noise models associated with photon-
and electron-based image acquisition procedures.

2.2 Noise Models

In this section, we describe three different types of noise models. In par-
ticular, we cover categories which do not have a definite spatial structure,
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Type Examples Details
Scalars a, b, c lower case
Vectors u,v,f lower case + bold
Matrices D,Q upper case + bold
Functions f, g, h lower case
Statistical Distributions G,P upper case + caligraphics
Functionals E upper case
Sets Ω,R upper case + special symbols

Table 2.1: Convention for mathematical symbols.

so-called unstructured noise. This type of degradation covers a vast ma-
jority of applications. Information regarding structured noise can be found
in [58,59]. We begin with the ubiquitous Gaussian noise model.

2.2.1 Additive White Gaussian Noise

Let Ω ⊂ R2 denote a rectangle and x ∈ Ω be a position. Consider a noisy
image f : Ω→ R acquired through photon or electron capture, or one that is
synthetically generated on a computer. Either way, under the additive noise
model f is considered as an additive combination of the original noise-free
image v : Ω → R and pure noise n : Ω → R. This model [45] can be
formulated as

f(x) = v(x) + n(x). (2.1)

The noise distribution for n(x) can be approximated by various statistical
distributions.

The most common additive noise model is additive white Gaussian noise
(AWGN). Here, one assumes an explicit Gaussian distribution for the pure
noise n(x) as a function of time [45]. The resulting probability density func-
tion of a Gaussian random variable n(x) is denoted as nG and is explicitly
defined as

nG(n(x), µG, σG) =
1√

2πσG
· e

(n(x)−µG)
2

2σG2 . (2.2)

Here, µG and σG denote the mean and standard deviation of the Gaussian
distribution, respectively. Also, n(x), µG ∈ R and σG

2 ∈ R+. The noise vari-
ance is independent of the intensities in the input image and thus makes this
model a signal-independent one. Moreover, this particular type of degrada-
tion has huge practical consequences [49] as the central limit theorem allows
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to model several independent noise contributors in an imaging system as a
normal distribution.

The “colour” of the noise - for example white, blue, pink, or brown –
is named depending upon the properties of the correponding power spectral
density in the Fourier domain. Contrary to others, white noise has a flat
power spectral density, i.e., one that does not depend on the frequency. It
is the most commonly encountered type and, thus, the only noise color we
consider in this thesis. Moreover, in accordance with the general practice
in the denoising community, we set µG to zero. Hence, we just consider a
Gaussian model with zero mean, additive nature, and white color.

2.2.2 Poissonian Noise

Under this non-additive noise model [60], we consider the raw image f to
be a collection of independent random Poisson variables whose mean is the
underlying signal v to be estimated. The corresponding conditional proba-
bility is characterised by a Poissonian distribution and is explicitly defined
as follows,

P (f(x)|v(x)) = P(v(x)) =
v(x)f(x)e−v(x)

f(x)!
. (2.3)

Here, v(x) ∈ R+ and f(x) ∈ N ∪ {0}. One can derive that the mean and
variance of the Poissonian distribution are the same: µP = σP = v(x).
Thus, they are dependent on the noise-free signal. This is reason why the
Poissonian distribution P , in the above equation, has an argument v(x).

2.2.3 Poissonian-Gaussian Mixture Noise

One can formulate a combination of AWGN and Poissonian noise models
as [61]

f(x) = nP(x) + nG(x). (2.4)

The Gaussian component nG(x) is obtained by considering µG = 0 in (2.2).
The Poissonian component nP(x) is characterised as follows,

nP(x) ∼ P(χ · v(x)). (2.5)

In the above equation, P denotes a Poisson distribution as already defined in
(2.3). The only difference is that we have an additional multiplication factor
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Original Gaussian Poissonian Mixture

Figure 2.2: House image corrupted with different types of noise. σG = 80 for
Gaussian, χ = 1.0 for Poissonian, χ = 5.0 and σG = 127.5 for mixture noise.

χ, which controls the amount of noise in the raw images. The overall variance
of the mixture model can be derived by using the elementary properties of
Poissonian and Gaussian distributions as [61]

σ2
noise = a · v(x) + b. (2.6)

Here, a = 1
χ

and b = σ2
G. As one can observe, this noise model is a combi-

nation of both signal-dependent and -independent types. Since the variance
of the Poissonian component is inversely proportional to χ, a low value of it
indicates high noise amplitudes. It is very important to note that, through-
out this thesis, we use σG and χ to represent the amount of noise. The
estimation of the noise characteristics from raw images is also an active area
of research [61–67]. Figure 2.2 shows a noise-free image corrupted with dif-
ferent types of degradations. These noise corruptions are generally specific
to the image acquisition procedure. We take a more detailed look at these
connections in the next section.

2.3 Connections between Image Acquisition

Techniques and Noise Models

The degradations of the image signal in photon-based acquisition can be
classified into three categories [33,34,41,49]:

• Signal-dependent temporal noise (photon shot noise).

• Signal-independent temporal noise (reset, thermal, flicker, and dark
current shot noise).
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• Fixed-pattern noise (dark FPN, light FPN, defected pixels, and hot
spots).

As the names suggest, the first two categories are defined based on ob-
servations in the time dimension. The last one is defined according to its
spatial structure and falls under the structured noise category. There exist
efficient techniques [49,68] to overcome the degradations due to reset, flicker,
and fixed-pattern noise at the hardware stage itself. However, it is difficult
to circumvent the signal corruption due to photon shot, thermal, and dark
current photon shot noise categories. Thus, we require image denoising algo-
rithms. While photon shot noise is approximated as Poissonian observations
of the original signal, the rest of the degradations are usually modelled as
AWGN [33,41,49].

Similar to capturing photons, the image collection process in cryo-electron
microscopy (cryo-EM) - an electron capture-based technique - also has sig-
nal corruptions. The raw observations were approximated using Poissonian
statistics in [8,9]. The entire image processing pipeline in cryo-EM, however,
is a complex procedure. Noisy datasets within this pipeline were consid-
ered as additive and signal independent in [51]. Nevertheless, the body of
research regarding details of noise distributions in cryo-EM is substantially
smaller than the one regarding the acquisition of normal images. This is due
to three major difficulties: Huge amount of noise in high resolution acquisi-
tion (pixel size is about 10−10 meters), large image sizes (typically 8000 ×
8000 pixels), and our less frequent encounters with such images.

Lately, the mixture noise model in (2.4) has been well-accepted for raw
sensor images [61, 69–72] as it encapsulates all possibilities between both
extremes of signal-dependent and -independent noise categories. This general
noise model is thus valid for several applications such as astronomy [2–4],
microscopy [5–10, 73–75], seismology [11], and medical imaging [12]. In [61,
76,77], an additional noise clipping was also considered in order to take into
consideration the lost dynamic range because of over- and under-exposures.
Unless and until specifically mentioned, throughout this thesis we do not clip
the dynamic range of the corrupted signal.

Both noise models and raw images are used as input for image denois-
ing methods. Before we review these filters themselves in the next chapter,
we first present the statistical error measures used to quantify the quality
of a reconstructed image. These measures, in principle, are designed such
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that their output is coherent with our own visual senses. The comparative
evaluation of various image reconstruction algorithms requires such methods.

2.4 Statistical Measures of Image Quality

In this thesis, we use three mathematical measures: Mean squared error
(MSE), peak signal-to-noise ratio (PSNR), and Fourier ring correlation (FRC).
While the first two measures are designed in the Cartesian/spatial domain,
FRC is calculated in the Fourier domain. The structural similarity index
measure (SSIM) [78] along with its extensions [79–83] is also a commonly
used metric, but is rather complex. Both MSE/PSNR and SSIM have their
own advantages and disadvatages [78, 84, 85]. The simplistic nature of the
MSE/PSNR is the reason for their ubiquituous usage in contrast to SSIM
or other visual perception-based metrics [86]. In the following, we describe
MSE, PSNR, and FRC in more detail. All these approaches take as in-
put two images which we want to compare and give as output a number
(MSE/PSNR) or a vector (FRC) that gives insights into the similarity of
both input images. Thus, if one of these images is a denoised image and
another one is a ground truth, these measures allow us to judge the quality
of the denoising procedure.

2.4.1 Mean Squared Error

Let Ω ⊂ R2 denote a rectangle. The mean squared error between the restored
image u : Ω→ R and the original noise-free image v : Ω→ R, is defined as

MSE(u,v) =
1

|Ω|
∑

(i,j)∈Ω

(u(i,j) − vi,j)2. (2.7)

Here, the operator | · | denotes cardinality of the set. It is trivial that MSE
is zero if and only if both images are equal and the value is always positive
for unequal images. Moreover, a low value indicates high similarity between
the images. In the image denoising literature, MSE is frequently used when
the images are corrupted by AWGN.

2.4.2 Peak Signal-to-noise Ratio

This particular statistic is just a logarithmic rescaling of the MSE value:
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PSNR(u,v) = 10log10

(
2552

MSE(u,v)

)
. (2.8)

Here, the assumption is that the range of the image is bounded from above
by 255 and below by 0. The logarithmic rescaling and the specification
of the bounds makes PSNR an apt measure for Poissonian noise scenarios.
Moreover, unlike MSE, a high PSNR value indicates high similarity between
the images. However, since logarithm is a monotonous function, MSE and
PSNR both give rise to the same order of experimental rankings.

Both MSE and PSNR are generally used when we have the original noise-
free image v, available. In practical scenarios this is not the case. Thus, we
can use two strategies here: Firstly, we perform a lot of experiments on data
where we add the noise by ourselves. This gives us an impression of the
optimal range for different parameters used in the filter. We then use this
knowledge along with our own visual cues in the practical scenario. However,
if we also want to have a statistical measure in real world situations, FRC is
an apt criterion.

2.4.3 Fourier Ring Correlation

FRC is an error assessment method that is widely used in cryo-EM [87]. It
measures the similarity between two images in the Fourier space. One first
calculates the Fourier coefficients of the two images, which are divided into
a number of narrow frequency ranges called rings. For each ring, a corre-
sponding cross-correlation coefficient between the two images is calculated.
A curve is thus plotted with ring number on x-axis and corresponding cross-
correlation coefficient on the y-axis. This is called the FRC curve. An FRC
curve between two completely similar images would be the straight horizontal
line y = 1. This indicates highest similarity at every frequency.

Thus, for cryo-EM data, we first consider two pre-aligned noisy images
of the same sample. In order to judge the quality of a denoising algorithm,
we employ it on both of these images. Afterwards, we calculate the FRC
curve between the two denoised images. The physical interpretation of this
procedure is the following: The denoised image pair must either possess the
original structures in the scene or leftover noise and artefacts created due to
noise elimination. Since the latter properties vary from one noise realisation
of a scene to another, an FRC curve indicates the quality of the former. In
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general, one draws a horizontal line at y = 0.5 [88] and checks the corre-
sponding highest frequency (ring number) at which this line intersects the
FRC curve. The parameters of the denoising model being tested are gener-
ally selected such that this particular frequency is high. Once we have the
optimal parametric selections, we sum up the two acquired images in order
to increase the signal content. The denoising algorithm with the obtained
parametric combination is then employed on this summed up image, which
yields the final denoised version.

The mathematical definition of the FRC between two images u and v
can be formulated as

FRC(u(r),v(r)) =

∑
ri∈r û(ri) · v̂(ri)√∑

ri∈r |û(ri)|2 ·
∑

ri∈r |v̂(ri)|2
. (2.9)

Here, r represents the ring number. The Fourier transformed images of u
and v are denoted by û and v̂, respectively. The summation is over all the
coefficients that are present in a particular ring.

Similar to MSE and PSNR, FRC also might sometimes give a result which
defies visual perception. Thus, experts in electron microscopy consider both
visual analysis and FRC simultaneously.
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A Review of Image Denoising
Methods

In the previous chapter, we have acquainted ourselves with image acquisition
techniques, noise models, and statistical measures of image quality. We are
now ready to learn more about image denoising filters. In this chapter, we
thus review the literature on single-frame filters which also form the core of
multi-frame denoising and robust super-resolution.

Single-frame noise elimination methods produce the noise-free image u
from a single raw input image f . To this end, every such denoising filter
employs the following three key steps:

• Gathering Similar Information - Natural world noise-free images have
several regions which are made up of either repetitive or less vary-
ing grey values. Based on this fundamental property, we perceive
and differentiate between multiple objects and multiple regions within
the same object. A noise realisation of a scene affects this property
and thus also our visual perception. In order to denoise a corrupted
pixel/reference pixel, one first selects a set of pixels which are similar to
the reference one. This selection process depends on certain similarity
assumptions which are specific to the type of filter.

• Combining/Filtering Similar Information - The goal of this step is to
combine the selected set of pixels in the first step, to yield a single
value that will replace the noisy reference pixel value. The motivation
behind this is to regain back the lost property of possessing repetetive
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and less varying grey values in noise-free images. To this end, each of
the pixels in the above set are assigned weights that are specific to the
type of filter under consideration. These weights decide the amount of
contribution of each pixel within the set.

• Reconstructing Image from Filtered Information - Some denoising meth-
ods yield multiple denoised versions of a reference pixel. This final step
is responsible for obtaining one value from these multiple versions.

In this thesis, we will concentrate on only those categories of noise where
all pixels are assumed to be corrupted. Such degradations cover a vast ma-
jority of imaging applications and hence are the most considered ones in the
denoising community. The other category, where only a percentage of the
total number of pixels are corrupted, is called impulse noise. Examples of
filters designed for such degradations can be found in [89,90]. Based on this
bifurcation, various denoising techniques apply the above three filtering steps
on either all pixels or just a percentage of them. In order to design these
steps, one makes certain assumptions about the properties of both noise-free
images and the formal noise model which they are designed to eliminate.
Since the former is generally common among all the image denoising meth-
ods, one generally bifurcates these techniques based on the latter: Methods
that are designed for eliminating additive white Gaussian noise (AWGN) and
Poissonian data. We begin with the AWGN model.

3.1 Gaussian Noise Elimination

The assumptions about the desired noise-free image and the noise type can
be made in both spatial domain or a transformed domain. Accordingly,
AWGN filters are further classified into three parts: Cartesian, transformed,
and dual domain techniques.

3.1.1 Cartesian Domain Filters

One utilises three key physical assumptions about noise-free images in order
to design a filter in the Cartesian domain:

• Pixels within a small spatial neighbourhood of an image have similar
intensities. This is called spatial assumption.
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• Grey values or tonal values of pixels which look alike have minimum
intensity variation among them. This is referred to as tonal assumption.

• Pixels which are similar to each other also possess almost identical
neighbourhoods around them, which is the neighbourhood assumption.

In the following, we briefly summarise several types of Cartesian AWGN
elimination methods keeping in mind the above physical assumptions. We
discuss the inter-category correspondences and equivalences between these
different kind of filters, once we complete introducing each one of them. We
begin with the classical local smoothing noise elimination methods.

Local Smoothing Filters. These approaches use the spatial assumption
to design a filter whose output can be formulated in general, as

u(x) =
1

C(x)

∫
Ω(x,h)

ws(x− y)f(y)dy. (3.1)

Here, Ω(x,h) is a neighbourhood around x whose size is determined by h.
The weights for each spatial position y within this neighbourhood are rep-
resented by ws. Further, C(x) =

∫
Ω(x,h)

ws(x− y)dy is a normalisation fac-

tor. The very common Gaussian smoothing [91], the filters of Nadaraya [92]
and Watson [93] together with the vast class of local polynomial approxi-
mation (LPA) filters [94–99], fall under the category of local smoothing fil-
ters. Moreover, several image adaptive versions of LPA filters have also been
designed [98–109]. One considers a combination of both tonal and spatial
assumptions in order to model image adaptive approaches. Other techniques
similar to such adaptive methods go by the names moving least-squares, re-
producing, moment, Savitzky-Golay, and kernel regression [49] filters.

Range/Sigma Filters. These are another class of denoising methods which
also consider a combination of spatial and tonal weighting functions, similar
to the image adaptive LPA filters. An inclusive formula for computing the
denoised image using such techniques can be given as

u(x) =
1

C(x)

∫
Ω(x,h)

ws(y)wt(f(x)− f(y))f(y)dy. (3.2)

The Yaroslavsky [110], Lee [111], Susan [112] and bilateral [113, 114] filters
fall into this category of range filters. Bilateral filtering, especially, has also
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been adopted in various other image processing applications [115–117].

Diffusion Filters. These techniques compute the denoised image as a so-
lution to a partial differential equation (PDE) [118–123]. Similar to range
filters, diffusion-based techniques also employ the spatial and tonal assump-
tions. One can formally encompass these methods using the following general
equation:

∂tu = div(D ∇u). (3.3)

The noisy image f is used as the intialisation for the above evolution. The
term ∂tu denotes the temporal derivative of u and ∇u represents the con-
tinuous 2D spatial gradient. A so-called diffusivity function determines the
entries of the 2-by-2 diffusion tensor D. Both ∇u and entries of the diffusion
tensor together model the spatial and tonal assumptions: In linear isotropic
diffusion [91, 124–127], one uses a constant, scalar diffusivity. In the case
of nonlinear isotropic diffusion [128–130], one still has a scalar diffusivity,
but this is now a function of the gradient magnitude of the involving im-
age. Anisotropic diffusion techniques [131–134] extend these ideas further
by constructing a symmetric positive definite diffusion tensor which can no
longer be equivalently expressed by a single scalar-valued function. Both
non-linearity and anisotropy (preferential directional smoothing) are respon-
sible for preserving image structures.

Variational Filters. Another class of methods which employ the spatial
and tonal assumptions are the variational denoising approaches. In these
techniques, one calculates the denoised image as a minimiser of a particu-
lar energy functional which models the required physical assumptions. An
overall formulation of these filters can be written as

u = argmin
m

E(m, f),

E(m, f) = Edata(m, f) + Esmooth(m).
(3.4)

Here E(m, f) denotes the energy functional which can be decomposed into
data part Edata and smoothness term Esmooth. The data term ensures that
the solution is close to the initial noisy image f and the smoothness term
allows us to model the various physical assumptions. The huge class of
total variation penalty-based filters [135–143] and recent works by Steidl and
Teuber [134,144] are good examples of variational denoising techniques.
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Through the above Equation (3.4), one is looking for an image that min-
imises the energy. However, a denoising operator which directly minimises
the MSE between the denoised image and the original image can also be
computed. The best linear operator of such a kind is the classical Wiener fil-
ter [145]. This technique needs information about the noise model in order to
approximate the original image using the noisy one. Once it is available, one
can compute the Wiener filter in both spatial [146] or transformed domains.
A locally adaptive version of the spatial Wiener filter has been studied by
Lee [147]. We re-introduce Wiener filtering formally when we review trans-
formed domain methods in a later section of this chapter.

Bayesian Filters. A category of filters that is close in spirit to the varia-
tional filters are Bayesian denoising techniques [148–152]. Here, one obtains
the denoised image as the maximiser of the posterior probability function,
which models the spatial and tonal physical assumptions. The restored image
using such a type of filter can be computed as

u = argmax
m

ppost(m|f),

ppost(m|f) =
plike(f |m)pprior(m)

p(f)
.

(3.5)

Here, the Bayes formula has been employed for calculating the posterior
probability ppost. The likelood term plike keeps the denoised image close to
the initial noise-free image f , while the prior pprior gives one the freedom to
model spatial and tonal assumptions [120,148,153–156].

Non-local Averaging Filters. The paper of Efros and Leung [157] which
synthesizes textures, is considered as the seminal work that modelled the
third assumption - the neighbourhood similarity. However, De Bonet [158]
has employed such an idea even earlier in the denoising context itself, as
mentioned in [67]. At about the same time, a similar idea was also used
in fractal imaging [159]. More importantly, the access to additional infor-
mation in an image through such non-local formulations has revolutionised
image processing. Its first major effect in the image denoising community
appeared in the form of the non-local means (NLM) algorithm [160, 161].
The neighbourhood similarity can be considered as a combination of both
its spatial and tonal counterparts. It is particularly powerful in a denois-
ing scenario because it takes into account information from multiple pixels.
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One cannot solely rely on tonal similarity, which uses information from just
one pixel, for optimal results. The denoised image u of NLM thus can be
computed using the following formula:

u(x) =
1

C(x)

∫
Ω(x,h)

wnbd(x,y)f(y)dy. (3.6)

The neighourhood weights wnbd(x,y) in the NLM algorithm are computed
using a Gaussian function. An L2-distance between square-shaped patches
surrounding x and y is the argument of this function.

Several data adaptive and automated parameter selection versions of
NLM have also been studied [162–167]. A contemporary technique of NLM
that was proposed by Awate and Whitaker [168], also exploits the advan-
tages of non-local information. Moreover, when we said non-local formu-
lations have revolutionised image filtering methods, we meant that such
ideas have been adopted in variational methods [169–173], Bayesian ap-
proaches [14, 174–179], range filters [180, 181] as well as local smoothing
filters [18]. These ideas are also being used in various other image process-
ing applications [58,169,172,182–185]. However, the non-local extensions of
diffusion-based methods have not been yet thoroughly studied. This is one
of the main goals of our work.

Correspondences Between Various Filters in the Cartesian Domain.
Keeping in mind the volume of literature on image denoising, it is not surpris-
ing that we find correspondences and equivalences between different filters.
There is a significant amount of literature specifically dedicated to uncover
such relations. However, we can only find correspondences between different
type of filters in the Cartesian domain if they model the same type of assump-
tions. For example, since both range filters and partial differential equations
try to model spatial and tonal assumptions, one can find correspondences
between them [123, 186–192]. Similarly, we can also find studies which con-
centrate on variational, PDE, and Bayesian approaches [120,193–195]. There
also exists a correspondence between the NLM algorithm and the non-local
Bayes approach [14, 196], both of which model the neighbourhood assump-
tion. This shows the importance of having a physical perspective: One can
come up with ever more complicated techniques. However, if the choice
of the underlying physical assumptions are not given adequate importance,
there is high chance that the filter has equivalences with existing ones. Thus,
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not leading to significant practical progress. In other words, one must care-
fully and completely review the combination of the assumptions used in the
existing literature, to come up with novel methods.

3.1.2 Transformed Domain Filters

The second type of AWGN elimination methods are the tranformed domain-
based filters. As the name suggests, one eliminates AWGN by using certain
transforms of the initial noisy image f , like Fourier or wavelet. After per-
forming a filtering operation in the transformed domain, the images are back
transformed to the Cartesian domain for visualisation. The main assump-
tion of these methods is that the basic structure of images can be represented
using only a few coefficients (a sparse set) in the respective transformed do-
mains. Attenuating the less informative coefficients of the noisy image in the
transformed domain is the core denoising feature of these techniques. Un-
like Cartesian domain assumptions, this design is relatively difficult for us to
visualise since our visual capacity operates in the Cartesian space.

Let us start by remembering the idea on which the Wiener filter is built.
The goal is to find an operator w which when acted upon the noisy image,
gives the least MSE value between the resultant and the original image v.
Formally one can write this operator as

w = argmin
m

MSE(m ∗ f ,v). (3.7)

Here, m ∗ f is a discrete convolution operation. Let us assume that the
noisy image is approximated as f = v + n, with n representing the noise
vector. The solution to the above equation in a discrete Fourier basis thus
turns out to be the operator

ŵ(x́) =
|v̂(x́)|2

|v̂(x́)|2 + |n̂(x́)|2
. (3.8)

Here, x́ is a 2D frequency vector, v̂(x́) represents the 2D discrete Fourier
transform of v(x) and |v̂(x́)|2 is its power spectrum. The above solution can
also be formulated in the Cartesian domain with the help of convolutions
[186]. Such operations attenuate the contributions of the high frequencies
which noise is generally associated with. Since this filter requires the noise-
free image, it is called an ideal filter or the Fourier-Wiener filter.
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We must keep in mind that the above filter is a global operator as it acts
on the complete image in the Cartesian domain. This property might give
rise to unwanted structures in the filtered image that correspond to the global
structure. Thus, in order to avoid such artefacts, one needs to localise the
effect of the filter. This has been achieved using wavelets [197–204], discrete
cosine transform (DCT), and also a mixture of bases [205].

The other problem in using the ideal Wiener filter is that one needs to
estimate the Fourier coefficients of the original signal. Yaroslavsky [206,207]
proposed the estimation of the original signal through the noisy image by
using the AWGN model followed by a localised DCT filtering. Such a tech-
nique is referred to as the emperical Wiener filter. However, this still does
not completely get rid of the artefacts, which can be attributed to attenu-
ating the coefficients that also represent the edges. The probability of such
an occurance with wavelets, on the other hand, is lower as they are optimal
for sparse representations of the data [186]. The initial efforts in this direc-
tion (Donoho and Johnstone [208], Donoho [209]), only partially got rid of
these filtering artefacts. Many advanced ideas [210, 211] were employed to
try and solve this problem: Data adpative threshold selection [212], transla-
tion invariance [138], wavelets in combination with variational [213–217] and
Bayesian [218–223] filters, and data adaptive basis techniques which are not
just restricted to wavelets [22,109,224–231]. Among the data adaptive basis
techniques there exist strategies [229, 230] where the number of elements in
the basis exceeds the dimentionality of the signal. One refers to this as an
overcomplete basis and it allows for relatively sparser representations [232].

In a similar fashion to that of Cartesian domain techniques, we observe
two things about transformed domain filters. On the one hand, non-local
patch-based extensions [15, 23, 233–235] of transformed domain-based filters
utilise information from far-away regions. On the other hand, there exist
studies which find correspondences and equivalences between wavelet-based,
PDE-based and variational methods [193,194,236–238].

3.1.3 Dual Domain Filters

While all the above mentioned denoising filters are designed in either the
Cartesian or a transformed domain, there also exist techniques which use
a combination of both. We can divide these filters into two classes for a
better understanding: The non-local patch-based [21,239,240] and the semi-
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non-local [232, 241–243] approaches. Members of the former class perform
a post-processing of results obtained using either Cartesian or transformed
domain strategies. In particular, they employ a Fourier shrinkage of the
shape- and data-adaptive patches considered from the initial denoised results.
Methods belonging to the latter class do not adhere to the patch-similarity
idea. They assume that the noise statistics are known and estimate the noise
variance in both spatial and frequency domains. Once noise is estimated, it
is substracted from the raw image to obtain the noise-free signal.

With the above discussion, we have come to the end of our brief survey
of AWGN elimination filters. We close it by mentioning the two general
approaches that are frequently used in the image denoising world. These
ideas in practice can be applied to almost every denoising method. Firstly,
although patch-based methods have a non-local impact, it is still limited to
a particular search window. In order to increase the spatial scale of the fil-
ter impact, the multi-scale approach is widely used [208, 240, 244–252]. It
basically considers a processing of the data at several spatial scales. Sec-
ondly, there are also techniques which use patch and image information from
external databases as well [175,179,240,253–259].

Now that we have reviewed the various classes of AWGN elimination
methods, we move on to the less prominent Poissonian noise removal filters.

3.2 Poissonian Noise Elimination

In this particular section, we cover methods for elimination of both Poissonian
noise and Poissonian-Gaussian mixture nose. These methods can be divided
into the ones which deal directly with Poissonian noise and the ones which
use schemes that enable the application of AWGN elimination algorithms.
We review these techniques in the same order.

Let us remember that, in order to design a denoising algorithm, we need
to make assumptions about the noise-free image and the noise model un-
der consideration. These assumptions can be made in both Cartesian and
transformed domains. Under the spatial domain category, surprisingly very
few filters have been designed for Poissonian noise elimination. A couple
of works in this direction are the following: The first of them proposes a
method which uses the patch similarity assumption through the utilisation
of an external database of patches [260]. The second one among them is
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an energy minimisation approach which models tonal and spatial assump-
tions [261]. Otherwise, the three Cartesian domain physical assumptions
about the noise-free image are somehow not as frequently used for Poisso-
nian observations as they are employed for AWGN elimination. Most filters
in this class are built in a transformed domain. They exploit the fact that
the reproducing property of Poissonian distribution exists across all scales
for just a particular Haar wavelet transform. In case of AWGN, this is true
for all orthogonal wavelet transforms. This difference between both noise
distributions [262] has led to a huge amount of research which uses wavelet-
based techniques to remove Poissonian noise as well as Poissonian-Gaussian
noise [4,263–273]. Other sparsity-based worth mentioning approaches which
directly deal with Poissonian noise can be found in [274–276].

Since it is practically difficult to design image denoising methods for ev-
ery type of image degradation, the second type of Poissonian denoising al-
gorithms searches for a way to make use of AWGN filters. To this end,
the variance stabilising transformations (VSTs) [2, 60, 66, 67, 277–287] con-
vert a Poissonian distribution to its Gaussian counterpart. Once the noise is
removed with an AWGN algorithm, a suitable inverse transformation is ap-
plied to get back to the original dynamic range. Another filter which applies
a similar philosopy is the plug-and-play Bayesian prior framework [288,289].

With the above information on Poissonian noise elimination techniques,
we have completed our review of both AWGN and Poissonian noise removal
approaches.

3.3 Baseline Denoising Filters Considered

In this section, we consider five non-local filters from the above huge amount
of literature for a further discussion. They have been frequently used for a
comparative analysis with the models designed in this thesis:

• 3D block matching (BM3D) [15] - a transformed domain approach.

• non-local Bayes (NLB) [14] and linear filtering on smooth patch re-
orderings (LFSPO) [18] - two Cartesian domain techniques.

• dual domain image denoising (DDID) [241] and non-local dual domain
denoising (NLDD) [239] - two dual domain filtering solutions.
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AWGN BM3D NLB Original

Figure 3.1: Artefacts in noise-free outputs of NLB and BM3D (σG = 50).

Although we already made a small discussion about the artefacts pro-
duced by BM3D and NLB (Figure 3.1) in the first Chapter, we explore this
topic a bit further now. These unwanted structures can be understood from
two different points of view:

• Both the above methods filter a 3D group of similar patches. However,
there can also exist dissimilar regions within this group. In order to stop
information exchange between such regions and to completely remove
the noise, they make use of specific non-linear filtering ideas. Despite
this, such a modelling can lead to just a partial fulfillment of the two
goals. Thus, leading to the presence of artefacts.

• BM3D in particular, which is the better performing among these two
filters, is a widely-accepted single-frame image denoising technique. It
makes assumptions about the noise-free image in the Fourier domain.
We need to be very careful while making assumptions in such domains
as this is not where we visualise images. A local change in this trans-
formed domain has a non-local effect in the Cartesian domain. This
could further lead to exchange of information between regions of dissim-
ilar grey values and thus appearance of artefacts. The NLB approach
also has a correspondence with Wiener filtering [290], which is a trans-
form domain-based solution. It is also not artefact free. Thus, modern
extensions of the classical Wiener filtering are still prone to artefacts.

Along with NLB and BM3D, we also employ NLDD, DDID, and LFSPO
techniques within our comparative evaluations. The latter three are better
solutions for circumventing the above artefact problem. We will learn more
about them in Chapter 5.
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Considering the huge amount of literature that we have surveyed in this
chapter, it is not surprising that there have also been works which studied the
theoretical bounds of quality that patch-based methods can achieve [175,291].
The gist of these studies is that while BM3D almost reaches optimal perfor-
mance in texture like scenarios, there is definitely scope for improvement in
piecewise constant images. The reason behind this is the artefacts created
by BM3D.

One can notice that throughout this chapter we concentrated on the
physical assumptions underlying image denoising filters. In model-driven
approaches, we thus decide on the arithmetics within a filter based on our
physical intuition. There also exist data-driven methods which model the
required arithmetics based on a given set of training data. Such approaches
are relatively less intuitive in contrast to model-based ones. Learning, deep
learning and neural networks are some of the terms that are used to coin
data-driven techniques [292–295]. There also exist works that uncover re-
lations between model- and data-driven methods [296–298] and works with
hybrid models that utilise ideas from both worlds [299–302]. We frequently
analyse the strengths and weaknesses of both model-based and data-driven
approaches in the upcoming chapters.

This finishes our survey of single-frame image denoising methods. We
are now ready to learn more about our specific contributions that push the
knowledge limits of this field.
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Single-frame Image Denoising
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Disc Diffusion - A Non-local
Diffusion Model

Many processes in image processing exhibit a non-local behaviour. That
is the case, for instance in bilateral filters [112, 113, 303] which are widely
used for image enhancement and denoising. Moreover, non-local patch-
based methods [14, 15, 58, 161, 295, 304–308] have been among the leading
noise elimination methods for more than a decade. Lately, such techniques
have also been modified to solve correlated noise and deblurring problems
efficiently [58,59].

Classical PDEs and variational methods have also been generalised to
non-local processes [170, 309–317]. Image inpainting [170, 315], irregular-
ity detection [170], image decomposition [317], denoising [312, 315], super-
resolution [313], and reconstruction [310] are some of the many applications
where such PDEs and variational methods have been employed. It is thus
quite evident that these non-local processes make their presence in several
applications. Diffusion-based techniques can be robust to the type of noise
and can also avoid artefacts produced by frequency domain-based filtering.
Despite this, it is surprising that very little effort has been put into studying
non-local counterparts of these approaches in a denoising context.

Our Goal. Model a non-local diffusion-based approach that is robust to the
kind of noise degradation and also avoids artefacts in filtered images.

Our Contribution. We begin with an anisotropic diffusion model devel-
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oped by Weickert [17] two decades ago. This approach has the property to
preserve edges but does not make use of non-local image information which is
vital in image denoising. In this chapter, we extend this method by including
non-local information within the filtering process.

Chapter structure. This chapter is outlined as follows: We introduce
the ideas behind the modelling of our filter in Section 4.1. The experiments
and discussions on the results are presented in Section 4.2. We consolidate
our conclusions from the experiments along with an outlook on future work
in Section 4.3.

4.1 Modelling and Theory

4.1.1 Continuous Modelling of Disc Diffusion

Let us start by introducing some background. In [17], Weickert analysed the
anisotropic image evolution process

∂tu(x, t) =
1

π

∫ π

0

∂θ (g (∂θuσ) ∂θu) dθ. (4.1)

The main idea behind that model is to construct an anisotropic filter by in-
tegrating over one-dimensional diffusion processes. Here ∂θ is the directional
derivative in direction (cos θ, sin θ)>, g is a diffusivity function, and uσ de-
notes a convolved version of u with a Gaussian of standard deviation σ. This
idea gives rise to an image evolution process that is capable of preserving
edges very well. Our goal here is to adapt (4.1) to the non-local setting. To
this end, we model a new evolution equation

∂tu(x, t) =

∫
Ω

J(|y − x|)g
(
uσ(y)− uσ(x)

|y − x|

)
(u(y)− u(x)) dy, (4.2)

where the integration over the image domain Ω reflects the original idea in
(4.1) of considering information along all possible orientations. However,
it also incorporates non-locality into the filter: Given a positive parameter
ρ, the function J(s) is defined as a slightly Gaussian-smoothed version of
F (s) := 1

s2
, for 0 ≤ |s| ≤ ρ. It is also assumed to decrease fast but smoothly

to zero for |s| > ρ. This last assumption motivates the name disc diffusion,
since the integration is essentially done within a disc of radius ρ. The slight
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Gaussian smoothing of F is needed to avoid the singularity of J as s → 0.
We choose the diffusivity g to be [133]

g (s) = 1− exp

(
−3.31488(

s
λ

)8

)
(4.3)

with a positive parameter λ. With these choices, (4.2) can also be seen as
an example of a theoretical framework developed in [318].

4.1.2 Discrete Modelling of Disc Diffusion

We now discuss the space and time discretisations of (4.2). If u1, u2, ..., uM
represent the grey values of the M pixels in the image grid, the space-discrete
formulation of (4.2) is given by

d

dt
ui =

∑
1≤j≤M

J(|xj − xi|) g
(
uσj − uσi
|xj − xi|

)
(uj − ui). (4.4)

Here, the variables xi and xj denote the positions of the pixels i and j.
The quantities uσi and uσj represent the corresponding Gaussian-smoothed
values.

As already mentioned, in (4.2) we have chosen J to be a Gaussian-
smoothed version of F (s) := 1

s2
, in order to avoid the singularity as s → 0.

In the space-discrete setting, however, this situation is never met, hence we
may use F directly. Moreover, since we also assumed that J(s) decreases
fast towards zero for s > ρ, here we simply consider points within a disc of
radius ρ. With these choices, the explicit time discretisation of (4.4) with a
time step τ is given by

uk+1
i = uki + τ

∑
j∈Bi,ρ

g

(
ukσj − ukσi
|xj − xi|

)
ukj − uki
|xj − xi|2

 . (4.5)

Here, Bi,ρ is the disc centered at the position of pixel i with radius ρ.
The above equation can be written in a more compact way using a matrix
Q(uk) ∈ RM×M :

uk+1 = Q(uk)uk. (4.6)

Here the entries of the matrix qi,j(u
k) are given by
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qi,j(u
k) =


1−

∑
j∈Bi,ρ

τ ·gi,j(uk)

|xj−xi|2 , if j = i,

τ.gi,j(u
k)

|xj−xi|2 , if j ∈ Bi,ρ and j 6= i,

0, otherwise,

(4.7)

with gi,j(u
k) := g

(
ukσj−ukσi
|xj−xi|

)
. Also, it is not difficult to check that the row

sums of the above matrix are 1. According to the discrete diffusion theory of
Weickert [133], for the maximum-minimum principle to hold, we also require
all the entries of the matrix Q(uk) to be non-negative. Hence, the following
condition must hold:

1−
∑
j∈Bi,ρ

τ · g

(
ukσj − ukσi
|xj − xi|

)
1

|xj − xi|2
≥ 0. (4.8)

With prior knowledge that the maximum value of the diffusivity is 1, we have
the final bounds on the time step size:

0 ≤ τ ≤ 1∑
j∈Bi,ρ

1
|xj−xi|2

. (4.9)

If we interchange i and j in (4.7), the values of the matrix Q(uk) do not
change. Hence, it is symmetric. Since the row sums of this matrix are 1 and
Q(uk) is symmetric, the columns also have a unit sum. Thus, the average
grey value is preserved during the image evolution (see [133]). Now we move
to the image denoising experiments.

4.2 Experiments and Discussion

4.2.1 Datasets and Methods for Evaluation

In order to check the robustness of our method with respect to the noise
model, we consider two different types of noisy data. First, we corrupt the
Texmos1 (synthetic) and Svalbard (real-world) images with additive white

1http://sipi.usc.edu/database/

50



Chapter 4

Gaussian noise (AWGN with standard deviation σG). We also use noisy
cryo-electron microscopy data. Unlike for normal cameras, the noise model
in data acquired using an electron microscope is not well understood. Hence
such images are very good test cases for checking the robustness of an image
denoising filter with respect to the kind of noise distribution.

We compare our proposed disc diffusion (DD) framework with the non-
local Bayes (NLB) [14,290] and 3D block matching (BM3D) [15,319] filters.

4.2.2 Parameter Selection

We have five parameters in the disc diffusion model: The Gaussian smooth-
ing parameter σ, the contrast parameter λ, the radius ρ of the disc shaped
neighbourhood, the total number of iterations kmax and the time step size τ .

Influence of the Disc Radius. The plots in Figure 4.1 show the influence
of the disc radius on the denoising performance of DD. Three things can be
observed from the graphs:

• Firstly, the reconstructed images have a high mean squared error (MSE)
value for low radii. This is can be attributed to the fact that the disc
does not contain enough pixels.

• The graph is almost constant for a small range of radii. From (4.5),
we can see that information from neighbouring pixels is weighted by

1
|xj−xi|2 . When |xj − xi| starts to increase, these weights drop drasti-

cally, which decreases the influence of such neighbours on the diffusion
process to a negligible amount. This explains the second observation.

• Thirdly, we can see that the quality of the reconstructed image deterio-
rates when the radius is very large. Even though the contribution from
pixels that are far away is small, it is still non-zero. Consequently, a
large number of small error prone contributions that come from areas
of dissimilar grey values deteriorate the reconstructed image.

All these observations are irrespective of the amount of noise and the
image under consideration. Thus, we choose ρ = 7 in all our further experi-
ments, as it is a value in the region where we have least MSE.

Once we have fixed the radius, we can calculate the time step size τ using
the upper bound in (4.9). In our experiments, we have chosen τ to be 95%
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Figure 4.1: Influence of disc radius on denoising performance of DD. Left: Svalbard
image with σG = 25, σ = 0.8, and λ = 3.9. Right: Texmos image with σG = 75, σ = 2.3,
and λ = 1.1. Image size: 512 × 512.

Image (σG) σ λ kmax DD NLB BM3D
Texmos (25) 1.1 1.7 52 7.28 11.41 11.81
Texmos (50) 1.7 1.4 92 22.72 31.76 34.07
Texmos (75) 2.3 1.1 165 40.31 61.59 59.25

Svalbard (25) 0.8 3.9 16 20.27 22.58 22.92
Svalbard (50) 1.0 4.6 20 54.01 60.07 61.47
Svalbard (75) 1.2 5.1 17 108.68 118.20 107.98

Table 4.1: Denoising evaluation of various methods using MSE.

of this upper bound. Thus, we only have to optimise for σ, λ and kmax. In
case of AWGN, we optimise the parameters of DD with respect to the MSE.
In the case of BM3D and NLB, we utilise the optimal parametric values
as suggested in [319] and [290], respectively. Now we are ready to present
our denoising results. First, we show experiments on images corrupted by
synthetic noise (AWGN) which are then followed by experiments on cryo-
electron microscopy (cryo-EM) data.

4.2.3 Eliminating Synthetically Generated Noise

Table 4.1 and Figure 4.2 showcase the MSE values and denoised images,
respectively. In terms of MSE as well as visual quality, DD gives the best
results. BM3D and NLB produce artefacts in homogeneous regions.

The reason behind the above observation is that the structure preserving
ability of DD minimises information exchange between regions of dissimilar
greyvalues. Moreover, BM3D and NLB are just two step procedures. They
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Noisy NLB

MSE = 60.07

BM3D

MSE = 61.47

DD

MSE = 54.01

MSE = 31.76 MSE = 34.07 MSE = 22.72

Figure 4.2: Top and Bottom: Zoom into Svalbard and Texmos images (σG = 50),
respectively.

might lead to an incomplete elimination of noise. Since we perform several
iterations in DD, it completely removes the noise.

4.2.4 Eliminating Real-world Noise

We have considered noisy data consisting of a pre-ribosomal particle from
yeast cells, acquired using an electron microscope. The denoised images are
presented in Figure 4.3. Figure 4.4 shows the corresponding Fourier ring
correlation (FRC) plots. We can clearly see that DD gives better results in
terms of FRC. The type of electron microscopy data we have considered was
approximated with a signal independent additive noise model in [51]. How-
ever, NLB and BM3D additionally assume an explicit Gaussian distribution
for the noisy signal. Practical data need not comply with this analytical
assumption, in which case NLB and BM3D are at a disadvantage. Diffusion-
based models on the other hand are relatively robust to the type of noise.

Having discussed the positive aspects of DD, we also need to mention
its limitations. Our experience suggests that such a basic diffusion technique
cannot compete with frequency domain methods when it comes to preserving
texture-like structures. Thus, DD definitely needs modifications to compete
with BM3D and NLB for textured images.
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Noisy DD BM3D NLB

Figure 4.3: Zoom into cryo-EM denoising results. Data courtesy of Utz Ermel - Goethe
University of Frankfurt. DD parameters: σ = 2.0, λ = 1.0, kmax = 17.

Figure 4.4: Zoom into FRC curves near a cross correlation of 0.5 where the values can be
trusted [88]. The unknown parameter σG for NLB and BM3D was optimised using FRC.

4.3 Conclusions

In this chapter, we have introduced a non-local extension of a classical
diffusion-based filter. It is surprising that a non-local counterpart of a tech-
nique that was developed two decades ago is competitive with complex tech-
niques like BM3D and NLB for piecewise constant images. Moreover, our
proposed disc diffusion model is robust to the type of noise and also avoids
artefacts.

Patch-based filters generally seem to have a better texture reconstruc-
tion capability. In the upcoming chapter, we thus construct a filter which
combines ideas from disc diffusion and patch-based approaches.
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Non-linear Filtering on Fast
Patch Reorderings

As detailed in Chapter 3, the field of image denoising filters is very rich.
The present day state-of-the-art standard in this area is set by patch-based
methods [14, 15, 18, 19, 21, 160] as well as neural networks [292–294]. The
former techniques have a transparent design. In order to yield the final
denoised image, they explicitly model both signal and noise characteristics.
Moreover, their combination with neural networks has brought the best out
of both worlds [295]. Since the development of transparent designs is also
very crucial, in this chapter we contribute one such novel filter.

Although popular patch-based methods produce state-of-the-art results,
they also have a couple of drawbacks:
1. The Artefact Problem. There are two reasons behind the presence of arte-
facts. Information exchange between regions of dissimilar grey values and
incomplete removal of noise within regions of similar grey values. Although
patch-based procedures [14, 15] benefit from non-linear filtering for dealing
with these phenomena, they are not completely solved. The smooth patch
reordering approaches of Ram et al. [18, 19] seem promising in this aspect.
However, they are computationally very expensive. In [21, 239, 241–243],
dual-domain image denoising algorithms have been suggested for solving the
artefact problem. We will discuss the results of these techniques in a later
section of this chapter.
2. Sensitivity to Noise Type. Almost all the above methods assume an ad-
ditive white Gaussian noise (AWGN) model. Thus, they require variance
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stabilising transformations [60, 277, 281] in order to be employed for Pois-
sonian and Poissonian-Gaussian (mixture) noise scenarios. These transfor-
mations can have their own problem of creating a bias while stabilising the
variance. Ideas which exclude the characteristics of noise within the respec-
tive non-linear models are surprisingly rare. Such a design would allow us
to forgo the bias problem of variance stabilising transformations (VSTs) as
well as the errors obtained while fitting practical data with analytical noise
distributions [61–64,66].

The artefact problem is especially severe for large noise amplitudes. In
applications like electron microscopy one largely acquires pure noise and a
faint signal along with it. Despite the longstanding efforts in designing both
deep learning and traditional methods, high noise levels and varying types
of noise distributions are not often dealt with. For example, the considered
noise levels in some of the recent deep learning-based papers [292–295] as well
as model-based filters [14,18,19,21,239,241–243], are not large enough for the
above imaging applications. In fact, one of the latest model-based methods,
which is competetive with neural networks, also considers just an AWGN
distribution [320]. To our knowledge, the 3D block matching (BM3D) [15]
approach is the only technique which has been extensively evaluated for both
severe degradations as well as varying noise distributions [279–281]. How-
ever, it forms artefacts and is sensitive to the noise model.

Our Goal. Design a method which combines ideas from diffusion-based
filtering and patch reorderings to achieve the following objectives: Preserve
image structures, avoid artefacts, remain robust to the kind of noise distri-
bution, retain sharpness in the image, and consume less time.

Our Contribution. In order to accomplish the above goals, we introduce
a method that possesses the following features:
1. Artefact Avoidance and Sharpness Retainment: Our design builds on the
non-local means (NLM) approach [160] since it has the property to circum-
vent artefacts [14]. However, the NLM solution also smooths over edges and
looses sharpness [14]. We propose a combination of patch similarity assump-
tion in NLM and pixel similarity modelling in diffusion-based methods. The
latter idea is responsible for retaining the sharpness.
2. Multiplicative Combination: Unlike any of the previous denoising filters,
we utilise a multiplicative combination of patch and pixel similarity assump-
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tions. This makes our solution robust in situations when one of the assump-
tions might be violated due to the presence of noise.
3. Smoothing Within Fast Patch Reorderings: Obtaining smoothly reordered
patches for efficient denoising can be very expensive [18,19]. In order to sim-
plify this, we just utilise a sort operation on the inter-patch distances. Any
disordered pixels due to this simplification are dealt with by our robust multi-
plicative modelling. Considering the less burdesnsome computational power
we call our technique non-linear filtering on fast patch reorderings (NFPR).
4. Collaborative Filtering at Pixel Level: In collaborative filtering [15], each
patch to be denoised collaborates with several others. However, this also
allows for interactions between regions of dissimilar greyvalues due to intra-
patch smoothing. In our case, we just employ an inter-patch smoothing
between the central pixels of similar patches.
5. Robust to the Kind of Noise: Our modelling excludes the presence of
any noise statistics within the non-linearity. Hence, NFPR can be applied
to Gaussian, Poissonian, mixture, clipped, and impulse noise distributions.
These are unstructured degradations which do not possess a definite spatial
structure. Heavily structured noise [58, 59] has spatial properties similar to
that of noise-free data. We do not consider such data in this chapter.

Chapter Structure. In Section 5.1 we introduce the modelling of our pro-
posed NFPR filter. In Section 5.2 we present extensive experimental eval-
uations for different noise types along with detailed discussions. Finally, in
Section 5.3 we conclude with an overview and an outlook on future research.

5.1 Modelling and Theory

Our filter consists of two parts. In the first, we derive a set of pixels with
similar grey values. In the second step, these pixels undergo a non-linear
smoothing process which yields the final denoised image. In the following,
we describe these two steps in more detail.

5.1.1 Fast Patch Reordering Stage

The motive of this part of the filter is to congregate pixels with grey values
that belong to the same region in an image. To this end, we employ the
following patch-based solution: Let us consider a pixel ui in the 2D image
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domain and a disc-shaped patch Bsearch around it, with radius ρsearch. We now
compute the Euclidean norm dij between two disc-shaped patches of radius
ρsim around ui and uj for all uj ∈ Bsearch. This is followed by constructing a
set Pi of N nearest pixels to ui in Bsearch according to the computed Euclidean
norms. This particular set constitutes the desired combination of pixels that
arise from regions of similar grey values. However, there exist two problems
with such a combination. In order to completely avoid artefacts, we need
to average noisy versions of the same original grey value. In Pi, we have an
assembly of noisy versions of similar grey values, which is the first problem.
In [18], Ram et al. solve the computationally expensive travelling salesman
problem for achieving a smooth pixel reordering. This was followed by the
use of a simple linear smoothing for excellent results. In our case, we just
perform a sort operation for the pixel reordering. This saves a lot of time,
however, it also comes at the cost of certain disordered pixels in Pi which
is the second problem. In order to deal with both problems, we adhere to a
robust structure preserving filter in the second step of NFPR.

5.1.2 Non-linear Smoothing Stage

In this step we design weighting functions that decide the amount of contri-
bution from each of the pixels in Pi towards the denoised pixel. In particular,
we model two assumptions: Similar pixels have minimum grey value varia-
tion among themselves (pixel similarity). They are also surrounded by similar
neighbourhoods (patch similarity). In order to have a robust denoising, we
use a multiplicative combination of both assumptions for better performance
when one of them can be violated due to noise. A formulation of such a
model through a discrete image evolution process is given by

uk+1
i − uki
τ

= aki ·

∑
j∈P k

i

g
(
ukσj − ukσi

)
h
(
dkij
) (
ukj − uki

)

+
∑

j∈P add,k
i

g
(
ukσj − ukσi

)
h
(
dkij
) (
ukj − uki

) . (5.1)

Note the two terms on the right hand side of the above image evolution. The
first term is responsible for information exchange between ui and the other
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pixels within Pi. However, every pixel in the image other than ui has its own
reordered set P . It can happen that ui is present within these sets. Thus,
the symbol P add

i denotes the set of pixels for which ui is a closest neighbour
in a Euclidean norm sense.

The second term in the above equation represents data exchange between
ui and pixels within P add

i . Together, both the terms constitute a smoothing
process in a space defined by inter-patch distances, unlike diffusion [128,129]
or bilateral filters [112,303,321]. Moreover, it can also be seen as a pixel-level
collaborative filtering, unlike a patch-level counterpart in [15].

We now describe the individual components of the above two terms in
detail: The patch and pixel similarity assumptions are modelled using the
functions h and g, respectively. The argument of g is one which is computed
on an initial denoised image uσ. Such a two step filtering process is inspired
from a diffusion-based technique [129]. In particular, we use a collaborative
non-local means [160] approach for computing uσ:

ukσi = bki ·

∑
j∈P k

i

h
(
dkij

)
ukj +

∑
j∈P add,k

i

h
(
dkij

)
ukj

 . (5.2)

The term on the left hand side of (5.1) is generally associated with Gaussian
noise [195]. Similar to the original non-local means filter [160], we do not
include the noise standard deviation σG as an argument of the non-linear
function h. However, later modified versions of NLM, like the ones in [14,322]
as well as BM3D, include such knowledge for better performance. We do not
adhere to this idea as we aim at a filter which is robust to the kind of noise
distribution. The weighting functions g [133] and h in (5.1) are chosen as

g (s) = 1− exp

(
−3.31488(

s
λ

)8

)
,

h(s) = exp

(
−s2

2σ2

)
. (5.3)

The normalisation constants for the two image denoising processes in (5.1)
and (5.2) are represented by ai and bi, respectively. We use the symbol Mi

to denote the combined number of elements in Pi and P add
i . By choosing

ai = bi
Mi

and τ ≤ 1, we do not violate the maximum-minimum principle. The
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two NFPR steps are computed for a maximum of kmax iterations. The fast
patch reordering step is intialised with a Gaussian smoothed (with standard
deviation σinit) version of the raw noisy image f . The non-linear smoothing
process is directly intialised with f .

5.1.3 Correspondences with Disc Diffusion

At the end of the previous chapter, we claimed that NFPR is going to be
designed using a combination of ideas from disc diffusion (DD) and patch-
based approaches. In this part of the present chapter, we are going to analyse
the correspondences and differences between NFPR and DD.

Let us first revisit the fully discrete image evolution equation for disc
diffusion from Chapter 4:

uk+1
i − uki
τ

=
∑
j∈Bi,ρ

g

(
ukσj − ukσi
|xj − xi|

)
ukj − uki
|xj − xi|2

. (5.4)

The NFPR image evolution process in (5.1) has resemblances with both sides
of the above equation. The correspondence with the right hand side is non-
trivial: Firstly, the basic filter shape in NFPR and DD is a disc B. However,
the set of pixels with which the center pixel i interacts is different in both
methods. In DD, this set contains all the pixels within the disc Bi,ρ that is
centered at pixel i and has radius ρ. In NFPR, however, we completely get
rid of this spatial context fixed by Bi,ρ. Instead, we choose all pixels which
are closest to the center pixel in terms of inter-patch distances. These pixels
are contained in sets P add

i and Pi in (5.1). As a consquence of this, instead
of computing a regular Gaussian smoothing uσi like the one in DD, in NFPR
such a smoothing is computed in a space defined by inter-patch distances.

Moreover, in DD, we just model pixel similarity. In NFPR, our design
contains both pixel and patch similarities. This brings us to the end of the
modelling part. In the next section, we present our experimental evaluation.

5.2 Experiments and Discussion

5.2.1 Datasets and Methods for Evaluation

We have considered the classical Lena, Peppers, House, Bridge, Cameraman
images (http://sipi.usc.edu/database/) as well as 24 images from the
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Kodak dataset [323], for our experiments. We corrupt these images with
Gaussian, Poissonian and mixture degradations. This serves as example data
for synthetic noise. In order to complete a comprehensive evaluation, we also
consider real world data acquired using an electron microscope.

In order to have a fair comparison between our filter and others, we need
to consider methods which have been tested on multiple kinds of noise. Since
BM3D is one technique which has been extensively evaluted for several noise
degradations, we use it for our core set of experiments. In the remaining
ones, we also use various other state-of-the-art model-based approaches.

5.2.2 Parameter Selection

We have fixed the following NFPR parameters: ρsearch = 10, ρsim = 10,
σinit = 2.5, τ = 0.95 and N = 35. In order to have an easier selection
of the parameter σ, we perform an affine rescaling of the Euclidean norms
corresponding to the set Pi to [0, 255]. Furthermore, in order to save time,
we have employed the patch-reordering step for just two iterations. Finally,
we optimise the parameters σ, λ, kmax with respect to the peak signal to
noise ratio (PSNR) for synthetic data.

In case of electron microscopy images, the ground truth is not available.
Hence we use a popular frequency domain measure called Fourier ring cor-
relation (FRC) [87, 88], to quantify the quality of the images. Here, one
measures correlation coefficients between two images at several frequency
levels. These images are are obtained after denoising two different noise re-
alisations of the same scene, using a particular algorithm. Higher correlation
indicates a better preservation of structures.

We have now prepared the experimental setup with the help of the above
information. From the next paragraph onwards we begin with experiments
on synthetically corrupted datasets. Afterwards, we present results on a
couple of real-world datasets acquired using an electron microscope.

5.2.3 Synthetic Noisy Data

We begin with AWGN and employ non-local Bayes (NLB) [14, 290], BM3D
[15,319] and our novel NFPR filters for a comparative evaluation. In the left
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AWGN

Image NFPR NLB BM3D
L40 29.44 29.72 29.79
L60 27.94 27.75 27.93
L80 26.69 26.24 26.57
L100 25.96 25.15 25.49
L120 25.19 24.07 24.54
L140 24.49 23.18 23.77

B40 24.07 24.45 24.45
B60 22.90 22.90 23.14
B80 22.10 21.84 22.21
B100 21.52 21.26 21.57
B120 21.09 20.71 21.03
B140 20.68 20.23 20.55

H40 30.44 30.19 30.65
H60 29.03 27.92 28.49
H80 27.46 26.17 26.97
H100 26.28 24.73 25.40
H120 25.29 23.52 24.41
H140 24.44 22.61 23.35

P40 30.52 30.35 30.43
P60 28.90 28.34 28.53
P80 27.62 27.03 27.19
P100 26.70 25.78 26.07
P120 25.88 24.79 25.11
P140 25.15 23.87 24.31

K40 27.50 27.79 27.91
K60 26.17 26.04 26.28
K80 25.22 24.87 25.15
K100 24.48 23.95 24.26
K120 23.86 23.22 23.53
K140 23.35 22.57 22.92

POISSONIAN

Image NFPR BM3D
L1.0 22.92 22.71
L0.9 22.96 22.70
L0.8 22.45 22.25
L0.7 22.09 21.87
L0.6 21.78 21.51
L0.5 21.56 21.21

B1.0 19.99 19.87
B0.9 19.88 19.77
B0.8 19.76 19.63
B0.7 19.66 19.48
B0.6 19.38 19.31
B0.5 19.27 19.19

H1.0 21.62 21.05
H0.9 21.31 20.90
H0.8 21.01 20.50
H0.7 20.68 20.29
H0.6 20.53 19.87
H0.5 19.90 19.51

P1.0 23.00 23.03
P0.9 22.77 22.71
P0.8 22.48 22.50
P0.7 22.31 22.14
P0.6 22.01 21.79
P0.5 21.61 21.44

K1.0 22.37 22.10
K0.9 22.22 21.91
K0.8 22.06 21.67
K0.7 21.86 21.45
K0.6 21.64 21.18
K0.5 21.40 20.86

MIXTURE

Image NFPR BM3D
L5.0 26.35 26.34
L4.0 25.85 25.74
L2.0 24.38 24.05
L0.9 22.71 22.33
L0.7 22.19 21.77
L0.5 21.52 21.15

B5.0 22.00 22.05
B4.0 21.73 21.73
B2.0 20.83 20.67
B0.9 19.90 19.78
B0.7 19.62 19.52
B0.5 19.23 19.08

H5.0 26.11 25.95
H4.0 25.47 25.17
H2.0 23.05 22.93
H0.9 21.15 20.67
H0.7 20.59 20.00
H0.5 20.05 19.39

P5.0 26.56 26.49
P4.0 26.09 25.94
P2.0 24.40 24.24
P0.9 22.74 22.48
P0.7 22.32 22.04
P0.5 21.61 21.37

K5.0 25.01 25.06
K4.0 24.63 24.64
K2.0 23.37 23.23
K0.9 22.25 21.77
K0.7 21.81 21.42
K0.5 21.36 20.76

Table 5.1: PSNR values for various noise distributions. L40 stands for Lena image
corrupted with AWGN of σG = 40. L0.5 in the case of Poissonian noise stands for Lena
image with χ = 0.5. In the case of mixture noise, we have added AWGN with σG =
(0.10*χ*255) to the Poissonian noise component. B, H, P denote Bridge, House and
Peppers, respectively. The House image is 256× 256 sized, while the remaining three are
of size 512× 512. K denotes the Kodak dataset for which we have presented the average
PSNR of the 24 images. We have employed NLB and BM3D implementations in [290]
and [319], respectively.
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Noisy NLB BM3D NFPR Original

Figure 5.1: Top to Bottom: Zoom into Lena, Bridge, House, Peppers and a
Kodak image, respectively (AWGN with σG = 80).

column of Table 5.1, we present the PSNR values of denoised images. Figure
5.1 shows some corresponding images. Both visual results and PSNR values
suggest that our filter can denoise the images very well, while avoiding the
artefacts. The images in particular show sharper and visually pleasing edges.
Moreover, in a medical imaging scenario, creation of artefacts is considered
a severe drawback as they might be mistaken as original structures. Hence,
our technique can be a cruicial tool in such situations.

Other methods [21,239,241–243] which have also tried to solve the artefact
problem can be divided into two categories: While methods of the first type
perform a raw processing of the data like we do [241–243], the others carry
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Noisy NLDD DDID Original

Figure 5.2: Top: NLDD avoids artefacts that are present in the DDID output.
Bottom: However, it also removes original structures on the leaves unlike DDID,
as a trade off [239].

Noisy-1 Noisy-2 NFPR-1 NFPR-2 Original

Figure 5.3: The artefacts corresponding to accidental noisy patterns are not spa-
tially constant across different noisy realisations (σG = 80).

.

out a post-processing of the artefacts created by approaches like non-local
Bayes and 3D block matching [21,239].

We consider one technique from each of the above two categories: The
dual-domain image denoising (DDID) [241] and the non-local dual-domain
(NLDD) [239] filtering approaches. Although Gaussian noise is an unstruc-
tured degradation, it can form accidental spatial patterns. DDID preserves
these patterns, assuming that they are structures belonging to the origi-
nal signal, thus creating artefacts. NLDD removes these accidental patterns
but only at the risk of suppressing original structures. This is a trade off
between the two categories of approaches and can be clearly seen for the
Flowers image in Figure 5.2. In Figure 5.3 one can see that even our filter
preserves accidental noise patterns. However, they are present at varying
spatial positions for different realisations of noise. Thus, the correct way to
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Image NFPR Best DDID2
PS25 28.55 28.10 28.10
PS40 30.49 30.46 30.46

L25 30.97 32.27 32.27
L40 29.44 30.22 30.22

Image NFPR REC
L50 91.36 82.90
L75 126.90 123.75
L100 164.85 163.05

H50 70.94 74.45
H75 108.71 120.41
H100 153.27 167.52

Table 5.2: PSNR values for AWGN experiments. Image abbreviations as in Table
5.1 and PS means a smaller version of Peppers with size 256 × 256. Whenver
we use a smaller version of an image, we adhere to such an abbreviation. Best -
largest PSNR among 11 different filters ( [14,15,23,161,231,241–243,249,324,325])
evaluated with DDID2 in [243], REC - Ram et al. [18].

deal with these accidental patterns is to collect multiple noise realisations of
a scene and then denoise each one them with either NFPR or DDID. This
way, we can at least differentiate between original structures and artefacts
created due to accidental noise patterns. This might not be possible with
post-processing approaches like NLDD. They tend to remove structures irre-
spective of whether they are originally present in the image or accidentally
created due to noise.

Keeping in mind the above observations, we have performed a short com-
parative analysis of NFPR with DDID2 [243]. This is also accompanied by
a brief comparison with the method of Ram et al. [18], which has algorith-
mic correspondences with our approach. Table 5.2 shows the results of these
experiments. The takeaway lessons in the AWGN scenario are the following:

• In case of almost every noise amplitude in highly homogeneous im-
ages like Peppers and House, NFPR gives the best results as we avoid
artefacts of frequency domain filtering.

• In Lena and Bridge images, which have some amount of texture, the
competing methods are superior for low noise amplitudes. This can be
attributed to our simpler patch reordering technique and better texture
preservation of frequency domain methods.

• In high noise amplitude scenarios, the texture information is completely
lost and hence our approach also produces superior results for Lena and
Bridge images.
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Image NFPR BM3D Best BM3D++ [279]
PS4.0 22.95 24.20 24.25 24.04
PS2.0 22.20 22.36 22.26 21.93
PS1.0 20.90 20.69 20.57 20.44
PS0.5 19.70 19.35 19.21 19.05
PS0.2 17.71 17.68 17.60 17.54
PS0.1 16.64 16.03 16.52 16.45

BS4.0 21.62 21.72 21.71 21.71
BS2.0 20.70 20.58 20.69 20.69
BS1.0 19.49 19.25 19.86 19.86
BS0.5 18.57 18.47 19.08 19.08
BS0.2 17.62 17.16 18.13 18.13
BS0.1 16.70 15.85 17.30 17.30

Table 5.3: PSNRs for Poissonian noise experiments. Image abbreviations as in
Table 5.1 and 5.2. BM3D - our proposed σG optimisation for removing the VST
bias, Best - largest PSNR among 13 different methods ( [18,22,23,60,73,160,229,
260, 275, 276, 279, 289, 326]) evaluated in [279], BM3D++ [279] - with an iterative
VST which is the best available framework.

• While dealing with accidental noise patterns, it is safer to collect mul-
tiple noise realisations and then filter with NFPR/DDID.

In the next part of the comparative evaluation, we consider Poissonian
data. Here, we evaluate our filter with BM3D in combination with a VST
[278]. Generally, after application of a VST on Poissonian data, the noise
distribution is assumed to be converted to an AWGN with σG = 1.0. This is
however not the case as VSTs can induce a bias. In order to get rid of this
bias and have a fair comparison with our method, we have optimised σG after
application of the VST w.r.t. PSNR. In the center column of Table 5.1, we
present the results of this evaluation. It is clear that despite not requiring
the usage of a VST, NFPR outperforms BM3D. We have also carried out a
short evaluation with another well-performing VST framework [279] in Table
5.3. Our approach is better for the homogeneous Peppers image. For the
Bridge image which has textured regions, BM3D is superior to NFPR. These
results thus follow a similar trend as in the AWGN case.

Now we move to the mixture noise scenario. Here, we employed the same
optimisation strategy as in the Poissonian noise scenario, to eliminate the
VST induced bias. In the right column of Table 5.1 we present the com-
parison of NFPR with BM3D + VST [327] which shows that our denoising
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Noisy BM3D NFPR Original

Figure 5.4: Top to Bottom: Zoom into Lena, Bridge, House, Peppers and a
Kodak image, respectively (χ = 5.0).
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Image NFPR BM3D Best BM3D+ [281]
L5.0 26.35 26.34 26.18 26.18
L2.0 24.38 24.05 24.34 24.34
L1.0 22.95 22.59 22.83 22.59

CS5.0 23.32 23.73 24.09 24.09
CS2.0 21.21 21.71 21.93 21.93
CS1.0 20.15 20.05 20.35 20.23

Table 5.4: PSNRs for Poissonian-Gaussian distribution. Image abbreviations as in Tables
5.1, 5.2. C denotes Cameraman image. BM3D - our proposed σG optimisation for removing
the VST bias, Best - largest PSNR among all the methods ( [6,15,326]) evaluated in [281],
BM3D+ [281] - optimal VST which is the best available framework for mixture noise.

method outperforms BM3D. Figure 5.4 presents some corresponding images
of this evaluation. Concerning the artefacts, similar observations can be
made as in the AWGN scenario: As highlighted by the red circle for Lena
image, noise can form accidental spatial patterns that are not present in the
original image. Our filter preserves these patterns similar to DDID. BM3D
almost completely removes them, analogous to NLDD in the AWGN scenario.
The pictures after removing these accidental structures might look pleasant.
However, this comes at the risk of removing original structures itself. Such
an observation is also in agreement with the one in [241]. Moreover, in Table
5.4 we showcase a short comparison of NFPR with the best available frame-
work [281] for Poissonian-Gaussian degradation. The practical world data is
generally approximated with the mixture model. A competitive performance
by NFPR in this scenario is thus a significant step forward.

It is worth noticing that despite excluding the noise parameter within the
arguments of the non-linear functions in our filter, NFPR can outperform
those which include this knowledge. One might argue that our approach is
at an advantage as we are optimising its parameters w.r.t. PSNR. However,
BM3D and NLB are operating at the theoretical optimum as they utilise the
ideal σG value for AWGN. In practice, this needs to be estimated which might
also lead to errors. In the case of Poissonian and mixture noise models, we
optimise the noise variance w.r.t. PSNR in order to minimise VST induced
bias. This ensures a fair comparison. For reproducibility, the parametric
values used to generate the results in all the above mentioned experiments
are presented in Tables 5.5 - 5.6. With this, we end the synthetic noise
experiments. Our philosopy, which does not require a-priori knowledge of
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AWGN POISSONIAN MIXTURE

Data σ λ kmax

L40 150 11.5 16
L60 160 15.5 16
L80 175 20.0 14
L100 175 23.5 16
L120 190 27.0 15
L140 195 31.5 15

B40 130 15.0 13
B60 160 20.5 8
B80 165 26.0 9
B100 180 30.5 9
B120 180 34.5 10
B140 190 36.5 11

H40 140 10.5 27
H60 160 12.0 27
H80 180 15.0 23
H100 185 17.5 17
H120 205 22.5 17
H140 200 25.0 19

P40 155 11.5 16
P60 160 16.0 17
P80 185 18.5 15
P100 195 21.0 15
P120 205 25.0 15
P140 205 29.5 15

Data σ λ kmax σest
L1.0 250 1.0 12 1.4
L0.9 260 0.5 12 1.5
L0.8 270 0.5 13 1.6
L0.7 290 1.0 13 1.5
L0.6 290 0.5 14 1.6
L0.5 330 0.5 16 1.7

B1.0 250 0.5 9 1.3
B0.9 260 1.0 9 1.4
B0.8 250 1.0 10 1.4
B0.7 300 1.0 11 1.4
B0.6 290 1.0 12 1.4
B0.5 330 0.5 13 1.4

H1.0 230 0.5 9 1.3
H0.9 230 0.5 10 1.3
H0.8 250 0.5 12 1.5
H0.7 240 0.5 12 1.3
H0.6 260 1.0 13 1.5
H0.5 290 1.0 14 1.7

P1.0 250 0.5 9 1.3
P0.9 250 1.0 9 1.5
P0.8 270 0.5 10 1.4
P0.7 300 0.5 11 1.5
P0.6 300 1.0 11 1.3
P0.5 350 0.5 12 1.4

Data σ λ kmax σest
L5.0 180 0.5 11 1.1
L4.0 180 0.5 11 1.1
L2.0 200 0.5 10 1.2
L0.9 250 0.5 13 1.6
L0.7 290 1.0 14 1.6
L0.5 300 1.0 15 1.6

B5.0 210 0.5 6 1.0
B4.0 200 0.5 6 1.0
B2.0 200 0.5 7 1.0
B0.9 260 0.5 9 1.3
B0.7 280 0.5 11 1.5
B0.5 300 1.0 13 1.3

H5.0 190 0.5 11 1.1
H4.0 180 0.5 11 1.1
H2.0 180 0.5 10 1.1
H0.9 230 1.0 11 1.3
H0.7 240 0.5 13 1.6
H0.5 260 0.5 14 1.5

P5.0 190 0.5 9 1.1
P4.0 190 0.5 9 1.1
P2.0 200 0.5 8 1.2
P0.9 260 0.5 10 1.4
P0.7 280 0.5 11 1.5
P0.5 300 0.5 12 1.4

Table 5.5: Parameter values used for generating the results in Table 5.1. σest

denotes optimised σG for BM3D.

Data σ λ kmax

PS25 125 9.5 21
PS40 145 12.5 16

L25 130 9.0 19
L40 150 11.5 16

Data σ λ kmax

L50 150 14.5 17
L75 170 19.0 15
L100 175 23.5 16

H50 160 11.0 23
H75 165 15.5 23
H100 185 17.5 17

Data σ λ kmax σest
PS4.0 180 0.5 11 1.1
PS2.0 180 0.5 11 1.1
PS1.0 200 0.5 10 1.2
PS0.5 250 0.5 13 1.6
PS0.2 290 1.0 14 1.6
PS0.1 300 1.0 15 1.6

BS4.0 210 0.5 6 1.0
BS2.0 200 0.5 6 1.0
BS1.0 200 0.5 7 1.0
BS0.5 260 0.5 9 1.3
BS0.2 280 0.5 11 1.5
BS0.1 300 1.0 13 1.3

Data σ λ kmax σest
L5.0 180 0.5 11 1.1
L2.0 200 0.5 10 1.2
L1.0 240 0.5 12 1.4

CS5.0 160 0.5 12 1.0
CS2.0 170 0.5 10 0.9
CS1.0 200 0.5 9 0.8

Table 5.6: Left to Right: Parameters corresponding to results in Tables 5.2 -
5.3, respectively.
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the noise distribution, proves useful in multiple ways. We will catch sight of
these strengths in the upcoming experiments on practical data.

5.2.4 Electron Microscopy Data

Here, we have considered two datasets of ribosome particles in yeast cells.
In each of them, we have two pre-aligned noisy images of the same scene.
This enables quantifying the quality of denoised images using the FRC cri-
terion. In Figure 5.5 we show the resulting denoised images along with the
corresponding FRC curves. These were computed for our approach as well
as AWGN versions of NLB and BM3D.

Four important features can be observed in the noise degradations of an
electron microscope:

• These images are obtained after averaging a few hundreds of very noisy
images which do not show any sort of signal to the naked eye.

• The appearance of noise is different in each of the datasets. Moreover,
these degradations are also different from both Gaussian and mixture
kinds of noise considered in the synthetic images. Hence, the noise
model is not well understood.

• Although the category of noise distribution in the first dataset seems
to be an unstructured one, the other is definitely spread over relatively
larger spatial scales. Thus, it is a slightly structured degradation.

• There is no guarantee that the noise distribution is spatially invariant.

These observations signify the need for a filter that is robust to the type of
noise and also works for highly degraded images. For the first dataset, in con-
trast to NLB and BM3D, our method produces sharper images with clearly
visible structures. In the second one, NLB is not able to remove the noise
completely while BM3D produces a less sharper output than NFPR. While
these are visual interpretations which might differ from person to person,
FRC curve is a quantitative objective measure. The noise distribution along
with its accidental spatial patterns are presumably different in two different
noise realisations of the same scene. Hence, the FRC criterion quantifies the
ability of a filter to preserve original image structures. The FRC curves in
Figure 5.5 show that our filter outperforms NLB and BM3D.
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Noisy NLB BM3D NFPR

Figure 5.5: Top: Zoom into ribosome image of a yeast cell. Middle: Zoom
into ribosome image of another yeast cell. Images courtesy of Utz Ermel and
Lasse Sprankel from the Goethe University of Frankfurt. Original size of both
datasets is 256 × 256. Bottom Left and Bottom Right: Zoom into the [0.4-
1.0] correlation range of the corresponding FRC plots for both images, respectively.
NFPR parameters used: σ = 170, λ = 2.5, kmax = 35. In case of NLB and BM3D
we have optimised the unknown σG with respect to FRC.
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In the synthetic noise scenario we had four takeaway lessons from the
AWGN experiments. Some of these observations were also true for Poissonian
and mixture noise layouts. In a similar spirit to these remarks, the following
observations stand out for practical microscopy data:

• NFPR has a better structure preserving performance.

• It is directly applicable to unstructured as well as slightly structured
degradations.

• Spatially variant noisy data can also be dealt with using NFPR.

The BM3D and NLB filters employ data adaptive parametric choices.
Thus, one could definitely achieve further quality gain for NFPR in this direc-
tion. However, in this work we concentrate on confirming the capability of our
technique as a robust solution with respect to the noise model. Autonomous
and adaptive parameter selection for NFPR, similar to the non-local means
filter [322, 328], requires careful and separate studies. Our experience in-
dicates that NFPR is also applicable for the clipped-AWGN model which
mimics over-exposed/under-exposed conditions. In the impulse noise [89,90]
scenario, only a percentage of pixels are corrupted. Here, our strategy needs
to be combined with noise detection algorithms.

Having now looked at an extensive evaluation between BM3D, DDID and
ours, it is vital that we also comprehend the modelling differences between
them: BM3D performs both inter- and intra-patch smoothing. Despite the
usage of non-linear filtering, intra-patch smoothing cannot completely stop
interactions between regions of dissimilar grey values. On the other hand, in
our filter we only perform an inter-patch smoothing. This is one of the main
reasons why NFPR avoids artefacts despite using less than 1% of the pixels
in contrast to BM3D: We use just 35 pixels in a reordered set, while BM3D
considers 32 patches with 144 pixels each.

The DDID class of methods also avoids artefacts. These approaches as-
sume that the noise model is known a-priori and estimate the noise distri-
bution according to this assumption. These estimates are then substracted
from the raw data to obtain the noise-free signal. We have a diametrically
opposite philosophy. NFPR assumes that the signal, but not the noise, can
be modelled using patch and pixel similarities. The advantage over DDID is
that, we are robust to the noise model.
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Noisy DnCNN

Noisy DnCNN Noisy DnCNN

Figure 5.6: Top: Synthetic noise. Bottom: Electron microscopy data.

Deep learning approaches have been setting the state-of-the-art standard
in image denoising recently. Let us consider the denoising convolutional
neural network (DnCNN) method [292], which is one of the most widely
accepted learning-based solutions for removing AWGN. One can clearly ob-
serve from the Figure 8.2 that DnCNN indeed works for a synthetic Gaussian
noise model. However, it fails to denoise the image in practical scenarios.
Such strategies cannot cover a broader spectrum of noise models as they
are uni-dimensionally trained for a very specific kind of data. Other learn-
ing approaches which aim at solving this problem have not completely been
successful. They either require selection of the loss function which is deteri-
oration dependent [293] or need analytical noise models [329].

In conclusion, deep learning methods are perfectly suitable for applica-
tions where the type of noise is well known and the amplitudes of noise
are small. However, for highly degraded images, in scenarios where training
data is not easily available, and in situations when the data cannot be easily
approximated with an analytical noise model, our method is better suited.
Electron microscopy is one such application because the process of acquiring
raw data to obtaining the final 3D structure of a specimen is a very com-
plex pipeline. One might require a denoising technique at any point in this
pipeline. After almost every step, the noise distribution changes. Thus, it
is highly recommended to have a filter at hand which is robust to the type
of degradation. We have experimentally demonstrated this very property of
NFPR in this chapter.
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The most time consuming part of our filter is the patch reordering stage.
Experiments on an NVIDIA GeForce GTX 970 graphics card using C++ and
CUDA, indicated that our method took 2 seconds for denoising the 256×256
sized image (σG = 100). Recently, BM3D was implemented in real-time on a
GPU [330]. Thus, we can further speed up NFPR with faster versions of a
naive patch-matching implementation.

5.3 Conclusions

The crux of this chapter takes the very first steps in the direction of a uni-
versal denoising filter. Such a filter must possess all-round qualities like
preserving structural image information, avoiding artefacts, consuming less
computational time and not requiring a-priori knowledge about noise statis-
tics. Although image denoising research is decades-old, only a handful of
works have studied this general direction. Most works in both learning-
based and model-based worlds create a noise degradation synthetically on a
computer and then utilise this very knowledge within the design of a filter.
Practical data need not comply with this idea. In this work, we have concen-
trated solely on modelling the noise-free signal without including any noise
parameters within the non-linearity. Although such a formulation might re-
duce the filter performance on a specific synthetic noise distribution, we have
shown that it gives a clear advantage on practical world data. Our technique
can thus be seen as a successful attempt in the pursuit of a universal filter.
It can be directly employed for eliminating unstructured as well as slightly
structured kinds of noise which cover a vast spectrum of imaging applications.

It is now clear from the experiments conducted in this chapter that there
are several advantages of combining the patch-based similarity assumption
with its pixel-based counterpart. However, we just scrutinised a disc shaped
neighbourhood. In the upcoming two chapters we examine a couple of
anisotropic filter shapes.

Manuscript details of research content from this Chapter:

K. Bodduna and J. Weickert. Image Denoising with Less Artefacts: Novel
Non-linear Filtering on Fast Patch Reorderings. arXiv:2002.00638 [eess.IV],
February 2020.
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Sector Diffusion - A Corner
Preserving Diffusion Model

In Chapter 4, we saw that the disc diffusion (DD) filter has the ability to
avoid artefacts in homogenous regions. However, it cannot compete with
well-performing methods like 3D block matching (BM3D) [15] and non-local
Bayes (NLB) [14] for textured images. Then we combined the pixel simi-
larity assumption in disc diffusion with the patch similarity counterpart in
non-local means (NLM) [160, 161] algorithm in Chapter 5. This resulted
in the non-linear filtering on fast patch reorderings (NFPR) approach. We
found that, unlike DD, NFPR was able to compete with BM3D and NLB
on textured images while also retaining the ability to prevent artefacts in
homogenous regions. Nevertheless, there is still scope for designing diffusion-
based techniques that perform better in texture regions. In particular, one
must investigate filters that catch anisotropic behaviour in an efficient man-
ner. In this chapter, we concentrate on one such solution.

We have seen that non-linear diffusion models possess the ability to pre-
serve edges. Corners, on the other hand, are regions where multiple edges
exist in a local neighbourhood. These structures form a significant part of
textured regions in an image. There is still room for improvement when it
comes to processing corners. This is a less explored and relatively difficult
research area. One idea that helps in preserving corners is to determine a-
priori whether a particular location is a corner or not and perform anisotropic
smoothing accordingly [331–333]. An energy minimisation method was also
employed for processing corners [134, 144]. Here, the idea is to first find
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the two dominant directions in a local neighbourhood using a structure ten-
sor. This is followed by modelling an energy that incorporates these direc-
tions and is responsible for performing a smoothing along them. There are,
however, many situations where more than two edges intersect. Here, one
needs to employ a smoothing in multiple directions unlike the assumptions
in [134,144,334,335]. Shape adaptive filters [20–23] have also been proposed
for dealing with corner like structural image information. They generally
compute a data adaptive structure element around every pixel. This is com-
putationally very intensive.

Our Goal. Introduce a diffusion model which has good performance in
terms of corner preservation.

Our Contribution. The sector diffusion (SD) model we propose has mul-
tiple ingredients. The most important one among them is the novel idea of
incorporating one-sided derivatives in its modelling. As a consequence of this
feature, SD is able to smooth in multiple directions instead of just two, does
not require to determine a-priori whether a particular location belongs to a
corner region, and also has a pre-computable filter shape.

Chapter structure. This chapter is outlined as follows: We introduce the
motivation behind modelling of our sector diffusion filter in Section 6.1. The
experiments and discussions on the results pertaining to corner preservation
and denoising are presented in Section 6.2. We summarise our conclusions
from the experiments along with an outlook on future work in Section 6.3.

6.1 Modelling and Theory

6.1.1 Continuous Modelling of Sector Diffusion

Let us revisit the integration model of Weickert [17] (equation (4.1) from
Chapter 4):

∂tu(x, t) =
1

π

∫ π

0

∂θ (g (∂θuσ) ∂θu) dθ. (6.1)

This model considers each direction θ separately and is thus capable of dif-
fusing along edges, but not across them. We used the above image evolution
as a starting point for disc diffusion. However, instead of directly consid-
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ering the non-local extension of the above filter, sector diffusion adheres to
a different idea. In order to improve the structure adaptation even further,
we replace the directional derivatives by one-sided directional derivatives and
integrate over [0, 2π] instead of [0, π]:

∂tu(x, t) =
1

2π

∫ 2π

0

∂+
θ

(
g
(
∂+
θ u

θ
σ

)
∂+
θ u
)
dθ. (6.2)

Here, uθσ represents a one-sided smoothing of u in the orientation given by the
angle θ, and ∂+

θ denotes a one-sided derivative in the same orientation. In con-
trast to the usual Gaussian smoothing applied in (6.1), this one-sided smooth-
ing allows the filter to distinguish two different derivatives for a given direc-
tion: One in the orientation of θ, and the other in the orientation of θ+π. A
formal definition of these concepts can be realised by considering the restric-
tion of u to the corresponding ray starting at x, in the orientation of each θ.
Namely, for fixed x, t, θ, we consider u(h;x, t) := u(x+h(cos(θ), sin(θ))T , t),
for h ∈ [0,∞]. Then, the one-sided directional derivative ∂+

θ is formally
defined as

∂+
θ u := lim

h→0+

u(h;x, t)− u(x, t)

h
. (6.3)

To our knowledge, diffusion filters that are explicitly based on one-sided
directional derivatives have not been described in the literature so far. In fact,
we have also not come across theories about image evolutions that involve
one-sided derivatives in general. They are mathematically challenging and
could open the door to several new directions of research.

In order to introduce a second alteration of model (6.1), we supplement
one-sided derivatives with concept of non-locality. This leads to

∂tu(x, t) =

∫
Bx,ρ

J(|y − x|) g
(
uσ(y;y − x)− uσ(x;y − x)

|y − x|

)
(u(y)− u(x)) dy. (6.4)

In contrast to the disc diffusion modelling in (4.2), the above non-local formu-
lation consists of the value uσ(z;y−x). It corresponds to a one-dimensional
Gaussian smoothing of u inside the segment

λxy(s) :=

{
x+ s

(y − x)

|y − x|
: s ∈ [0, ρ]

}
, (6.5)

evaluated at z. This idea of making the diffusivity dependent on values in-
side an orientation dependent segment determines the structure preservation
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Figure 6.1: Mapping of pixels to sectors

capabilities of the model. With these design choices, (6.4) can also be consid-
ered as an example of a general non-local theoretical framework developed
in [318]. We will now discuss how to translate the above non-local filter
into space-discrete and fully discrete versions by dividing the disc Bx,ρ into
sectors. This explains the name sector diffusion.

6.1.2 Discrete Modelling of Sector Diffusion

The following ideas form the core of the sector diffusion model:

• In order to properly align our filter with corners in an image, we first
divide a disc shaped neighborhood Bi,ρ of radius ρ centered around
pixel i into M sectors. With the objective of reducing interactions
between regions of dissimilar grey values we employ robust smoothing
within these sectors. This mirrors the continuous modelling idea of
smoothing within the segments λxy.

• The second key idea is that we map a particular pixel i within this
disc to a sector S`, if they have a non-zero area of intersection. This
would give rise to a distribution where each pixel can be mapped to
multiple sectors. Thus, we have more pixels in each sector in contrast
to the situation that would arise when we map each pixel to just one

78



Chapter 6

sector. Figure 6.1 shows the distribution of the pixels in a disc shaped
neighbourhood to their respective sectors, as an example.

• The final design objective is that we employ one-sided derivatives in-
stead of central derivatives for discretisation purposes. The latter have
a property of smoothing over the central pixel, thus destroying the cor-
ners. This idea is again a direct consequence of considering orientations
rather than directions in the continuous model.

With the above motivations in mind, we now go ahead to define the space-
discrete formulation of the sector diffusion model as

d

dt
ui =

M∑
`=1

∑
j∈S`

gi,j ·
uj − ui
|xj − xi|2

. (6.6)

One can immediately see a double summation in the above equation which
arises due to the division of a disc into sectors. In the case of disc diffusion,
we encounter just a single summation in its evolution equation. Also, in

the above equation, gi,j = g
(
uσj`−uσi`
|xj−xi|

)
and S` is the set of pixels within a

particular sector `. The symbols xi and xj denote the position of the pixels
i and j in the image grid. The sector-restricted smoothing is defined as

uσj` =
1

c

∑
k∈S`

h1(k, j, σ)uk. (6.7)

Here, c is a normalisation constant and

h1(k, j, σ) = exp

(
−|xk − xj|2

2σ2

)
. (6.8)

The value of uσi` in (6.6) is also computed using (6.7), but with a weighting
function h2 which is slightly different from h1:

h2(k, i, σ) = exp

(
−|xk − xi|2

2σ2

)
− exp

(
−|xk − xi|2

2σ1
2

)
. (6.9)

By choosing a very small value for σ1 (<< σ), we downweight the contribu-
tion of the weight corresponding to the case k = i. This gives more a robust
smoothing estimate uσil [336]. Such a slightly different Gaussian smooth-
ing is required to compensate for the asymmetric shape of a sector. In disc
diffusion, however, we always use the function h1.
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The space-time discrete evolution counterpart of (6.6) with a time step τ
can be written as

uk+1
i = uki + τ ·

(
M∑
l=1

∑
j∈Sl

g

(
uσ

k
jl − uσkil
|xj − xi|

)
ukj − uki
|xj − xi|2

)
. (6.10)

The above equation can be formulated in a more compact way using a matrix
Q(uk) ∈ RM×M :

uk+1 = Q(uk)uk. (6.11)

The entries of the matrix qi,j(u
k) are given by

qi,j(u
k) =


1−

∑M
l=1

∑
j∈Sl

τ ·gij(uk)

|xj−xi|2 , if j = i,∑
l∈Pj

τ.gij(u
k)

|xj−xi|2 , if j ∈ Bρ(i) and j 6= i,

0, otherwise,

(6.12)

with diffusivity weight gij(u
k) = g

(
uσkjl−uσ

k
il

|xj−xi|

)
. Remember that each pixel

within the disc can be present in multiple sectors. Thus, we use the symbol
Pj to represent the set of sectors in which pixel j is present. The existance of
the sets S` and Pj is the main difference between the matrices corresponding
to disc and sector diffusion techniques. Moreover, in the above matrix, the
values of uσjl and uσil would be different in the case where uj is the center
pixel and ui is the center pixel. This is due to the fact that we have a
different set of neighbours for computing the Gaussian smoothing in both
cases. It is a direct consequence of the intrinsic shape of a sector. We also
have slightly different smoothing functions, h1 and h2, for computing uσjl
and uσil, respectively. Thus, unlike in the case of disc diffusion, Q(uk) is
not symmetric in this approach.

We choose the time step τ in such a way that a maximum-minimum prin-
ciple is valid. In other words we want to guarantee that after one time step
the resulting image uk+1 has lower and upper bounds given by the maximum
and minimum values of the image uk. The discrete diffusion theory of We-
ickert [133] was proposed for evolution equations where Q(uk) is symmetric.
However, it mentions that the maximum-minimum principle can still be met
without this requirement of symmetry: First of all we need that the row
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sums of the matrix Q(uk) are equal to 1. Due to the area-based mapping
from pixels to sectors, we have∑

{j∈Bi,ρ : j 6=i}

∑
l∈Pj

τ · gij(uk)
|xj − xi|2

=
M∑
l=1

∑
j∈Sl

τ · gij(uk)
|xj − xi|2

. (6.13)

The left hand side of the above equation denotes the sum of the weights
pertaining to all pixels within the disc Bi,ρ, other than the center pixel i.
The right hand side denotes the sum of the corresponding weights for i itself.
Using the above equation, we can prove that the row sums are equal to 1:

1−
M∑
l=1

∑
j∈Sl

τ · gij(uk)
|xj − xi|2

+
∑

{j∈Bi,ρ : j 6=i}

∑
l∈Pj

τ · gij(uk)
|xj − xi|2

= 1. (6.14)

In order to satisfy the maximum-minimum principle, we additionally need
that the entries of the matrix Q(uk) are non-negative. This if fulfilled if the
following condition holds:

1−
M∑
l=1

∑
j∈Sl

τ · gij(uk)
|xj − xi|2

≥ 0. (6.15)

Given that the maximum value of diffusivity is 1, the final limits for the time
step size simplify to

0 ≤ τ ≤ 1∑M
l=1

∑
j∈Sl

1
|xj−xi|2

. (6.16)

This concludes the modelling part of sector diffusion. Now we evaluate its
corner preservation and denoising capability.

6.2 Experiments and Discussion

6.2.1 Datasets and Methods for Evaluation

In the interest of evaluating the corner preservation ability of SD, we have
corrupted the synthetic Texmos test image with additive white Gaussian
noise (AWGN). We also consider real-world test images Lena, House, Pep-
pers, and Bridge, corrupted with the clipped-AWGN (grey values clipped to
a dynamic range [0, 255]). In our comparative analysis, we have considered
the well known edge-enhancing diffusion (EED) method [132] which has been
discretised according to [337].
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Figure 6.2: Influence of the number of sectors on the denoising output for Texmos
image. Left: σG = 50, parameters used: σ = 0.5, ρ = 7, and λ = 1.0. Right:
σG = 75, parameters used: σ = 0.5, ρ = 7, and λ = 1.2. Image size: 512 × 512.

Figure 6.3: Influence of the radius on the denoising output for Texmos image.
Left: σG = 50, parameters used: σ = 0.5, M = 36, and λ = 1.2. Right: σG = 75,
parameters used: σ = 0.5, M = 36, and λ = 1.2.

6.2.2 Parameter Selection

We have seven parameters in sector diffusion (SD): The smoothing parame-
ters σ, σ1, contrast parameter λ, radius of the disc ρ, total number of itera-
tions kmax, number of sectors M and the time step size τ . However, we will
shortly see that we do not have to optimise ρ, M and τ for denoising purposes.

Influence of the Number of Sectors on Denoising. Figure 6.2 shows
the mean squared error (MSE) values of the denoised Texmos image, as a
function of the number of sectors chosen. We can make three crucial ob-
servations from the plot: We obtain high errors for low number of sectors
(M < 26). This is due to the fact that the adaptivity to the image structures
is not optimal for sectors with larger areas. We also observe large MSE val-
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(a) Original (b) Noisy

(c) Noisy (d) EED (e) SD (f) Original

(g) Noisy (h) EED (i) SD (j) Original

Figure 6.4: Denoised Texmos images using various methods (σG = 50). Top Row: Full
images. Middle Row: Zoom into the images for visualising fine structures along an edge.
Bottom Row: Zoom into the images for visualising two particular corner regions. SD
Parameters: σ = 0.5, λ = 1.0 and kmax = 65.

ues for very high number of sectors (M > 50) because we have less number
of pixels in each sector which leads to sub-optimal smoothing. Finally, least
MSE is achieved for a moderate range (26 < M < 50). Within this range we
avoid both the above disadvantages. We can additionally notice that these
observations are common for two different standard devations of noise, thus
signifying the importance of sector-based modelling.

Influence of the Disc Radius on Denoising. Figure 6.3 presents the
MSE values of the denoised Texmos image as a function of the disc radius.
We can make observations similar to the above graphs: We achieve better
MSE values for a moderately large radius. When the radius is low there are
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EED SD

Image σ λ kmax MSE
L40 1.2 7.5 34 98.67
L60 1.8 5.0 63 156.24
L80 2.0 4.6 87 230.28

B40 0.9 14.4 12 294.32
B60 160 20.5 8 333.37
B80 1.4 10.4 28 514.23

H40 0.9 11.1 34 96.62
H60 1.1 12.1 33 167.72
H80 1.8 5.8 72 247.09

P40 1.2 8.1 28 102.97
P60 1.7 5.6 51 200.31
P80 1.9 5.1 68 353.61

σ λ kmax MSE
0.6 3.1 7 92.99
0.6 3.3 11 138.48
0.6 2.9 18 180.66

0.5 3.3 4 261.62
0.5 4.1 6 360.87
0.6 4.0 9 436.60

0.7 2.6 9 104.31
0.7 2.7 14 152.24
0.6 2.7 19 207.65

0.6 2.1 10 86.57
0.6 1.8 19 133.19
0.6 1.7 30 188.86

Table 6.1: MSE values of denoised images including parameters used. L40 stands for Lena
image with σG = 40. B, H, P denote Bridge, House and Peppers images, respectively.

Noisy EED SD Original

Figure 6.5: Zoom into Lena images (σG = 60).

too few pixels within the disc which does not result in a robust smoothing
estimate. A very high radius is also sub-optimal since this gives rise to a
situation where grey values from different regions in the image can interact
with each other.

Based on the above observations, we have chosen M = 36 and ρ = 7.
Such a choice was made keeping in mind both computational time and the
quality of the deniosed images. We use 95% of the upper bound for the
time step τ in (6.16). The small positive constant value σ1 is set to 0.0005.
Finally, we have to optimise only three parameters: σ, λ, and kmax.

Corner Preservation Experiment. Figure 6.4 shows the denoised ver-
sions of the Texmos test image obtained using both SD and EED filters.
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One can observe the superior corner and fine structure preserving character-
istics of SD over EED.

Real-world Image Denoising Experiment. Table 6.1 presents the mean
squared error (MSE) values of denoised images. It is clear from the table
that SD gives the best results. This can also be verified visually from Figure
6.5, where the eye of Lena is better preserved by SD.

We attribute the better performance of SD to four specific model features:
Using one-sided derivatives for the diffusion process, division of a disc-shaped
neighbourhood into sectors, usage of an area-based mapping between pixels
within the disc and sectors, and employment of a robust smoothing within
these sectors.

6.3 Conclusions

We have seen that corner preservation with a diffusion-based filter requires so-
phisticated modelling ideas. Each of these ingredients is vital for the efficient
performance of SD. Sector diffusion is in fact the first diffusion method that
consequently uses only one-sided directional derivatives. In its local formula-
tion, this is a model that offers also structural novelties from a mathematical
perspective, since it cannot be described in terms of a partial differential
equation. From a practical perspective, the non-local sector diffusion pos-
sesses a higher structural adaptivity and a better denoising performance than
simpler diffusion models. Thus, it appears promising to study its usefulness
in applications beyond denoising. We investigate such an idea in Chapter 9.

We began this chapter by pursuing the direction of evaluating anisotropic
filter shapes other than a disc. Although these efforts proved to be fruitful,
in the upcoming chapter we will analyse another neighbourhood shape that
can adapt to anisotropy within data. This will ensure that we complete a
comprehensive evaluation of several filter shapes.
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Importance of Filter Shape in
Denoising: Stripe Diffusion

Every image denoising method tries to make three crucial decisions: Choosing
the combination of pixels on which the filter needs to be applied, deciding the
type of non-linearity for filtering purposes, and finally the process through
which the denoised image is generated from the filter outputs.

In this chapter, we concentrate on the first step of the above mentioned
sequential process. The most important question in this step is about the
spatial shape of the filter, which is also commonly known as a neighbourhood
or a structure element. Based on current research, most models can be
divided into two categories: Firstly, filters which use fixed shapes defined by
a square [14, 15, 18, 160] or a disc [336, 338] (also see Chapters 4, 5). The
latter methods generally lead to rotationally invariant models. The other
category contains models where the shape of the filter adapts to the image
structure [20–23]. However, computing a different shape for every pixel is
a computationally expensive process. There is a lack of research when it
comes to carefully evaluating fixed shapes other than disc or a square which
offer anisotropy. Such a contribution is also useful for structure enhancement
(Chapter 10) and robust super-resolution imaging applications (Chapter 9).

In the previous chapter we introduced a sector-shaped neighbourhood
(see Figure 7.1b) which falls under the category of fixed filter shapes. The
anisotropy offered by a sector lead to better preservation of corners. Also,
in Chapter 4, a disc-shaped element was used in a similar non-local diffusion
setting as sector diffusion. While a disc contains more pixels in it than a
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(a) DD (b) SD (c) NSD (d) SSD

Figure 7.1: Structure elements for various diffusion techniques.

sector, it does not offer as much anisotropy. There has not been any research
which combines the advantages of both sector and a disc.

Our Goal. Design a structure element which combines the strengths of both
disc and sector shapes.

Our Contribution. We introduce the stripe-shaped diffusion technique.
A stripe covers a larger area than a sector, but shows a better ability to
catch anisotropic behaviour than a disc. Morever, we introduce two versions
of stripe diffusion - non-symmetric stripe diffusion (NSD) and symmetric
stripe diffusion (SSD) which lead to non-symmetric and symmetric image
evolutions, respectively. Figures 7.1c and 7.1d offer a first look at the stripe-
shaped neighbourhood. Furthermore, we evaluate disc-diffusion (DD), sector
diffusion (SD), NSD and SSD in two different image denoising scenarios: Ad-
ditive white Gaussian noise (AWGN) and clipped-AWGN. While the former
depicts a common noise model, the latter represents situations when images
are acquired in over- or under-exposed conditions. Such a simultaneous eval-
uation reveals the robustness of a filter to the kind of noise. This study is
highly ignored in the present research works.

Designing fixed shape neighbourhoods that offer anisotropy is still an open
problem. However, even before filling this void completely, patch-matching
extensions of square or disc shaped neighbourhoods have already been de-
signed [14,15,18]. Our evaluation of different filter shapes thus becomes even
more important. This is due to the fact that any improvements from our
semi-non-local study could have direct repercussions in a non-local scenario.

Finally, symmetric and non-symmetric image evolutions have their own
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advantages and disadvantages in terms of quality and speed. Our SSD and
NSD frameworks contribute to both these fields.

Chapter structure. This chapter is structured as follows: We introduce
the ideas behind modelling of various structure elements in Section 7.1. The
experiments and discussions on the strengths and weaknesses of different fil-
ter shapes are presented in Section 7.2. We put forward our conclusions from
the experiments along with an outlook on future work in Section 7.3.

7.1 Modelling and Theory

Diffusion-based methods rely on pixel similarity within a spatial neighbour-
hood. In disc diffusion (Chapter 4), as the name suggests, this neighbour-
hood is a disc. There exist two denoising steps in every iteration of the
image evolution under DD. The first is a simple Gaussian smoothing. The
second is a diffusion-based filtering with weights computed on the Gaussian
smoothed image. Such a modelling makes the weights robust to the pres-
ence of noise [129]. In sector diffusion (Chapter 6), we divide the disc into
sectors and then perform the two denoising steps within every sector. The
motivation behind such a strategy is that sectors are superior in adapting
to corner-like image structures. However, we have less number of pixels in
every sector, which is not optimal for image denoising.

In this chapter, we use a stripe-shaped structure element. In contrast to
a disc and sector, a stripe offers better anisotropy and more pixels within
the structure element, respectively. In this section, we first present the non-
symmetric version of stripe diffusion which is closer in spirit to sector dif-
fusion. We then introduce the symmetric variant by combining ideas from
both DD and NSD mechanisms.

7.1.1 Non-symmetric Stripe Diffusion

In order to compute the denoised image using NSD, we first consider a disc
Bi,ρ of radius ρ around every pixel ui in the 2D image domain Ω. We then
divide this disc into M stripes centered around ui. Each of these stripes spans
a different angle with the x-axis. These angles are equally spaced and range
between 1 and 180 degrees, such that the entire disc is covered. In Figure
7.1c we can visualise two stripes ABDC and EFHG: One each for pixels ui
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and uj (labelled as i and j for simplicity), respectively. Both these stripes
span the same angle with the x-axis. Once we have divided the disc into
stripes, we then designate every pixel j within Bi,ρ to a stripe `, if they have
a non-zero area of intersection. Thus, each pixel in the disc can belong to
multiple stripes. Similar to sector diffusion such a design leads to a relatively
higher number of pixels in each stripe in contrast to the situation where one
pixel is mapped to a single stripe. Now we are ready to define the discrete
image evolution process with time step τ as

uk+1
i − uki
τ

=
M∑
`=1

∑
j∈S`

g

(
uσj` − uσi`
|xj − xi|

)
uj − ui
|xj − xi|2

. (7.1)

The above equations looks completely similar to the sector diffusion-based
image evolution. However, there are two differences: The set S` contains the
addresses of pixels in stripe ` instead of those within a sector. Moreover, both
uσi` and uσj` are computed using the same Gaussian smoothing process:

uσj` =
1

c

∑
n∈S`

a(j, n, σ)un. (7.2)

Thus, unlike SD, we do not employ two different weighting functions for
computing uσi` and uσj`.

Now, we need to understand why exactly NSD leads to a non-symmetric
image evolution. Let us revisit Figure 7.1c. The pixel uj is present within the
disc around ui and also inside the stripe ABDC. When we are computing the
image evolution equation for ui, the Gaussian smoothed estimates for both
ui and uj are calculated using pixels within the stripe ABDC. However,
when we compute the same equation for uj, the pixels which contribute to
the Gaussian smoothing come from the stripe EFHG. This change in the
combination of pixels, leads to a non-symmetric image evolution.

The above explanation holds if we replace stripes ABDC and EFHG,
with sectors CDi and ABj, respectively (see Figure 7.1b). The inherent
shape of these structure elements makes these processes non-symmetric. A
detailed explanation for this in terms of a matrix-vector formulation is pre-
sented in Chapter 6.

In disc diffusion, the pixel combinations that contribute to the Gaussian
smoothing do not change. Thus, it leads to a symmetric image evolution.
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AWGN Clipped-AWGN

Image SSD DD NSD SD
L40 97.72 95.16 91.55 92.51
L60 137.61 135.55 129.23 132.57
L80 176.52 175.56 167.73 172.61
L100 209.47 201.05 199.47 201.67

B40 265.15 261.27 256.10 256.55
B60 347.53 351.88 342.57 344.17
B80 421.67 425.56 418.10 420.76
B100 478.69 480.31 474.95 477.74

H40 86.09 89.32 82.92 104.27
H60 134.73 143.49 130.25 158.01
H80 185.56 200.00 187.46 210.73
H100 247.96 258.45 247.55 263.25

P40 71.22 71.18 66.79 73.53
P60 103.47 102.78 98.30 104.55
P80 137.92 135.40 132.15 136.76
P100 165.03 160.61 159.86 166.38

NSD NSD-M SD
93.50 93.99 92.67

146.53 140.72 136.39
226.83 197.01 182.05
322.39 253.64 218.50

260.56 259.53 259.64
367.70 359.56 356.39
487.12 450.92 442.32
615.16 534.56 514.94

84.59 86.69 103.80
141.68 140.58 156.20
227.07 212.34 210.50
348.72 301.63 266.71

93.62 83.11 84.82
180.19 138.68 132.34
321.83 217.23 186.23
501.27 307.38 243.20

Table 7.1: MSE values of denoised images. L40 stands for Lena image with σG = 40. B,
H, P denote Bridge, House and Peppers respectively.

However, we can turn a non-symmetric stripe diffusion process into a sym-
metric one by choosing a common ground between DD and NSD.

7.1.2 Symmetric Stripe Diffusion

The SSD image evolution equation is designed in a similar spirit to DD:

uk+1
i − uki
τ

=
∑
j∈Bi,ρ

g

(
uσj − uσi
|xj − xi|

)
uj − ui
|xj − xi|2

. (7.3)

The only difference between SSD and DD is the manner in which we
choose the pixels that contribute to the Gaussian smoothing uσ. We combine
all the pixels in the two stripes ABDC and EFHG shown in Figure 7.1c.
This results in a bigger stripe ABDC presented in Figure 7.1d. Irrespective
of whether we are computing the image evolution equation for ui or uj, such
a construction would not change the pixel combination that contributes to
the Gaussian smoothing. This leads to a symmetric image evolution.
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Noisy SD DD SSD NSD Original

Figure 7.2: Top and Bottom: House and Peppers images (σG = 40).

Noisy SD DD SSD NSD Original

Figure 7.3: Top and Bottom: Zoom into House image with σG = 40 and 60,
respectively.

7.2 Experiments and Discussion

7.2.1 Datasets and Parameter Selection

We have corrupted Lena, Bridge, House, and Peppers images with AWGN
and clipped-AWGN. We have chosen a radius of ρ = 7 for the disc-shaped
neighbourhood. The number of stripes M is selected as 18 for NSD. In SSD,
the number of stripes is equal to the number of pixels within the disc. We
choose τ as 95% of the upper bound value which would satisfy the maximum-
minimum principle of the image evolution.

The symbol ρt is used to represent half of the thickness of each stripe. We
select this value such that every pixel in the disc is mapped to atleast one
stripe. In the case of NSD, choosing ρt = 1.21 would satisfy this requirement.
In SSD, ρt = 0.5 would suffice due to a design consequence: Every pixel pair
i− j within the disc already has its own corresponding stripe. Thus, we just
optimise σ, λ, kmax w.r.t. the mean squared error (MSE).
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Noisy SD DD SSD NSD Original

Figure 7.4: Zoom into Peppers image (σG = 60).

7.2.2 Additive White Gaussian Noise

On the left side of Table 7.1, we can see the MSE values of denoised images
for the AWGN layout. We can observe from these errors that NSD outper-
forms other methods. This can be attributed to the stripe-shaped neigh-
bourhood. SSD also has the same shape for the structure element. However,
it considers too many pixels in a stripe which is required for its symmetric
modelling. This increases the chances of interaction with pixels having dis-
similar greyvalues. Thus, its performance is inferior than NSD. Figure 7.2
shows a few denoised images of this evaluation. At first glance we do not
observe too many differences between the methods. However, the zoomed
images in Figures 7.3 and 7.4 confirm that in contrast to other methods the
edge preservation capability of NSD is superior. In Table 7.2, we present the
parameteric values that were used for obtaining the results in Table 7.1.

7.2.3 Clipped-Additive White Gaussian Noise

In our second type of experiments, the test images were first corrupted with
AWGN and the resulting dynamic range was then clipped to [0-255] range.
On the right side of Table 7.1, we can see the MSE values corresponding
to clipped noise elimination. We can see that the performance of NSD and
SD has deteriorated after clipping the noise. This can be attributed to the
information lost due to clipping: Imagine that there were two pixels with
greyvalues 220 and 240, in the original image. After adding noise, let us
assume that their greyvalue has become larger than 255. Since we clip the
noise, both the pixels now have the same value of 255. This depicts the
lost information. Now, it seems plausible that the structure elements which
use a smaller number of pixels will be more robust to information lost due
to clipping. This can be attributed to the lesser probablity of interaction
between pixels from different regions. In contrast to NSD, this is one of the
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reasons why SD has better performance in such a layout.

However, we must remember that SD also employs a slightly robust ver-
sion of Gaussian smoothing (Chapter 6), in order to compensate for the
asymmetric shape of a sector. Thus, in order to have a fair comparison be-
tween SD and NSD, we used a modified version NSD-M, which employs the
same version of Gaussian smoothing as SD. One can see that NSD-M per-
forms better than NSD for clipped noise. However, it still does not reach the
performance of SD. This experiment signifies that fact that the filters benefit
from having less pixels in the structure element for a clipped noise scenario.

We have performed our experiments on a GPU - NVIDIA GeForce GTX
970 graphics card - using C++ and CUDA. They show that each iteration
of DD, SD, SSD and NSD consume 8, 22.56, 30.39 and 140.5 milliseconds,
respectively for a 256 × 256 sized image. The stripe restrictive Gaussian
smoothing is the reason behind the higher computational times of SSD and
NSD. The former is faster than the latter, as we can exploit the symmetric
nature of Gaussian smoothing of SSD while implementing it. However, this
comes at a trade-off for gain in edge preservation capability of NSD, as we
saw in the results. This is a perfect example of the strengths and weaknesses
of symmetric and non-symmetric processes.

7.3 Conclusions

As already mentioned in Chapter 3, using a similar kind of assumptions could
lead to several correspendences and equivalences between image denoising
filters [120, 187–190, 193, 194]. This leads to indistinguishable performances.
In this work, we instead evaluated several fixed filter shapes. As a first
consequence, we will never be able to find an equivalence between them.
Secondly, such a study has also led to practical progress in terms of both
quality and speed.

Our evaluation can be considered as a solid foundation for designing patch
matching-based extensions of stripe and sector-like filter shapes. This might
be fruitful since the stripe- and sector-based filtering techniques are best
suited for AWGN and clipped-AWGN models, respectively. They outperform
the commonly used disc shape.
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SSD
Data σ λ kmax

L40 1.3 4.0 7
L60 1.4 6.7 5
L80 1.5 7.6 6
L100 2.0 6.0 9

B40 1.3 12.8 2
B60 1.4 10.7 2
B80 1.5 10.4 3
B100 1.9 10.7 3

H40 1.4 3.3 11
H60 1.6 3.7 14
H80 1.8 3.3 26
H100 2.0 3.2 30

P40 1.3 5.0 5
P60 1.4 6.1 6
P80 1.9 4.5 11
P100 2.1 4.8 12

DD
σ λ kmax

1.1 5.6 4
1.3 5.5 6
1.9 3.6 12
2.6 2.6 23

1.1 7.2 2
1.3 7.1 3
1.4 7.6 4
1.7 8.0 4

1.1 4.1 8
1.1 5.6 8
1.3 5.7 9
1.6 4.8 12

1.1 4.5 6
1.3 5.5 6
1.7 4.6 9
2.0 4.2 12

NSD
σ λ kmax

1.1 4.3 9
1.4 3.6 15
1.7 3.3 19
1.9 3.4 21

1.2 8.6 2
1.3 9.9 3
1.4 10.5 4
1.5 9.6 6

1.1 3.0 18
1.2 3.4 22
1.3 4.2 21
1.4 3.5 33

1.2 3.6 11
1.4 3.4 17
1.6 3.4 21
1.7 3.5 25

SD
σ λ kmax

0.6 3.4 7
0.5 3.2 12
0.5 3.2 18
0.3 3.7 19

0.2 6.3 3
0.2 6.3 5
0.3 6.5 7
0.2 6.7 9

0.7 3.0 8
0.6 3.1 13
0.5 2.6 20
0.5 2.7 26

0.6 3.0 9
0.5 3.0 14
0.5 3.0 20
0.3 3.7 20

NSD
Data σ λ kmax

L40 1.1 4.4 8
L60 1.3 3.6 14
L80 1.3 3.9 17
L100 1.2 5.1 16

B40 1.1 9.0 2
B60 1.2 9.0 3
B80 1.1 9.0 5
B100 1.0 9.5 7

H40 1.1 3.0 16
H60 1.2 3.6 17
H80 1.2 4.1 18
H100 1.2 4.3 20

P40 1.1 3.5 11
P60 1.2 3.5 16
P80 1.1 4.7 17
P100 1.1 5.7 15

NSD-M
σ λ kmax

0.8 5.3 7
0.7 5.5 13
0.6 7.8 12
0.6 8.2

0.7 8.5 3
0.5 9.0 6
0.5 11.9 6
0.5 12.9 7

1.1 2.7 18
1.1 3.3 18
0.8 4.6 21
0.6 7.1 16

0.5 4.9 10
0.5 6.2 12
0.5 7.6 13
0.5 10.0 11

SD
σ λ kmax

0.6 3.3 7
0.6 3.2 12
0.6 3.2 17
0.6 3.0 24

0.1 5.8 3
0.5 5.2 5
0.6 4.2 9
0.6 3.7 14

0.7 2.7 9
0.7 3.1 13
0.7 3.3 17
0.6 2.7 26

0.6 2.1 11
0.6 2.3 16
0.6 2.2 25
0.6 2.1 34

Table 7.2: Parameteric values for AWGN on top and clipped noise at bottom.
Abbreviations as in Table 7.1.
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Multi-frame Image Denoising

95



Chapter 8

Multi-frame Extensions of
Patch-based Filters

In Chapters 4-7, we dealt with the single-frame noise elimination scenario.
Therein, we tried to produce a noise-free image from a single raw frame.
BM3D [15, 319] and NLB [14, 290] are among the best performing filters in
this layout. Both of them are non-local patch-based methods which utilise
the similar information available at distant regions in the image. More pre-
cisely, they filter a 3D group of similar patches. BM3D in particular is a
quasi-standard for modern denoising algorithms. It is used as a benchmark
in articles that involve both neural network-based techniques [295] and tra-
ditional approaches [14].

Multi-frame filters [24–26,74,75,339–352], on the other hand, utilise infor-
mation from multiple frames of the same scene to compute the final denoised
image. In this chapter, we concentrate on the fundamental problem of find-
ing general approaches that can optimally extend single-frame patch-based
methods such as NLB and BM3D to the multi-frame scenario.

There already exist two types of extensions [24–26, 347, 348] for BM3D
and NLB. Methods from the first category search for similar 2D patches from
all the available frames. However, they use just one reference frame for filter-
ing purposes, thus making limited use of the available information [347,348].
Extensions from the other category take privilege of having more data in
3D spatio-temporal patches [24–26]. Nevertheless, techniques which utilise
2D patches on multiple reference frames and those which perform separable
spatio-temporal filtering have not been studied. The latter can reduce unde-
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sirable interactions between regions of dissimilar greyvalues. Furthermore, a
careful and systematic evaluation of these extensions is also missing.

Our Goals. The following are our three main objectives:

1. Model an approach that filters 2D patches in all the available frames.

2. Design a technique which employs separable spatio-temporal filtering.

3. Conduct a comprehensive evalutation of these extensions.

Our Contribution. In order to achieve the the first among the above
objectives, we employed the 2D patch similarity approach of [347, 348] but
using every frame as reference. This ensures that we make use of the complete
available information.

Secondly, we introduce two extensions which benefit from separately fil-
tering the different types of data in temporal and spatial dimensions. The
first one performs a simple temporal averaging followed by a single-frame
spatial filtering, while the other reverses this order.

Finally, in order to conduct a systematic and comprehensive evaluation
of all the five extensions, we perform several tasks: We consider both regis-
tered and non-registered data. In the former scenario, we consider AWGN,
Poissonian as well as mixture noise categories. For the latter scenario, we
just evaluate AWGN filters. Here, we also utilise robust optical flow methods
for dealing with inter-frame motion. Such a study is interesting as the utili-
sation of motion compensation was avoided in a state-of-the-art method [26]
for circumventing motion estimation errors. We also pay special attention
to parameter optimisation of the optical flow approaches. Such an analysis
provides valuable additional insights into the importance of well optimised
motion estimation in multi-frame denoising.

Furthermore, we provide the first comprehensive examination of general
strategies how to extend single-frame filters to multi-frame ones. We apply
all our extensions to both BM3D, NLB and our non-linear filtering on fast
patch reorderings (NFPR) approach from Chapter 5. This provides solid
evidence such that we can apply our extensions to many other patch-based
methods as well. Our evaluation also includes very high noise levels. Such
large amplitudes of noise, which are consistenly ignored in the literature, are
very relevant for microscopic and medical imaging applications. For a com-
parative analysis, we include three state-of-the-art extensions [24, 26, 353].
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The neural network-based approach presented in [353,354] is one among the
many learning-based filtering strategies [355,356] adopted nowadays.

Chapter Structure. In Section 8.1, we first review the central ideas behind
the design of NLB and BM3D filters. We then present the five multi-frame
extensions under evaluation along with optical flow methods. In Section 8.2,
we showcase the results of several denoising experiments along with detailed
explanations behind the observed rankings. Finally, in Section 8.3 we con-
clude the chapter with a summary and an outlook.

8.1 Modelling and Theory

8.1.1 Filters for Single-frame Image Datasets

NLB [14,290] and BM3D [15,319] are non-local patch-based denoising meth-
ods which consider similar information from distant regions in the image.
Both single-frame filters are two step approaches. Furthermore, both steps
are split into three sub-steps each, namely grouping, collaborative filtering
and aggregation.

Grouping. In order to exploit the advantage of having more information,
for every noisy reference patch considered, one forms a 3D group of similar
patches using Euclidean distance.

Collaborative Filtering. The term ”collaborative” has a literal meaning
here: Each patch in a group collaborates with the rest of them for simultane-
ous and efficient filtering. In NLB, one uses Bayesian filtering (in both main
steps) to denoise the 3D groups. In BM3D, a hard thresholding (first main
step) and Wiener filtering (second main step) are employed.

Aggregation. In order to derive the final denoised image, one computes
a weighted averaging of the several denoised versions of every pixel.

8.1.2 Multi-frame Extensions of Single-frame Filters

In this section, we describe five multi-frame extensions for the above men-
tioned single-frame filters in detail. For a better comprehension, we arrange
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all five of them in an increasing order of design complexity.

In the multi-frame scenario, there exist slightly different types of data in
the temporal and spatial dimensions. Thus, in order to filter them carefully
the first two extensions employ separable spatio-temporal filtering.

Proposed Extension - Average then Filter (AF). First, we average
all the registered frames. Then we employ a single-frame filter for removing
the remaining noise in the averaged frame.

Proposed Extension - Filter then Average (FA). Here, we first de-
noise every registered frame by using a single-frame filter and then average
the denoised frames.

The above two approaches differ from the methods in [350, 351] in the
following fundamental aspect: Irrespective of the quality of registration, we
utilise a temporal average and spatial filter strategy. This is different from
a temporal average or spatially filter technique in [350,351] that depends on
the registration error.

While the first two extensions FA and AF perform a separable spatio-
temporal filtering, the subsequent three employ combined filtering ideas. Let
us discuss them in more detail now.

Existing Extension - Single Reference Frame Filtering (SF) [347–
349]. Here, a single frame among all available ones is considered as the ref-
erence frame. One selects reference patches from just this frame. For every
reference patch, a group of similar patches is formed using information from
all the frames but not just one.

Proposed Extension - Multiple Reference Frame Filtering (MF).
The fourth extension differs from SF in three different aspects. Firstly, in or-
der to make complete use of the available information we consider all frames
for reference patches. Secondly, we perform an aggregation of denoised pixels
in such a way that after the first main step we have as many denoised frames
as there are initial ones. This paves the way for the final difference: The
above modified aggregation process enables us to consider reference patches
from all frames in the second main step too. We cannot do this in the second
main step using SF because it has considered reference patches from just one
frame initially. We can thus formulate the final denoised image ufinal which
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is obtained from a combination of the registered noisy data f and the initial
denoised image uinitial, as

ufinal(x) =

∑̀∑
P`

wwien
P`

∑
Q∈P(P`)

χQ(x)uwien
Q,P`

(x)∑̀∑
P`

wwien
P`

∑
Q∈P(P`)

χQ(x)
. (8.1)

Here, x denotes the 2D position vector. We represent the set of most similar
patches to the reference patch P` belonging to frame `, using P(P`). For
every patch Q in the set P(P`), we have χQ(x) = 1 if x ∈ Q and 0 otherwise.
The symbol uwien

Q,P`
(x) denotes the estimation of the value at pixel position x,

belonging to the patch Q. We derive this estimation through Wiener filtering
(with coefficients wwien

P`
) a combination of f and uinitial. In similar spirit to

(8.1), we can formulate the NLB aggregation process:

ufinal(x) =

∑̀∑
P`

∑
Q∈P(P`)

χQ(x)ubayes
Q,P`

(x)∑̀∑
P`

∑
Q∈P(P`)

χQ(x)
. (8.2)

Here, the superscript bayes implies Bayesian filtering as detailed in [14,290].
By restricting the total number of frames to one in (8.1) and (8.2), we obtain
the original single-frame BM3D and NLB algorithms. This implies that MF
encompasses the single-frame filters.

While grouping and filtering stages produce noise-free patches, aggrega-
tion computes the final denoised image from them. Employing 3D spatio-
temporal patches gives an advantage of having more information at the patch
denoising steps itself, even before employing the aggregation process. This
exact idea is employed by the final extension.

Existing Extension - Combined Filtering (CF) [24–26]. One fixes 3D
spatio-temporal patches and searches for similar volumes instead of patches.
Then, a 4D filtering technique is employed, which removes noise using all the
considered similar volumes. Such ideas are in accordance with the single-
frame NLB and BM3D filters, where one considers a 2D similarity measure
combined with a 3D denoising technique.

This finishes the brief discussion of all the multi-frame extensions we are
going to deal with in this chapter. Table 8.1 serves as a look up table for these
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Method Characteristics

AF
1. separable spatio-temporal filtering
2. average registered frames and then f ilter

FA
1. separable spatio-temporal filtering
2. f ilter each registered frame and then average

SF
1. combined spatio-temporal filtering
2. considers 2D reference patches from a single frame

MF
1. combined spatio-temporal filtering
2. considers 2D reference patches from multiple frames

CF
1. combined spatio-temporal f iltering
2. considers 3D reference patches across frames

Table 8.1: The main characteristics of the multi-frame extensions.

Input: Noisy non-registered dataset fnr

Main Algorithm:
1. We employ an optical flow technique for obtaining registered data
f from fnr. Options for the optical flow methods include
SOF-1, SOF-2 or SOF-3.

2. We utilise a combination of single-frame denoising filters with their
multi-frame extensions for producing the final denoised output ufinal

using registered data f . Options for the single-frame filters are NLB
or BM3D. They can be combined with extensions AF, FA, SF or MF.

Output: Denoised data ufinal

Table 8.2: A general algorithm of the proposed denoising scheme.

five methods and presents the chief characteristics of each one of them. By
combining the five multi-frame extensions and the two single-frame filters, we
have ten filters in total. As an example, we will abbreviate one of these com-
bined techniques as BM3D-MF, if it is a combination of single-frame BM3D
with extension MF. Due to space constraints, within the experimental tables
that are going to be presented in the upcoming subsections, we sometimes
use shortforms for NLB-MF as NL-MF and BM3D-MF as BM-MF.

8.1.3 Optical Flow Methods

We perform experiments on both perfectly registered and non-registered
datasets. In the latter scenario, we need to first register the images before
applying the above multi-frame extensions. Thus, we have employed three ro-
bust discontinuity preserving optical flow methods [357–359]. These motion
estimation techniques perform better than some classical strategies [360,361].
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In all the three approaches, one minimises a similar energy functional to de-
termine the motion vector w = (w1, w2, 1)> between frames f1 and f2:

E(w) =

∫
Ω

(
Ψ(|f2(x+w)− f1(x)|2)+

γ (Ψ(|∇f2(x+w)−∇f1(x)|2)+

α
(
Ψ(Φ (∇f1(x)) ·

(
|∇w1|2 + |∇w2|2

)) )
dx.

(8.3)

Here, x = (x, y, t)T denotes the spatio-temporal location, Ω is the 2D image
domain and ∇ is the spatio-temporal gradient.

The above energy penalises deviations in both gray values and gradients.
One enables interactions in between neighboring pixels through the smooth-
ness term. The parameters γ and α represent the gradient and smoothness
term weights, respectively.

Moreover, applying Ψ(s2) =
√
s2 + ε2 results in a robust convex energy

functional with ε = 0.001 ensuring strict convexity of Ψ. The smoothness
function Φ(∇f1, λ) with parameter λ specifies the regularisation strategy.
The three optical flow methods that we use in this work differ in the choice
of this particular function. We abbreviate these three techniques as SOF-1,
-2 and -3 (SOF means sub-optimal flow).

In SOF-1, one employs a decreasing scalar function Φ(∇f1, λ) to preserve
image driven flow discontinuities. The second and third optical flow strate-
gies try to avoid blob like artefacts: SOF-2 performs a minimum isotropic
diffusion even when the gradient is very large. In SOF-3, one utilises an au-
tomatic selection strategy for λ. The same numerical procedure is adopted
to compute the solution in all the three methods.

We use the aforementioned optical flow strategies for the first four ex-
tensions. The algorithm in Table 8.2 describes the main ideas behind the
denoising framework of these approaches. The fifth method CF (author im-
plementations available in the form of commonly known V-BM4D [24] and
V-NLB [26]) uses its own motion compensation technique. The differences
in motion estimation approaches should not be an issue as we also perform
experiments on perfectly registered data. This concludes the modelling and
theory part. Now, we move on to the experimental demonstrations.
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Data α γ λ Best Method
G10 15 1.5 0.1 SOF-2
G20 25 1.5 0.1 SOF-2
G40 35 1.5 0.1 SOF-2
G60 35 1.5 0.1 SOF-2
G80 45 2.5 0.1 SOF-2
G100 110 1.0 - SOF-3
G120 95 1.0 - SOF-3

Data α γ
S10 25 1.5
S20 75 2.5
S40 95 1.5
S60 110 0.5
S80 85 0.5
S100 95 0.5
S120 90 0.5

Data α γ
BH10 100 0.5
BH20 130 0.5
BH40 135 1.0
BH60 135 0.5
BH80 130 1.5
BH100 100 1.5
BH120 90 1.5

Table 8.3: Optical flow parameter values used for different datasets. G stands for Grove2,
S for Shoe, and BH for Bird House. G80 denotes Grove2 dataset with noise standard
deviation σG = 80. Left: The best among SOF-1, SOF-2 and SOF-3 motion compensation
methods for Grove2 dataset. We have considered the tenth frame as the reference frame
since ground truth flow information was available between frames 10 and 11. Middle:
Shoe dataset with SOF-3 approach. Right: Bird House dataset with SOF-3 technique.
We have utilised the fifth frame as the reference frame for Shoe and Bird House datasets
and then employed frames 4-6 for optimizing the optical flow parameters. Also, we have
used BM3D-MF and BM3D-FA as denoising filters while optimizing SOF parameters for
these two datasets, respectively.

8.2 Experiments and Discussion

8.2.1 Datasets

For creating perfectly registered data, we have considered multiple AWGN re-
alisations of the classical Lena, House, Peppers and Bridge images with four-
teen datasets each. They are obtained by a combination of σG = 10, 20, 40,
60, 80, 100, 120 with five- and ten-frame datasets. In a similar spirit, we have
also created non-registered data by corrupting the Grove2 [362], Shoe and
Bird House [363] images with AWGN.

8.2.2 Parameter Selection

Optical Flow Parameters. For the Grove2 dataset, we have optimised
the optical flow parameters with respect to the ground truth flow for all
three methods. We then choose the best method to register every dataset.
In Shoe and Bird House datasets we have optimised the SOF-3 parameters
with respect to the final denoised image directly as the ground truth flow
was not available. Table 8.3 shows more details.

Denoising Parameters. Various studies [14, 15, 290, 319, 364] have con-
tributed in making the single-frame filters BM3D and NLB non-parametric,
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while retaining the quality of the denoised images as much as possible. In
a similar spirit to the above works, in this chapter we use better versions of
two extensions AF and MF.

Firstly, at the time of application of the filter in the first extension AF,
the noise distribution has already changed due to temporal averaging. Since
we are using an AWGN model, we know that the standard deviation of noise
is reduced by a factor

√
L for a dataset with L frames. We can improve the

performance of type-AF extensions if we select the filter parameters corre-
sponding to the new standard deviation.

The second improvement is to optimise the number of patches in a 3D
group. The threshold parameter on Euclidean distance controls the total
number of patches one employs for filtering purposes. Over several noise
amplitude levels, our experience suggests that the gain in quality due to
the presence of this parameter is relatively lot less when compared to the
deterioration because of it. Hence, for simplicity reasons we refrain from
using the threshold parameter in any of the first four BM3D extensions.

Moreover, in the multi-frame scenario we have more similar patches, in
contrast to the single-frame layout. We thus check in the upcoming sections,
whether we can improve the performance of BM3D-MF by doubling the
number of patches in a 3D group. We label this particular parametric choice
as BM3D-MFO, where O stands for an optimised version.

In case of the denoised results for perfectly registered noisy data using SF
and CF techniques, we have always presented the best peak signal to noise
ratio (PSNR) value among all frames. This ensures a fair comparison with
the remaining three extensions.

For experiments on non-registered datasets, we have calculated the PSNR
value by leaving out a border of fifty pixels on all sides of the reference frame
at which different frames were registered. We do this in order to mitigate the
ill-effects due to unavailable information at the borders of registered images.
This also makes sense for several multi-frame imaging applications where we
capture the region of interest in the centre of the frame.

8.2.3 Perfectly Registered Datasets

Tables 8.4 and 8.5 showcase the PSNR values of denoised images in the
AWGN scenario. Figure 8.1 displays the corresponding visual results, after
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Data NL-AF NL-FA NL-SF NL-MF NL-CF BM-AF BM-FA BM-SF BM-MF BM-CF
B10 36.54 35.00 33.22 36.11 35.75 36.53 34.16 32.54 34.91 35.95
B20 31.83 29.79 28.31 30.55 31.01 31.88 28.94 28.20 29.79 31.04
B40 27.92 25.87 24.84 26.17 26.98 27.90 25.65 24.89 26.21 26.50
B60 26.04 23.98 23.11 23.86 25.07 25.99 24.27 23.50 24.73 24.50
B80 24.87 22.86 22.24 22.82 23.69 24.83 23.51 22.75 23.88 23.45
B100 24.00 22.34 21.76 22.35 22.87 24.08 22.93 22.17 23.25 22.75
B120 23.30 21.99 21.29 21.98 22.24 23.48 22.49 21.69 22.75 22.20

P10 38.64 37.28 36.04 37.23 37.81 38.72 36.90 36.04 37.11 37.47
P20 35.80 35.02 33.77 35.09 35.29 35.88 34.87 33.97 35.24 34.81
P40 33.23 32.49 31.10 32.66 33.00 33.54 32.61 31.43 33.09 32.16
P60 31.99 30.75 29.19 30.88 31.28 32.10 31.13 29.79 31.63 30.41
P80 30.71 29.25 28.00 29.51 29.33 30.84 30.34 28.53 30.41 29.12
P100 29.76 28.32 26.97 28.65 28.28 29.86 29.00 27.52 29.43 28.07
P120 28.84 27.60 26.04 27.78 27.37 28.99 28.14 26.69 28.61 27.16

L10 38.84 37.80 36.38 37.89 37.96 38.87 37.54 36.41 37.83 37.87
L20 35.87 34.91 33.43 34.93 35.38 36.00 34.75 33.75 35.27 34.83
L40 32.95 31.85 30.44 32.07 32.67 33.23 31.90 30.71 32.53 31.60
L60 31.38 30.00 28.47 30.03 30.71 31.56 30.30 29.06 30.93 29.65
L80 30.11 28.41 27.22 28.35 28.78 30.15 29.04 27.83 29.59 28.28
L100 29.13 27.34 26.17 27.50 27.75 29.24 28.14 26.81 28.66 27.21
L120 28.24 26.77 25.41 26.96 26.87 28.33 27.38 26.08 27.82 26.33

H10 39.92 38.13 36.60 37.78 39.28 40.12 38.15 37.23 38.75 38.79
H20 36.36 35.20 34.02 35.32 36.33 36.83 35.30 34.45 35.83 35.17
H40 33.22 32.58 31.22 33.23 33.46 33.92 32.77 31.64 33.42 32.06
H60 31.97 30.37 28.81 31.30 31.51 32.49 30.96 29.77 31.77 29.94
H80 30.52 28.26 27.23 29.20 29.49 30.96 29.41 28.30 30.16 28.38
H100 29.38 26.79 26.03 27.77 28.38 29.85 28.43 27.20 29.07 27.14
H120 28.46 25.66 25.08 26.71 27.35 29.16 27.47 26.29 28.28 26.10

Table 8.4: PSNR values after denoising five-frame datasets with various methods.
Abbreviations: B80 - Bridge with σG = 80, P - Peppers, L - Lena, H - Bridge.
Sizes: H - 256×256, rest - 512×512.
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Data NL-AF NL-FA NL-SF NL-MF NL-CF BM-AF BM-FA BM-SF BM-MF BM-CF
B10 39.08 35.84 33.6700 38.40 38.41 39.06 34.73 33.05 37.34 37.71
B20 34.11 30.19 28.51 32.13 33.32 34.13 29.19 28.76 31.72 32.27
B40 29.83 26.11 24.90 26.95 28.55 29.80 25.83 25.03 27.15 26.96
B60 27.63 24.14 23.13 24.07 26.07 27.61 24.45 23.58 25.46 24.75
B80 26.31 23.00 22.31 23.01 24.38 26.24 23.69 22.81 24.49 23.69
B100 25.42 22.50 21.82 22.54 23.37 25.34 23.14 22.26 23.85 23.02
B120 24.64 22.17 21.39 22.18 22.60 24.63 22.70 21.79 23.29 22.51

P10 40.50 37.58 36.14 37.71 39.16 40.64 37.12 36.26 37.96 38.03
P20 37.12 35.36 33.89 35.61 36.13 37.16 35.14 34.17 35.94 35.20
P40 34.69 32.87 31.23 33.25 33.75 34.72 33.00 31.57 33.93 32.59
P60 33.06 31.14 29.29 31.48 32.03 33.40 31.55 29.93 32.52 30.87
P80 32.12 29.63 28.18 30.02 30.18 32.26 30.47 28.70 31.36 29.62
P100 31.32 28.83 27.18 29.23 29.10 31.38 29.64 27.74 30.46 28.60
P120 30.41 28.19 26.30 28.55 28.13 30.52 28.82 27.01 29.69 27.76

L10 40.53 38.18 36.50 38.62 39.26 40.59 37.86 36.61 38.81 38.59
L20 37.32 35.30 33.55 35.54 36.45 37.38 35.09 33.96 36.27 35.42
L40 34.54 32.21 30.52 32.71 33.70 34.64 32.26 30.85 33.52 32.12
L60 32.66 30.39 28.52 30.52 31.70 32.99 30.68 29.20 31.87 30.20
L80 31.62 28.73 27.35 28.76 29.73 31.72 29.53 28.01 30.62 28.90
L100 30.69 27.79 26.38 27.98 28.59 30.72 28.65 27.13 29.63 27.89
L120 29.81 27.26 25.68 27.53 27.64 29.87 27.95 26.35 28.84 27.05

H10 41.72 38.41 36.70 38.12 40.59 41.89 38.38 37.42 39.82 39.53
H20 38.17 35.53 34.12 35.79 37.32 38.48 35.56 34.61 36.66 35.63
H40 34.96 33.02 31.32 34.03 34.32 35.41 33.16 31.91 34.37 32.57
H60 33.14 30.86 29.00 32.18 32.60 33.87 31.45 29.99 32.77 30.48
H80 32.14 28.79 27.65 30.08 30.61 32.62 30.02 28.64 31.31 28.89
H100 31.20 27.28 26.28 28.74 29.39 31.57 29.05 27.55 30.14 27.75
H120 30.35 26.19 25.32 27.99 28.32 30.85 28.17 26.60 29.37 26.76

Table 8.5: PSNR values after denoising ten-frame datasets with various meth-
ods. Abbreviations as in Table 8.4.

106



Chapter 8

Noisy BM3D-MF NLB-AF BM3D-AF Original

Figure 8.1: Denoised ten-frame datasets using the three best filters (σG = 120).
Top to Bottom: Zoom into the Bridge, Peppers, Lena, and House images, re-
spectively. The AF-type filters produce better results visually.

we have applied all ten methods. It is clear from these results that exten-
sions of type-AF outperform all other techniques. The two best performing
extensions in these experiments are MF and AF. We test these inter-frame
connectivity strategies in Possonian and mixture scenarios as well. Here, we
evaluate NLB, BM3D as well as our novel NFPR filters. Results from Table
8.6 show that irrespective of the kind of noise model and the type of single-
frame filter under consideration, type-AF extensions give the best results.
Now, let us understand the reasons behind this occurance, carefully.

In the category-FA extensions, we directly apply the single-frame filters
on every frame. This is a sub-optimal solution because we do not have
enough signal on each of the frames. Techniques belonging to type-SF do
not make use of the complete available information as they just consider a
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POISSONIAN

Data NFPR-AF BM3D-AF BM3D-MF
L0.9 25.37 25.16 24.52
L0.7 24.55 24.42 23.61
L0.5 22.63 22.30 21.84
L0.1 20.62 19.98 19.42

B0.9 21.25 21.19 20.76
B0.7 21.01 20.90 20.36
B0.5 19.87 19.76 19.45
B0.1 18.43 18.22 17.80

H0.9 24.61 24.27 23.45
H0.7 23.74 23.45 22.30
H0.5 21.23 20.87 20.20
H0.1 19.23 18.64 18.18

P0.9 25.48 25.38 24.59
P0.7 24.86 24.75 23.84
P0.5 22.75 22.66 21.98
P0.1 20.45 20.23 19.57

MIXTURE

Data NFPR-AF BM3D-AF BM3D-MF
L0.9 25.17 24.86 24.24
L0.7 24.53 24.18 23.40
L0.5 22.70 22.40 22.01
L0.1 20.75 20.21 19.77

B0.9 21.28 21.14 20.74
B0.7 20.93 20.77 20.28
B0.5 19.84 19.70 19.47
B0.1 18.55 18.30 18.06

H0.9 24.57 24.26 23.42
H0.7 23.89 23.55 22.37
H0.5 21.24 20.74 20.21
H0.1 19.27 18.46 18.06

P0.9 25.36 25.19 24.40
P0.7 24.83 24.57 23.64
P0.5 22.66 22.49 21.90
P0.1 20.70 20.45 20.04

Table 8.6: PSNR values for different noise types. Each dataset contains three noisy
realisations of the original image. L0.5 in the case of Poissonian noise stands for Lena
image with noise peak χ = 0.5. In the case of mixture noise, we have added AWGN with
σG = (0.10*χ*255), to the Poissonian component. Abbreviations are as in Table 8.4.

single reference frame.

In the MF and CF filters, we avoid the disadvantages of both FA and
SF. However, they fall behind type-AF methods for two reasons: Firstly, we
separate out temporal and spatial filtering in category-AF techniques. This
is advantageous since we have noisy versions of the same original gray value
in the temporal dimension for perfectly registered images. In the spatial
dimensions we have noisy versions of approximately equal gray values in
general. This outperforms simultaneous non-linear filtering of the MF and
CF techniques, where we combine the information in all dimensions at once.
Such a strategy proves to be inferior even though we use a non-linear filtering
in the temporal dimension when compared to the linear temporal averaging
of category-AF filters.

Interestingly, a similar result was observed in a single-frame scenario in
the work of Ram et al. [18]. By adopting a simple linear filtering on a
smoothly reordered set of pixels they could produce results almost equivalent
to the sophisticated BM3D filtering. The reason behind such observations is
that linear averaging of different noisy versions of the same pixel intensity
does not create artefacts like a non-linear combination of dissimilar inten-
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sities does. This is also the reason why averaging is preferred in electron
microscopy (Chapter 11 of [51]). Moreover, the linear nature of temporal
averaging helps in computing the new standard deviation of noise after tem-
poral filtering through theoretical knowledge. The second reason why MF
and CF types fall behind category-AF is the following: The latter extension
computes the initial grouping on the less noisy averaged image. In all the
other four categories we do this on the highly noisy initial images, which
makes the grouping error-prone.

The overall better performance of type-AF filters does not mean we can
immediately reject the next best MF and CF categories as we assumed perfect
registration. We examine the non-registered layout in the upcoming section.

Furthermore, BM3D-AF is superior to NLB-AF (from Tables 8.4-8.5 and
Figure 8.1) because BM3D is a better single-frame denoising method than
NLB for gray value images. We infer that the usage of the discrete cosine
transform and the bi-orthogonal spline wavelet transform in the two main
steps of BM3D, respectively, leads to superior anisotropic modelling.

8.2.4 Non-registered Datasets

Tables 8.7, 8.8 and 8.9 display the PSNR values of the denoised images while
Figure 8.2 showcases the visual results. It can be clearly seen that NLB-AF
and BM3D-AF outperform other approaches several times. However, for low
amplitude noise situations, NLB-CF is competitive with the category-AF
extensions and even superior to them at certain occasions.

Let us explore the above results a bit further. For all the three datasets,
we have performed experiments on two kinds of data: One with less number
of frames and the other with more of them. In the latter case it is highly
probable that there exists large motion between the reference frame and oth-
ers which can lead to high errors in motion estimation. Hence, if a particular
approach is able to produce better quality results for a high number of frames,
this indicates that it is robust to motion estimation errors.

From Tables 8.7, 8.8 and 8.9, we can observe that CF is the only tech-
nique which does not even have a single instance where the PSNR value has
decreased when more number of frames have been utilised. AF, MF, FA and
category-SF filters could produce enough quality improvement for perfectly
registered data. However, in the present non-registered layout we can find at
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Data NL-AF NL-FA NL-SF NL-MF NL-CF BM-AF BM-FA BM-SF BM-MF BM-CF
G10 33.10 31.80 32.23 32.16 34.14 32.89 31.50 31.93 31.80 33.22
G20 30.24 28.62 28.27 28.75 30.58 30.09 28.20 28.14 28.64 29.74
G40 27.26 25.02 24.37 24.72 27.06 27.03 25.52 25.12 25.82 26.15
G60 25.32 23.75 23.20 23.60 25.22 25.32 24.36 23.82 24.54 24.42
G80 24.05 23.07 22.66 23.06 23.93 24.39 23.68 23.17 23.85 23.45
G100 23.21 22.65 22.15 22.65 23.17 23.60 23.13 22.52 23.27 22.79
G120 22.76 22.41 21.81 22.41 22.58 23.10 22.76 22.15 22.87 22.28

G10 33.21 31.39 32.41 32.40 35.46 33.04 31.11 32.22 32.17 33.29
G20 30.83 28.44 28.40 29.27 31.90 30.74 28.04 28.60 29.45 29.88
G40 27.97 24.85 24.39 24.77 28.23 27.83 25.46 25.24 26.31 26.22
G60 26.18 23.61 23.22 23.57 26.10 26.04 24.34 23.87 24.93 24.48
G80 24.97 23.01 22.64 23.07 24.61 24.97 23.70 23.20 24.13 23.51
G100 23.99 22.73 22.19 22.76 23.71 24.12 23.24 22.56 23.57 22.88
G120 23.25 22.51 21.87 22.51 22.76 23.48 22.89 22.18 23.12 22.40

Table 8.7: PSNR values of denoised Grove2 images after using a combination of denoising methods and
optical flow. Top: Four-frame datasets (frames 9-12). Bottom: Eight-frame datasets (frames 7-14).
Frame size: 640 × 480.

Data NL-AF NL-FA NL-SF NL-MF NL-CF BM-AF BM-FA BM-SF BM-MF BM-MFO BM-CF
S10 37.49 36.34 35.94 36.38 37.89 37.67 36.84 36.51 36.98 36.79 37.38
S20 34.63 33.32 32.63 33.32 35.02 35.02 34.10 33.39 34.35 34.16 34.28
S40 31.71 30.17 29.51 30.27 32.08 32.20 31.37 30.46 31.74 31.63 31.16
S60 30.39 28.58 27.77 28.77 30.26 30.90 29.84 28.80 30.25 30.18 29.34
S80 29.07 27.46 26.64 27.66 28.52 29.65 28.71 27.59 29.05 29.06 28.01
S100 28.27 26.80 25.88 27.08 27.52 28.88 27.88 26.65 28.09 28.26 26.95
S120 27.61 26.35 25.26 26.64 26.70 28.14 27.18 25.90 27.35 27.51 26.08

S10 37.55 35.95 35.90 36.28 38.09 37.66 36.48 36.56 37.03 36.83 37.42
S20 35.19 33.22 32.67 33.39 35.26 35.45 34.02 33.51 34.74 34.58 34.44
S40 32.47 30.19 29.61 30.45 32.38 32.87 31.56 30.63 32.12 32.29 31.49
S60 31.28 28.65 27.84 29.05 30.61 31.79 30.10 28.97 30.93 30.97 29.77
S80 30.13 27.56 26.75 28.02 29.01 30.62 29.06 27.75 29.78 29.90 28.53
S100 29.34 27.01 25.98 27.49 28.02 29.93 28.27 26.85 28.87 29.11 27.57
S120 28.68 26.66 25.37 27.10 27.19 29.27 27.65 26.04 28.01 28.35 26.77

Table 8.8: PSNR values of denoised Shoe images after using a combination of denoising methods and
optical flow. Top: Five-frame datasets (frames 3-7). Bottom: Ten-frame datasets (frames 1-10). Frame
size: 1280 × 720. Abbreviation: BM-MFO uses twice the number of patches as in BM-MF.

Data NL-AF NL-FA NL-SF NL-MF NL-CF BM-AF BM-FA BM-SF BM-MF BM-CF
BH10 36.63 35.00 34.86 35.61 35.03 36.63 34.99 34.84 35.37 35.07
BH20 33.46 31.21 30.67 31.73 31.57 33.55 31.19 30.88 31.84 31.60
BH40 30.07 27.02 26.43 27.11 28.22 30.11 27.84 27.36 28.48 27.79
BH60 28.15 25.16 24.52 24.87 26.52 28.26 26.36 25.71 26.80 25.95
BH80 26.71 24.50 24.05 24.38 25.34 26.95 25.53 24.88 25.89 24.90
BH100 25.73 24.18 23.73 24.13 24.62 26.03 24.97 24.29 25.24 24.19
BH120 24.96 23.96 23.43 23.94 24.08 25.27 24.55 23.82 24.76 23.66

BH10 36.13 34.36 34.90 35.27 35.62 36.12 34.32 34.94 35.23 35.19
BH20 33.79 30.94 30.74 31.97 31.97 33.84 30.81 31.25 32.39 33.29
BH40 30.89 26.88 26.54 27.42 28.47 31.00 27.72 27.60 29.16 27.99
BH60 29.18 25.06 24.55 24.92 26.66 29.24 26.37 25.79 27.33 26.11
BH80 27.80 24.50 24.11 24.44 25.49 27.91 25.40 24.99 26.42 25.05
BH100 26.71 24.28 23.80 24.25 24.75 26.84 24.70 24.39 25.76 24.39
BH120 25.86 24.12 23.53 24.08 24.19 25.91 24.66 23.96 25.23 23.91

Table 8.9: PSNR values of denoised Bird House images after using a combination of denoising methods
and optical flow. Top: Five-frame datasets (frames 3-7). Bottom: Ten-frame datasets (frames 1-10).
Frame size: 1280 × 720.
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Noisy NLB-CF NLB-AF BM3D-AF Original

Noisy BM3D-MF NLB-AF BM3D-AF Original

Noisy BM3D-MF NLB-AF BM3D-AF Original

Figure 8.2: Top to Bottom: Different regions of Grove2, Shoe and Bird House datasets,
respectively, using the three best extensions (σG = 80). We can see that the AF-type filters
produce visually pleasing results and are also superior in preserving texture information.
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Noisy BM3D-MF BM3D-MFO Original

Figure 8.3: Different regions of Bird House dataset (σG = 80). One can observe that
by using twice the number of patches than BM3D-MF, BM3D-MFO gets rid of the dark
square shaped patches.

least one instance for each of these extensions where the quality has deterio-
rated with an increase in number of frames. The only explanation behind this
is the robustness of category-CF extensions with respect to motion. How-
ever, at regions where the motion registration is correct, the performance
of AF-type techniques is so high that they can outperform category-CF ap-
proaches. Nevertheless, optical flow methods will continue to improve in the
future. Thus, the philosophy of our proposed category-AF extensions will
benefit from these advancements.

The BM3D-MFO variant employs twice the number of patches than
BM3D-MF. The increase in PSNR values from BM3D-MF to BM3D-MFO
in Table 8.8 for high noise amplitudes and visual results in Figure 8.3 indi-
cate the following: The black patches in darker regions of the image can be
eliminated using BM3D-MFO. However, we must use the above strategy of
increasing the number of patches only if we encounter black patches. Having
too many of them in a 3D group gives rise to an undesirable blurring.

We can draw two conclusions for non-registered datasets: Optical flow
methods are capable of helping type-AF filters generate superior results.
Secondly, separable spatio-temporal filtering is very productive.

In recent years, learning-based denoising models have gained a lot of at-
tention. In order to finish a comprehensive evaluation of our proposed tech-
nique, we compare its performance with a state-of-the-art neural network-
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Data NL-AF BM-AF VNLNET
B10 39.08 39.06 38.35
B20 34.11 34.13 33.36
B40 29.83 29.80 29.00

P10 40.50 40.64 38.64
P20 37.12 37.16 35.88
P40 34.69 34.72 33.30

L10 40.53 40.59 39.36
L20 37.32 37.38 36.38
L40 34.54 34.64 33.25

H10 41.72 41.89 40.50
H20 38.17 38.48 36.76
H40 34.96 35.41 34.01

Data NL-AF BM-AF VNLNET
G10 33.21 33.04 34.64
G20 30.83 30.74 31.02
G40 27.97 27.83 27.73

S10 37.55 37.66 38.39
S20 34.63 35.45 35.36
S40 31.71 32.87 32.37

BH10 36.13 36.12 37.10
BH20 33.79 33.84 33.78
BH40 30.89 31.00 30.14

Table 8.10: PSNRs after denoising 10-frame datasets with various methods. Left: Per-
fectly registered datasets. Right: Non-registered layout. Abbreviations are as in Table
8.4. Moreover, G stands for Grove2, S for Shoe, and BH for Bird House.

based filter - video non-local network (VNLNET) [353,354]. Table 8.10 shows
the PSNR values of this evaluation. The results show that our strategy out-
performs VNLNET in the perfectly registered scenario and is competitive
with it in the non-registered layout.

All the above results show that type-AF filters are among the best per-
forming methods irrespective of whether there is any motion or not in the
image dataset, what criteria have been used to optimise the optical flow,
and what kind of optical flow technique has been employed. In the future,
type-AF filters can be designed with occlusion handling [352], deflickering,
sharpening [24], better optical flow and denoising strategies.

The AF-type frameworks are the fastest among all extensions as they
employ separable spatio-temporal filtering. Since temporal averaging can be
performed in real time, their net complexity is just a combination of the
optical flow method and the 2D single-frame filter employed on the tempo-
rally averaged frame. All the experiments in this chapter were performed
using a CPU (Intel(R) Core(TM) i7-6700 CPU @3.4 GHz using C++ and
OpenMP) implementation. We also have a GPU (NVIDIA GeForce GTX
1070 graphics card using ANSI C and CUDA) version of BM3D-MF. We
have already shown that BM3D-MF encompasses the original single-frame
BM3D algorithm mathematically. Thus, the same GPU implementation can
also be employed for BM3D-AF. With such an approach, we have observed
that BM3D-AF is 7.25 times faster than BM3D-MF for a 4×640×480 sized
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dataset. It consumes just 1.82 seconds for the filtering process after motion
compensation. Also, the CPU implemetation of BM3D-AF is over 50 times
faster than NLB-CF, which is a current state-of-the-art technique.

8.3 Conclusions

We have optimised the usage of NLB, BM3D and NFPR filters for the multi-
frame scenario. We can conclude from the experiments that our proposed
following sequential process gives the best results in most cases: They reg-
ister the images with robust optical flow methods, temporally average the
registered noisy images, and then apply the single-frame filters. Such an
observation has surprisingly not been recognised for many years. This re-
affirms the fact that sometimes simpler solutions are the most powerful ones.
They can also be competitive with sophisticated neural network architecu-
tures. Furthermore, we achieve a significant improvement at the cost of zero
additional parameters and far less computational time. Our technique pre-
serves a large amount of detail in high amplitude noise scenarios. It is also
effective for all the three commonly considered synthetic noise models. Thus,
the category-AF extensions in combination with robust optical flow methods
can be employed in practice for many patch-based multi-frame applications.

Manuscript details of research content from this Chapter:

• K. Bodduna and J. Weickert. Enhancing patch-based methods with inter-frame
connectivity for denoising multi-frame images. In Proc. IEEE International Con-
ference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019, pp. 2414-2418.

• K. Bodduna and J. Weickert. Poisson Noise Removal Using Multi-Frame 3D Block
Matching. In Proc. 8th IEEE European Workshop on Visual Information Process-
ing (EUVIP), Rome, Italy, Oct. 2019, pp. 58-63.

• K. Bodduna and J. Weickert. Removing Multi-frame Gaussian Noise by Combin-
ing Patch-based Filters with Optical Flow. Journal of Electronic Imaging, 30(3):
033031, June 2021.
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Multi-frame Super-resolution
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Evaluating Super-resolution
Observational Models
and Regularisers

Generating high resolution (HR) images is one of the main objectives of
photography. These images show more details of the scene which is cru-
cial for many applications such as satellite [365], aerial [366], medical [367],
mosaic [368], infrared [369], facial [370], text [367], compressed video recov-
ery [371], number plate [372], and fingerprint [373] imaging. Instead of opting
for expensive high precision optics, we can enhance the resolution in these
images through usage of mathematical techniques. Super-resolution (SR)
is one such technique designed to overcome the resolution limits of cameras.
Generating a high resolution (HR) image from one single low resolution (LR)
image is referred to as single-frame super-resolution [374–376]. In this work,
we concentrate on multi-frame super-resolution, where information from mul-
tiple LR images is fused into a single HR image [375,377–391].

In bio-medical and bio-physical applications we encounter images that
possess a significant amount of noise. Multi-frame super-resolution in the
presence of noise is thus practically relevant and also a very challenging
research field. Algorithms that are designed to solve this problem compute
derivative information on noisy data which showcases the ill-posed nature of
the problem. In view of these algorithmic challenges, it is not surprising that
very little efforts have been put into obtaining high resolution images from
noisy low resolution data.
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Deep learning-based methods are less suitable for bio-physical applica-
tions like electron microscopic imaging due to three main reasons: Firstly,
there is very little ground truth data available. Secondly, the raw noise type
is not well understood, unlike normal cameras. Finally, this imaging pipeline
employs a huge amount of steps to obtain the final structure of the specimen
under observation. After each one of these steps, the noise type changes.
This makes deep-learning models that are trained for a particular kind of
noise, sub-optimal.

In the present chapter we specifically aim at reconstructing a HR image
from its LR versions. We consider both noise free LR images as well as
those which have been corrupted by clipped-additive white Gaussian noise
(AWGN).

Formalisation of the Problem. For multi-frame super-resolution, we want
to find a HR image u of resolution NH = H1 × H2 from N low resolution
images {fi}Ni=1 of resolution NL = L1 × L2. The low resolution images are
assumed to be degraded versions of the real world HR scene. The seminal
work on multi-frame super-resolution goes back to Tsai et al. [392]. The
widely followed [382, 393–405] formulation of the relation between the high
resolution scene and its LR realisations is [27]

fi = DBWiu+ ei. (9.1)

In this observational model, we express the motion of the objects in the
image using Wi (size: NH ×NH). The operator B (size: NH ×NH) denotes
the blur due to the point spread function of the camera. We represent the
downsampling of the HR scene by the camera detector system using D (size:
NL×NH). The vector ei depicts the noise (error) acquired due to the imaging
system. The operators B and D do not have an index i as we assume the
same camera conditions for all images.

The standard model (9.1), however, has a disadvantage: The operator
Wi acts on the high-resolution scene u. Hence, the model assumes that we
have motion information at the high-resolution scale. In practice, we just
have the downsampled and blurred images fi at our disposal. Motion at
high-resolution must be approximated by upsampling the one computed on
a lower resolution. Thus, the following question arises: Can one improve
the practical performance of the SR approach by permuting the order of the
operators? This is the first question that we address in this chapter.
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Moreover, there is a second problem: For super-resolution of noisy data,
the ideal observational model in (9.1) should be stabilised with a regulariser.
In most cases, this is done by embedding it into the following quadratic
energy minimisation framework:

E(u) =
1

2

N∑
i=1

|DBWiu− fi|2 +
1

2
αSR|Au|2. (9.2)

Here, A is a discrete approximation of the continuous gradient operator, αSR

is the regularisation constant, and | · | denotes the Euclidean norm. The first
term is the data term that encapsulates the observational model. The second
one serves as smoothness term which eliminates noise. Minimising (9.2) by
setting its gradient to zero gives

N∑
i=1

W>
i B

>D>(DBWiu− fi)− αSRAHDu = 0, (9.3)

where AHD = A>A is the discrete approximation of the continuous Lapla-
cian operator. In this chapter, we use a Gaussian blur kernel with standard
deviation σSR, such thatB> equalsB. We denote the upsampling and down-
sampling matrices by D> and D, respectively. The operator Wi represents
forward warping, whileW>

i encodes backward registration. The explicit gra-
dient descent scheme with parameters τ (the time step size) and kmax (the
number of iterations) to solve Equation (9.3) is given by

uk+1 = uk + τ
(
αSRAHDu

k −
N∑
i=1

W>
i B

>D>(DBWiu
k − fi)

)
. (9.4)

In this evolution equation, AHD acts as the denoiser. However, such a noise
elimination scheme uses a simple homogeneous diffusion process that also
blurs important structures. As far as the usage of diffusion-based regularis-
ers for super-resolution is concerned, only a few papers with simplistic models
are available. Thus, it is highly desirable to introduce more advanced struc-
ture preserving regularisers. This is our second challenge.

Our Goal. Irrespective of whether the LR images are corrupted with noise
or not, we want to find the order of operators in the observational model
which gives least error. Moreover, we also want to evaluate the usage of

118



Chapter 9

advanced structure preserving regularisers for effectively dealing with noise.

Our contribution. SR observational models that deviate from the imaging
physics are mathematically still plausible. Variational techniques are known
for the flexibility they provide while modelling various problems. Thus, to
address the first challenge in this chapter, we exploit this liberty to evaluate
six permutations arising from three operators in the standard observational
model. Very few works [396,406,407] have focused their research in this par-
ticular direction. In contrast to these works, we complete an evaluation of all
possible permutations of the standard model. Moreover, our experiments are
not restricted to a specific type of motion. We also employ a better motion
compensation technique than those utilised in these works. Such a compre-
hensive evaluation also enables us to make advancements from an algorithmic
complexity viewpoint.

The second challenge in this chapter is to incorporate structure preserving
regularisers. We start with replacing the homogeneous diffusion operator by
the classical model of edge-enhancing anisotropic diffusion [132]. Although
this model is around since a long time, its performance for super-resolution
has not been examined so far. Moreover, we also also make use of the sector
diffusion (SD) model of Chapter 6, for superior structure preservation pur-
poses. We deliberately avoid popular denoising methods such as 3D block
matching [15] and non-local Bayes [14]: Most of these techniques rely heavily
on a correct noise model, which renders them inferior for clipped noise, in
particular with large amplitudes.

Chapter structure. The outline of this chapter is as follows: We pro-
pose various SR observational models in Section 9.1. Here, we also review
an optical flow method as well as the EED- and SD-based SR reconstruction
schemes. The SR experiments on noise-free and noisy images are presented
in Sections 9.2 and 9.3, respectively. We conclude with a summary about
multi-frame SR reconstruction as well as an outlook on future work, in Sec-
tion 9.4.

9.1 Modelling and Theory

In this section, we first review the various possible permutations of the super-
resolution observational model in Equation (9.1). Afterwards, we review a
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Model Equation
M1 DBWiu+ ei = fi

M2 DWiBu+ ei = fi

M3 BDWiu+ ei = fi

M4 WiDBu+ ei = fi

M5 BWiDu+ ei = fi

M6 WiBDu+ ei = fi

M2.1 Bu+ ei = W>
i D

>fi

Table 9.1: The seven SR observational models.

classical optical flow method that has been employed for motion compensa-
tion purposes. This is followed by introducing the EED- and SD-based SR
reconstruction schemes.

9.1.1 Super-resolution Observational Models

Table 9.1 shows the various permutations of the original observational model
M1. While models M2-M6 depict the five other possible permutations, M2.1
represents a technique that is derived from M2. The motivation behind the
modelling of M1-M6 is quality reasons. M2.1, on the other hand, is designed
to exploit the precomputable nature of the term on the right hand side of
the corresponding equation. Such a design is faster than any of the other
models.

9.1.2 Optical Flow

The warping matrix in Equation 9.1 represents the displacements that the
objects in the HR scene have undergone before being captured as a LR image
by the camera. We make use of a simplified version of the popular optical
flow method by Brox et al. [360] to estimate this matrix. In particular, we
omit gradient constancy and just consider grey value constancy. By using a
theory of multi-scale warping, this method has the ability of handling large
displacements. Also, it does not assume a particular type of motion and hence
it is a very good fit for estimating the warping matrix. We consider one of
the LR images to be the reference one. The warping matrix is calculated
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for every LR image with respect to this reference image. In the following we
briefly sketch the main ideas behind the employed optical flow method.

Let x := (x, y, t)T denote the position vector and w := (w1, w2, 1)T the
unknown displacement vector field. Penalising the deviations from the grey
value constancy and enabling interaction between pixels can be modelled by
the following continuous energy functional:

E(w1, w2) =

∫
Ω

(
Ψ(|f(x+w)−f(x)|2+αOF(Ψ(|∇w1|2+|∇w2|2)

)
dx, (9.5)

where Ω ⊂ R3 is the image domain, f : Ω → R denotes the image sequence
and ∇ represents a spatio-temporal gradient. The function Ψ(s2) =

√
s2 + ε2

mitigates the effects of outliers in a quadratic energy. A small positive con-
stant ε ensures that the energy functional is strictly convex as well as differ-
entiable. Moreover, αOF is the regularisation parameter. The goal is to find
a w which minimises the above energy functional. The multi-scale warping
approach is integrated in the Euler-Lagrange equations of the above energy
functional. More specific details about the parameters and the optical flow
method itself can be found in the paper by Brox et al. [360].

For best HR reconstruction results, one could use more complex optical
flow models, anisotropic blurring kernels, robust data terms, and sophisti-
cated interpolation strategies. However, the aim of our work is to evaluate
the performance of the data and smoothness terms. To this very end, we
keep things simple while selecting these factors. This is also why we omitted
the gradient constancy assumption in the optical flow approach.

9.1.3 Edge-enhancing Diffusion

Edge-enhancing diffusion was proposed by Weickert [132] with the goal to en-
hance smoothing along edges while inhibiting it across them. To achieve this,
one designs a diffusion tensor D with eigenvectors v1 and v2 that are parallel
and perpendicular to a Gaussian smoothed image gradient. This is followed
by setting the eigenvalue corresponding to the eigenvector perpendicular to
the gradient to one, indicating full flow. The eigenvalue corresponding to the
eigenvector parallel to the gradient is determined by a diffusivity function.
Using this idea, one can inhibit smoothing across edges. The following is
the continuous mathematical formulation of the evolution of image u under
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EED:
∂tu = div(D(∇uσ)∇u), (9.6)

D(∇uσ) = g(|∇uσ|2) · v1v
T
1 + 1 · v2v

T
2 , (9.7)

v1 ‖∇uσ, |v1| = 1 and v2 ⊥∇uσ, |v2| = 1. (9.8)

Here, div is the 2D divergence operator and ∇u the spatial gradient. The
Gaussian-smoothed image is uσ. Computing the gradient on uσ makes the
diffusion process robust under the presence of noise. Both EED and SD evo-
lution equations are initialised with the noisy image f . Finally, the diffusivity
function g(x) is chosen as [133]

g (x) = 1− exp

(
−3.31488(

x
λ

)8

)
. (9.9)

Thus, by replacing the LaplacianAHD in (9.4) with the space discrete version
AEED of the EED operator in (9.6), we arrive at the EED-based scheme for
reconstructing the high resolution scene:

uk+1 = uk + τ
(
αSR(AEED(uk))−

N∑
i=1

W>
i B

>D>(DBWiu
k − f iL)

)
.

(9.10)

Details regarding discretisation of the operator AEED can be found in [337].
In a similar fashion to EED, the SD-based SR reconstruction scheme can be
written as

uk+1 = uk + τ
(
αSR(ASD(uk))−

N∑
i=1

W>
i B

>D>(DBWiu
k − f iL)

)
. (9.11)

We refer Chapter 6 for details regarding the sector diffusion model.

9.2 Experiments on Noise-free Datasets

9.2.1 Image Datasets

To evaluate the performance of the methods mentioned in Table 9.1, we
have generated two LR test image sequences by corrupting two ground truth
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Figure 9.1: Generation of Shapes LR sequence.

HR images: The ‘Shapes’ image in Figure 9.1 has a texture background1.
The second image sequence is composed of self generated text (Figure 9.2).
The ground truth of both image sequences is a 512 × 512 greyscale image.
Figure 9.1 shows the generation of the Shapes image sequence from its ground
truth. We have specifically simulated a deformation type of motion with
subpixel displacements. It is well known that subpixel displacements are a
requirement for super-resolution [408]. The ground truth image in ‘Text’
dataset undergoes a similar degradation process but without atmospheric
blur. Both image sequences have 13 images each with a zoom factor of
z = 3. We have used the last image as the reference one in both cases.

9.2.2 Parameter Selection

Optical Flow Parameters. The numerical parameters are the downsam-
pling factor for the warping scheme η, inner fixed point iterations η1, outer
fixed point iterations η2, and the successive over-relaxation parameter ω. We
select η1 = 10, η2 = 10 and ω = 1.95. More details regarding η, αOF, and
Gaussian pre-smoothing parameter σOF, will be given in later sections.

1http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
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SR Parameters. We have optimised the two model parameters αSR (for
regularisation) and σSR (standard deviation of the Gaussian blur kernel) with
respect to the mean squared error (MSE). The numerical parameters are kmax

and τ . A decay of the norm of the residue by a factor of 10−5 was used as
the stopping criterion for kmax. We also utilise a fast explicit diffusion (FED)
scheme [409] to accelerate the explicit gradient descent scheme. We observed
that τ = 0.1 was a stable time step size for all the proposed observational
models through backtracking search. An area upsampled reference image
was used as an initialisation.

9.2.3 Results and Discussion

To emphasise the importance of optical flow computation for super-resolution,
we cover a large spectrum of optical flow qualities: We use both ground truth
flow (GTF) as well as sub-optimal flow (SOF). The SOF is estimated using
the above mentioned optical flow method.

Table 9.2 shows the MSE values of the reconstructed HR scenes while Fig-
ure 9.2 shows the images. We can conclude that the standard observational
model gives the best results for the ground truth optical flow. For SOF,
M2 gives the best results. Moreover, irrespective of whether we are using
GTF or SOF, Models 1 and 2 are the two best ones among the six possible
permutations. While the standard observational model is not a surprising
winner, one needs to understand the better performing nature of M2 in the
case of SOF. We will state the reason behind this in the next paragraph.
Furthermore, for all the permutations we observe that the error using GTF
is much smaller than that obtained using SOF. This reinforces the critical
nature of motion estimation in SR reconstruction.

Zhang et al. [406] and Rockefort et al. [396] have discussed the application
of both observational Models 1 and 2 but only when affine motion is assumed.
Wang and Qi [407] also discuss Models 1 and 2 but without any constraints
on the type of motion, similar to our work. They specifically show that SR
reconstruction using M1 introduces a systematic error. In other words, if one
looks closely at M1, we are warping the high resolution scene. However, the
entries of this warping operator are calculated using blurred images. This
induces a systematic error. It only vanishes when we use the ground truth
optical flow. Thus, M1 outperforms M2 for GTF.
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# Observational
Model

MSE
(GTF)

MSE
(SOF)

σSR

(GTF)
σSR

(SOF)
αSR

(GTF)
αSR

(SOF)

M1 DBWiu = f iL 10.85 173.18 0.34 0.42 0.0002 0.003

M2 DWiBu = f iL 23.42 162.86 0.35 0.45 0.0005 0.002

M3 BDWiu = f iL 77.92 248.38 0.50 0.55 0.0009 0.005

M4 WiDBu = f iL 250.35 294.00 0.31 0.33 0.001 0.0006

M5 BWiDu = f iL 422.82 451.70 0.42 0.43 0.002 0.001

M6 WiBDu = f iL 423.52 451.91 0.42 0.43 0.002 0.002

Table 9.2: Proposed SR observational models along with the MSE values of the obtained
reconstructed SR image for Text sequence. Results for both ground truth (GT) and sub-
optimal flow (SOF) are presented along with the selected parametric values.

(a) Original Image (b) M1 with GTF
(MSE:10.85)

(c) M2 with GTF
(MSE:23.42)

(d) Area upsampled
reference image

(e) M1 with SOF
(MSE:173.18)

(f) M2 with SOF
(MSE:162.86)

Figure 9.2: SR reconstructions of Text dataset along with MSE and flow.

On the other hand, in M2, we are applying a motion that is estimated
using blurred images on a blurred HR scene. This relieves M2 from the
systematic error of M1. However, M2 still has an operator commutability
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(a) Area upsampled
reference image

(b) M1 with SOF
(MSE:103.26)

(c) M2.1 with SOF
(MSE:97.05)

(d) Area upsampled
reference image

(e) M2 with SOF
(MSE:162.86)

(f) M2.1 with SOF
(MSE:172.03)

Figure 9.3: SR reconstructions of Shapes and Text datasets using M2.1. We select η =
0.9, αOF = 15.0, σOF = 0.3, as the SOF parameters for the Text sequence. Similarly, we
use η = 0.5, αOF = 8.0, σOF = 0.3 as SOF parameters for the Shapes sequence.

error as it interchanges the warp and blur matrices. Such an error vanishes
only when the motion is affine, which is not the case for our datasets.

This must not be confused with the fact that we are using a relatively
simple motion compensation technique by dropping the gradient constancy
assumption in the optical flow model. On the contrary, we have employed
a more advanced motion estimation method than the one [410] adopted by
Wang and Qi [407]. However good our optical flow might be, if the motion
within the dataset is not affine, we are bound to have a commutability error.
Which error among the systematic and commutablity types is higher is totally
dependent on the specific image dataset. This will finally decide the order in
the ranking of Models 1 and 2. In our specific case while using SOF, since
M2 outperforms M1, we conjecture that commutability error is lower than
the systematic error.

Keeping in mind the above conclusions, when we retrospect the reported
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works on super-resolution after [407] was published, it is surprising that in
most of them the standard observational model has been used [382,397,399,
400, 402, 403, 405]. M2 has not been considered as a possible alternative.
Thus, in the following, we perform a careful further analysis on this strategy.

9.2.4 More Efficient Model

Now we propose another mathematically plausible model derived from M2
and discuss what could be the advantages of using it. The following is the
representation of what we denote as M2.1: Bu = W T

i D
Tf iL. It is clear that

it is dervied from M2 as the ordering of operators is the same. However, it
is definitely different from M2 itself as warping and downsampling are inter-
polation operations. Interpolation in general is not an invertible operation.

The gradient descent of the energy which uses M2.1 in the data term, is
given by

uk+1 = uk + τ(αSRAHDu
k − (NBTBuk −C)), (9.12)

where C =
∑N

i=1B
TW T

i D
Tf iL can be precomputed. Such a precomputation

is not possible with M2.

Figure 9.3 shows the reconstructed images using M2.1. The parameters
σSR = 0.64, αSR = 0.006 were selected for the Shapes sequence and σSR =
0.59, αSR = 0.002 for the Text dataset. These settings were obtained after
optimising the parameters w.r.t. MSE.

We can conclude from Figure 9.3 that the reconstructed HR images ob-
tained using M2.1 are not far off from Models 1 and 2 in terms of image
reconstruction quality. However, since we can precompute C, the gradient
descent of M2.1 is twenty-five times faster for the Shapes dataset and eighteen
times faster for the Text sequence in contrast to Models 1 and 2, respectively.
This can be a decisive advantage in time critical applications.

9.3 Experiments on Noisy Images

In the previous section we did not consider any kind of noise in the LR
images. Here, we corrupt the images with clipped-AWGN. We first evaluate
EED and SD in terms of their SR regularisation capability. Then we choose
the best of the two as regulariser for data term evaluation.
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Dataset σOF αOF

Text1 2.6 13.3

Text2 1.0 15.6

Text3 2.3 6.3

House1 3.8 13.5

House2 1.2 17.0

House3 2.7 16.5

Table 9.3: Parameter settings for optical flow calculation. We have two model parameters:
αOF (smoothness parameter) and σOF (Gaussian pre-smoothing). Numerical parameters
are chosen as η = 0.95 (downsampling factor), η1 = 10 (inner fixed point iterations),
η2 = 10 (outer fixed point iterations) and ω = 1.95 (successive over-relaxation parameter).

9.3.1 Image Datasets.

We have considered two high-resolution scenes in the form of ‘Text’2 and
‘House’ images. The ground truth HR images have been warped (randomly
generated deformation motion), blurred (Gaussian blur with standard devia-
tion 1.0), downsampled (with bilinear interpolation), and degraded by noise
(clipped-AWGN with σG =40).

9.3.2 Parameter Selection.

To account for a large spectrum of optical flow qualities, we have used both
the ground truth flow as well as a simplified approach of Brox et al. [360] with-
out gradient constancy assumption. The parameters for different datasets are
shown in Table 9.3. We optimise these parameters just once, but not after
every super-resolution iteration. For SR reconstruction, we optimise the pa-
rameters αSR (smoothness), σSR (Gaussian blur), σ (Gaussian smoothing in
EED and SD) and λ (contrast parameter in EED and SD) with respect to
MSE. The grid size is 1. As time step we choose τ = 0.05 for EED and
τ = 0.012 for SD, giving experimental stability and convergence to a plausi-
ble reconstruction. We initialise u with a bilinearly upsampled image.

9.3.3 Smoothness Term Evaluation.

The SR reconstruction quality of the two regularisers is evaluated using equa-
tions (9.10) and (9.11). From Table 9.4 and Figures 9.4, 9.5 we observe that

2https://pixabay.com/en/knowledge-book-library-glasses-1052014/
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EED SD

Dataset σ σSR λ αSR kmax MSE
H1 0.6 0.8 11.0 118.0 37 110.45
H2 0.7 0.5 12.0 120.0 9 162.64
H2-S 0.7 0.5 13.0 115.0 9 172.94
H3 0.6 0.4 14.0 127.0 48 201.91

T1 1.0 1.1 9.0 14.0 136 164.72
T2 1.3 0.9 7.0 18.0 11 397.09
T2-S 1.3 1.0 7.0 18.0 14 510.80
T3 1.2 0.4 7.0 14.0 13 674.65

σ σSR λ αSR kmax MSE
0.9 1.0 2.0 1.6 17 83.12
0.8 0.7 1.7 5.3 17 133.35
0.9 0.8 1.8 4.5 17 141.62
0.6 0.8 2.3 2.9 49 161.26

0.6 1.1 3.0 0.3 48 158.50
0.6 1.0 2.7 0.6 34 378.72
0.6 1.1 2.9 0.5 32 499.60
0.6 0.6 2.3 0.6 49 657.82

Table 9.4: MSE values of SR reconstructed images including parameters used. T2 stands
for Text2 dataset with ground truth optical flow, while T2-S was computed using sub-
optimal calculated flow. Ground truth image size for Text: 512 × 512. T1-T3 represent
images downsized by factors 1, 2 and 3, respectively. Image size for House: 256 × 256.
H1-H3 represent images downsized by factors 1, 1.5 and 2, respectively. Every dataset has
30 images each, with the last of them being the reference frame for registration.

Model σ σSR λ αSR kmax MSE
M1 0.6 1.0 2.7 0.6 34 378.72

M2 0.6 1.0 2.7 0.6 34 382.63

M3 0.6 0.6 2.9 1.2 20 381.75

M4 0.6 0.8 2.8 0.6 35 392.66

M5 0.6 0.5 2.7 0.7 33 391.91

M6 0.3 0.5 4.1 0.4 60 403.50

M2.1 0.6 1.5 3.3 0.2 55 394.85

σ σSR λ αSR kmax MSE
0.6 1.1 2.9 0.5 32 499.60

0.6 1.1 3.4 0.4 33 502.78

0.3 0.8 3.8 1.0 21 500.50

0.6 0.9 3.0 0.5 32 511.09

0.4 0.6 4.6 0.3 43 513.29

0.4 0.6 4.6 0.3 48 518.04

0.6 1.6 3.5 0.2 56 523.34

Table 9.5: Data term evaluation. Left: Text2 with ground truth flow. Right: With
sub-optimal flow.

SD outperforms EED consistently. This holds both for ground truth and sub-
optimal optical flow, over all downsampling factors. The superior structural
adaptivity of SD is the reason behind this observation.

9.3.4 Data Term Evaluation.

Since we have observed a superior performance of SD for regularisation pur-
poses, we also use it in the smoothness term while evaluating the data term.
Table 9.5 shows the MSE values of the reconstructed high resolution scene
with all observational models from Table 9.1. For ground truth flow, the ob-
servational model M1 performs best. This is in accordance with our results
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Original Noisy

EED, MSE=510.80 SD, MSE=499.60

Figure 9.4: Zoom into SR reconstructions for the Text2 dataset with sub-optimal flow.

Original Noisy EED, MSE=172.94 SD, MSE=141.62

Figure 9.5: Zoom into SR reconstructions for the House2 dataset with sub-optimal flow.

in Section 9.2 for a noise-free scenario.

For SOF, M1 also outperforms M2. Interestingly, this is contradictory
to the findings in a noise-free scenario, where M2 gave superior results. We
thus conjecture that the commutability error is higher than the systematic
error in a noisy scenario.

In Section 9.2, model M2.1 was much faster than M2 with only little
loss in reconstruction quality. However, this model becomes irrelavent in the
noisy scenario, as M1 outperforms M2. We also encounter a further quality
loss when replacing M2 by M2.1.

9.4 Conclusions

Super-resolution requires to model three physical penomena: Blur, warp,
and downsample. In this chapter, we have performed the first systematic
evaluation of the influence of the order of these three operators on the re-
sult of a variational super-resolution model. This has led to the surprising
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result that it is not always the physically most plausible and most widely
used model which performs best in a practical setting. Thus, it is worthwhile
to consider also alternative models. Moreover, we saw that closely related
models can lead to algorithms with strongly differing efficiency: By refor-
mulating the blur-warp-downsample model we managed to come up with a
novel model that was 18–25 times more efficient. These insights emphasise
the fundamental importance of careful model design.

Our work also belongs to the scarce amount of literature that ventures
to investigate super-resolution models in the practically relevant scenario of
substantial amounts of clipped noise. In contrast to classical least squares
approaches with homogeneous diffusion regularisation we have paid spe-
cific attention to structure preserving regularisers such as edge-enhancing
anisotropic diffusion (EED). Interestingly, EED has not been used for super-
resolution before, in spite of the fact that alternatives such as BM3D and
NLB are less suited for data with highly corrupted clipped noise. More im-
portantly, we have also evaluated the performance of the sector diffusion
technique as a super-resolution regulariser. Its higher structural adaptivity
enabled it to outperform EED.

Manuscript details of research content from this chapter:

• K. Bodduna and J. Weickert. Evaluating data terms for variational multi-
frame super-resolution. In F. Lauze, Y. Dong, A. B. Dahl, editors, Scale
Space and Variational Methods in Computer Vision (SSVM), volume 10302
of Lecture Notes in Computer Science, pages 590-601, Springer, Cham, 2017.

• K. Bodduna, J. Weickert, and M. Cárdenas. Multi-frame Super-resolution
from Noisy Data. In A. Elmoataz, J. Fadili, Y. Quéau, J. Rabin, L. Si-
mon, editors, Scale Space and Variational Methods in Computer Vision
(SSVM), volume 12679 of Lecture Notes in Computer Science, pages 565-
577, Springer, Cham, 2021.
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Hough-based Evolutions for
Structure Enhancement

In the introduction of this thesis, we mentioned two types of filters: Structure
preserving methods (Chapters 4-9) and the less researched structure enhanc-
ing techniques. In this chapter, we study about a method belonging to the
latter kind. We also specifically concentrate on cryo-electron microscopy
(cryo-EM) data.

Enhancing oriented structures is a classical problem in image process-
ing. Fingerprint images, artistic paintings, computer tomography scans, and
clothing fibre images are specific areas where we encounter such a prob-
lem [13]. On a broader scale, this application is encountered in fluid dynam-
ics, meteorology, forensic studies, computer vision, biomedical and biophysi-
cal image analysis.

In 2D, analysing and processing oriented structures has a long tradition.
The structure tensor [411] and its equivalent concepts play a prominent role
in this context. While early work by Kass and Witkin [412] as well as Rao
and Schunck [413] apply it as a pure analysis tool, Weickert et al. [13, 28]
use it to steer a so-called coherence-enhancing anisotropic diffusion (CED)
process. This has triggered several follow up works that employ diffusion-
based ideas to enhance oriented structures [144,334,414]. Mühlich et al. [415]
have studied the presence of multiple orientations in a local neighbourhood.
Stochastic models [416] have also been used for analysis of contour shapes in
images. More recently, template matching-based on orientation scores [417]
has been proposed for detecting combined orientation and blob patterns.
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Figure 10.1: Left: Image acquisition in cryo-EM. Courtesy of Eikosi, 2015. http:
commons.wikimedia.org/wiki/File:Electron_Tomography.tif. Right: The
triangles represent the region where the data is smeared at every pixel in Cartesian
space due the presence of the missing wedge.

In 3D, the first technique for coherence enhancement was proposed by
Weickert et al. [28]. Related works to this anisotropic diffusion technique
in 3D include papers by Krissian et al. [418] and by Payot et al. [419] for
medical imaging applications. Methods based on partial differential equa-
tions continue to be important for enhancing 3D data sets that are difficult
and expensive to acquire, such that deep learning approaches are less suited.
However, in order to achieve optimal quality, these methods should be well
adapted to the imaging process.

All the above mentioned methods might not be directly applicable to data
acquired through cryo-EM: One challenge in designing filters for cryo-EM
data is the limited angle tomography problem, also known as missing wedge
problem [50,51]. It arises from the geometric design of data acquisition using
the electron microscope. One cannot acquire data from all orientations of
the sample (left side of Figure 10.1), which leads to presence of the missing
wedge in the Fourier space. When one reconstructs the 3D data in the
Cartesian space from individual projections, it is blurred/smeared in the
directions where the missing wedge exists. On the right side of Figure 10.1,
we can see the directions in which the data is blurred at every pixel in the
Cartesian space. The two triangles represent these directions where the data
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Figure 10.2: Left: Noisy xy slice. Right: Directional blur in z direction. Images
have been obtained through courtesy of Achilleas Frangakis.

is smeared at every pixel. Here, we depict a particular xz plane. This region
extends throughout the y direction which is perpendicular to the plane in
which the figure exists. Due to the smearing effect present in the data,
classical formulas based on gradient calculations cannot be considered for
enhancing the image structures. Moreover, the high resolution nature of
image acquisition in cryo-EM also gives rise to a lot of noise. Figure 10.2
shows the noisy and directional blur nature of rat liver cell data acquired
through cryo-EM techniques.

Another challenge in cryo-EM is the following: The relation between an
object O and its corresponding cryo-EM projection image I in the Fourier
space is given by I(x́) = O(x́)H(x́). Here, x́ represents the 2D frequency
vector. The contrast transfer function H (CTF) is the Fourier transform
of the point spread function of the camera. Retrieving the object O from
the image I is called CTF correction. However, this process can lead to the
creation of directional discontinuities in the acquired data. Figure 10.3 shows
such an effect in the protinaceous desmosome networks of rat liver cells.

Our Goal. The main goal in this chapter is to design a filter that extends
the application of oriented structure enhancement in 3D to the specific needs
in cryo-EM. More precisely, the filter needs to account for the limited angle
tomography problem, noisy nature of image acquisition, and also the discon-
tinuities that might be created due to CTF data correction.

Our Contribution. We consider a combination of a general directional
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10.1. Modelling and Theory

Figure 10.3: Left: 2D orthoslice. Right: Corresponding 3D isosurface. Data
has been obtained through courtesy of Achilleas Frangakis.

image evolution process with the classical Hough transform [29–32]. The
latter technique is generally used to detect complex patterns in images. We
use a semi-local version of it to find the local direction in which the image
structures exist. The smoothing process is then steered in this direction using
the directional image evolution process. The flexible and robust nature of the
Hough transform helps the Hough-based evolution (HE) method introduced
in this chapter to deal with all the above problems in cryo-EM effectively.

Chapter Structure. The organisation of this chapter is as follows: In Sec-
tion 10.1 we introduce the HE method. We also mention the specific changes
that have to be made to the classical ideas used for structure enhancement,
in order to adapt them to cryo-EM data. In Section 10.2, we compare the
performance of the HE method with the popular CED approach on synthetic
and cryo-EM data. We also discuss how the ideas used in the modelling of
the HE algorithm lead to the desired enhancement of oriented structures in
the images. In Section 10.3, we conclude with a summary and future outlook.

10.1 Modelling and Theory

The structure enhancing technique that we introduce in this section can be
divided into two parts: First, we explain the core image evolution process
that we adopt. This is followed by a review of the Hough transform which
helps detect the local direction in which the smoothing is steered. We end
this section with the modifications of classical ideas that are needed to adapt
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to the specific requirements in cryo-EM.

10.1.1 A General Directional Data Evolution

Let Ω ⊂ R3 denote a cuboidal image domain and consider some 3D data set
f : Ω → R. We can obtain a family {u(., t) | t ≥ 0} of smoothed versions
of f by regarding f as initial value of a 3D directional image evolution that
satisfies the following partial differential equation:

∂tu = ∂ηηu = η>Hess(u) η (10.1)

with reflecting boundary conditions. Here, Hess(u) denotes the spatial Hes-
sian of u. The smoothing direction η is space-variant and is characterised by
its angles θ(x) and φ(x) in a spherical coordinate system, i.e.

η = η(x) =

sin(θ(x)) cos(φ(x))
sin(θ(x)) sin(φ(x))

cos(θ(x))

 . (10.2)

Equations of type (10.1) have a long tradition, in particular in the 2D set-
ting. For instance, for 2D mean curvature motion [420], one chooses η(x, t) ⊥
∇u(x, t). Obviously such a choice – which smoothes along isophotes – can-
not close interrupted structures. To this end, one needs more advanced lo-
cal structure descriptors than the gradient, e.g. the Gabor transform-based
methods that are used in the evolution equation of Carmona and Zhong [421].
The Carmona–Zhong approach, however, is designed for processing 2D im-
ages and has not been adapted to tackle 3D cryo-EM data. We prefer another
local structure descriptor that is better suited for our specific needs. It is
based on a semi-local Hough transform and is discussed next.

10.1.2 Hough Transform-based Directional Data Evo-
lution

The novelty of our work is that we choose the smoothing direction η(x) men-
tioned above using a semi-local Hough transform [29, 31, 32] on the original
data f . This direction corresponds to the line segment in a local neigh-
bourhood along which the image structure to be enhanced is present. It
has to be mentioned that the Hough transform is very robust in detecting
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Pseudo Code: Hough-based Evolution

Input: Original discrete data set f and the following parameters:
ρ1 - radius of the sphere shaped neighbourhood,
ρ2 - half of the length of the line segments,
T - threshold for the Hough transform,
τ - time step size of the explicit scheme,
kmax - total number of iterations.

Modified Hough Algorithm for Computing η(x):

1. Select a ball B of radius ρ1 around each pixel of f .

2. Line segments of half length ρ2 centered at every pixel within B are consid-
ered by discretising the angles θ and φ.

3. The θ and φ values of the line segment which has the largest percentage of
pixels with grey values larger than T represent the local dominant direction
η. To tackle the missing wedge, only line segments within the angle αW
from Figure 10.1 are considered in the voting process.

Main Algorithm:

1. Initialisation: u0 = f

2. For k = 0, 1, 2, ..., kmax − 1:
uk+1 = uk + τ · η>Hess(uk) η,
where Hess(uk) is approximated with central finite differences.

Output: Image with enhanced structures ukmax .

the local dominant direction because a small relative majority in the vot-
ing process suffices for obtaining the dominant direction. In this sense, for
noise of isotropic nature, the Hough-based image evolution is more robust
than structure tensor-based methods such as CED. Moreover, as we will see
in the upcoming section, our modified Hough-based selection of dominant
directions is able to tackle the missing wedge effect in cryo-EM.

The above pseudo-code explains the complete algorithm and its param-
eters in detail. Note that we compute the Hough transform only for the
initial data set f , not for its evolution u(., t). This saves computational time
and leads to a linear method. We have not noticed qualitative differences
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compared to a non-linear variant where we adapt the dominant direction to
the evolving image u(., t).

10.1.3 Modifying Classical Ideas for Adapting to Cryo-
EM Data

Let us now discuss the exact modifications we have made to classical concepts
in order to adapt them better to the scenario of limited angle tomography.

Restricting the Search Space of Dominant Directions. It was already
explained in the beginning of this chapter that the missing wedge problem
arises due to the design of the data acquistion process: The specimen whose
images are acquired cannot be tilted above a certain angle (generally 60◦).
Thus, we do not have projections from all angles. This leads to missing in-
formation while reconstructing the 3D data from the available projections.
It creates a smearing effect of the reconstructed data in the directions where
the data cannot be collected. In order to tackle this, the modified Hough
algorithm mentioned above just considers the line segments which are out-
side the wedge represented in Figure 10.1. In other words, since our aim is
to enhance the structures in the directions where we do not encounter the
smearing effect, the search space of Hough directions is restricted by choosing
αW = 30◦. One can notice that this value is smaller than 60◦. The reason
behind this is the discrete nature of pixels. It does not allow for a smooth
transfer of the continuous real-world geometry into the captured data.

Avoiding the Usage of Gradients. Due to the smearing effect of the cryo-
EM data, classical formulas for gradient calculation can no longer be used for
processing. Generally, gradients calculated on a Gaussian-smoothed image
(with standard deviation σ) are used in the voting process of the Hough
transform. We instead use the grey values.

If dark structures are to be enhanced, we choose as Hough direction in
3D the one that contains the largest percentage of pixels with greyscale value
below a certain threshold. For enhancing bright structures, we consider pixels
above the threshold. Most of the previously designed filters mentioned in
introductory part of this chapter are based on the structure tensor [411]. The
structure tensor averages directional information over a local neighbourhood
using gradient formulation. Thus, as we will see in the upcoming section,
both gradient-based Hough algorithm and CED (which is built upon the
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structure tensor) are not successful. On the other hand, we will also see that
the usage of the grey value-based Hough algorithm in the directional image
evolution produces the desired results.

10.1.4 Numerical Algorithm

For discretising the 3D evolution in (10.1), we use a straighforward explicit
scheme as mentioned in the main algorithm of the pseudo-code. We use
central derivative approximations to calculate the spatial derivatives in the
Hessian. For a spatial grid size of 1 and τ < 1

6
, we observed a convergence to

a plausible image reconstruction with enhanced structures. A more detailed
theoretical study of the Hough-based image evolution behaviour will be a
topic for future research.

10.2 Experiments and Discussion

We have assessed the performance of our algorithm on both synthetic and
real-world data. We first present details regarding parameter selection for
HE before we move on to the results.

10.2.1 Parameter Selection

There are five parameters which need to be selected, out of which two are
critical and need to be adapted to the specific data set.

The radius of the sphere ρ1, half of the length of the line segment ρ2,
and the threshold T for the voting process in the Hough transform are the
model parameters. The time step size τ and the number of iterations kmax

are numerical parameters to reach a desired stopping time.

We suggest ρ1 = 3 for the radius of the sphere shaped neighbourhood.
This allows for searching the dominant orientation in a small neighbourhood
instead of just around a specific pixel. The selection of the parameters ρ2

and T is important. They must be adapted to the data set. The parameter
ρ2, which specifies the length of the line segment, must be greater than
the length of the discontinuites in order to detect and remove them. The
threshold parameter T must be selected according to the greyscale range at
which the structures are present in the image.
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As already mentioned, τ has to obey a stability criterion caused for the
explicit scheme. Fixing τ implies that the stopping time is proportional to
kmax. We obtain smoother data for a larger number of iterations. Also, if
the gaps to be closed are large, we need to increase the number of iterations
until the structures get connected.

For discretizing the spherical polar coordinate angles θ and φ, we use
stepsizes that produce 18 samples within each of their respective ranges.

Also, a Gaussian smoothing is only necessary for a gradient-based Hough
transform, due to the ill-posedness of differentiation. It is not required for
our grey value-based variant. Furthermore, we have affine rescaled the real-
world datasets to [0, 255] before the algorithms were applied. This facilitates
the reproducibility of results while selecting the threshold parameter. It does
not have any other effect on the model itself.

10.2.2 Synthetic Data

The Shepp–Logan phantom data set [422, 423] is a popular synthetic data
set used for testing 3D reconstruction algorithms. However, it is not suited
for testing the capability of enhancing line-like structures in the presence of
a missing wedge. A synthetic image for testing this particular capability of
methods is simply missing in the image processing community.

Thus, we have created a 3D image which mimics the effect of the missing
wedge and also has discontinuous structures that need to be connected while
enhancing them. Figure 10.4 (a) shows different slices of the 3D data set
we have created. We can clearly see the disconnected structures in the xy
slice and the elongated/smeared structures in the other slices. This mimics
the effect of the missing wedge. In Figure 10.4 (b), we present the original
structures without the discontinuities. Figure 10.4 (c) depicts the results
of our grey value-based HE method. It is able to connect the disconnected
structures. We observe that this approach outperforms both the gradient-
based HE method and CED whose results are presented in Figures 10.4 (d)
and 10.4 (e), respectively.

10.2.3 Real-world Data

Figure 10.5 (a),(d) shows a reconstructed 3D cellular region acquired from an
electron microscope. One can see that the data in the z direction is smeared
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xy slice xz slice yz slice

Figure 10.4: Performance of the different approaches for a synthetic data set of
size 49× 49× 49. (a) First Row: Corrupted data. (b) Second Row: Original
data. (c) Third Row: Grey value-based HE (ρ1 = 3, ρ2 = 21, T = 10, τ = 0.1,
kmax = 10). (d) Fourth Row: Gradient-based HE (ρ1 = 3, ρ2 = 21, T = 5,
σ = 0.5, τ = 0.1, kmax = 10). (e) Fifth Row: CED (λ = 1.0, σ = 0.5, ρ = 5.0,
α = 0.001, τ = 0.1, kmax = 1000). We have shown complement images of the
original ones, for better viewing. One can observe a better enhancement using
grey value-based HE.
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(a) xy slice (b) HE (c) CED

(d) xz slice (e) CED output xz slice

Figure 10.5: Cellular regions of rat liver enhanced using 3D HE. In Figure 10.5(b) we
can see the enhanced double walled cell membranes of neighbouring cells. We can also
see the desmosomes (structures made of proteins) in directions perpendicular to the cell
membrane. HE parameters: ρ1 = 3, ρ2 = 21, T = 200, τ = 0.1, kmax = 50. CED
parameters: λ = 1.0, σ = 0.5, ρ = 5.0, α = 0.001, τ = 0.1, kmax = 100. Data set size:
256×256×50. The xz slice for HE has not been presented as it looks similar to the input
version.

and resembles the above mentioned synthetic data set. Figure 10.5(b) dis-
plays the resulting enhanced cell structures using the HE algorithm. This im-
age allows better visualisations than the original image in Figure 10.5(a). The
enhanced image (Figure 10.5(b)) contains two double walled cell membranes
of neighbouring cells. The structures arising in directions perpendicular to
the cell membrane are the desmosome networks which are made of proteins.
These networks bind neighbouring cells together. The structures are more
evident in the enhanced image than in the original image (Figure 10.5(a)).
Further, since the original image has more signal in the intra-cellular region
than the extra-cellular region, the enhanced image also has clear desmosome
networks in the intra-cellular region.

Figure 10.5(c) depicts the result using CED with a straightforward ex-
plicit scheme. This structure tensor-based enhancement method fails to en-
hance the structures in the presence of the missing wedge, as was explained in
Section 10.1.3. Figure 10.5(e) shows the xz slice after applying CED. In the
presence of a missing wedge, this method always smooths in the z-direction
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(a) 2D Desmosome (b) HE enhanced

(c) 3D Desmosome (d) HE enhanced

Figure 10.6: Connecting disconnected desmosome structures. Visualisation threshold for
both structures is a grey value of 140. This is required for graphical rendering and is
different from the threshold parameter T in the Hough-transform. The length of each
vertical desmosome is around 28 nanometers. Full data set size: 128 × 128 × 128 pixels.
Parameters used: τ = 0.025, kmax = 300. The other model parameters are not relevant
as we do not employ the Hough transform for this experiment, but fix the smoothing to
one particular direction.

as CED detects the coherent structures in the z-direction. Consequently, we
do not observe structure enhancement in the xy slices; see Figure 10.5 (c).
In the grey value-based HE method, this is avoided by restricting the search
space of angles.

Another application of HE is presented in Figure 10.6. The vertical struc-
tures in white in Figure 10.6(a) are desmosomes. We infer that the presence
of discontinuities in the horizontal direction is due to the CTF correction of
the data after acquisition. We see the desmosome structures in the extra-
cellular regions clearly in contrast to the images in the previous experiment.
This is due to the fact that several similar structures were averaged to get this
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Figure 10.7: Enhancement without losing the shape of the structures. Grey value threshold
parameter for visualisation: 146. Parmeters used: τ = 0.025, kmax = 1200. The other
model parameters are not relevant as we do not employ the Hough transform for this
experiment, but fix the smoothing to one particular direction. Left: Desmosome in 3D.
Right: Modified HE output.

final image. As a consequence, the missing wedge effect is minimised. Here,
we want to enhance the structures only in the direction perpendicular to the
discontinuities. Hence, we need not perform the Hough transform. Smooth-
ing in this required direction is governed by setting θ = 0◦. This results in
η = (0, 0, 1)T . The output after removing the discontinuities using HE is
displayed in Figure 10.6(b). The graphical renderings of these structures are
also depicted in Figure 10.6. The vertical structures are nicely connected.

However, the shape of the structures seems to have changed. The reason
behind this is the following: After the HE technique is used, grey values move
from one region of the image to another. Let us think of these grey values as
particles. The movement of particles changes the shape of the structures. In
order to save the initial shape we need to fill missing gaps with new particles.
To this end, we update a pixel value only when it has increased in contrast
to its value in the previous iteration. In other words, if uk+1 < uk then
uk+1 = uk. In Figure 10.6(a), since larger grey values represent particles and
smaller ones represent background, the above modification will create new
particles and also not disturb the spatial positions of the old ones. Thus, the
initial shape of the structures is preserved. The output of such an algorithm
is shown in Figure 10.7.

Another method which can help improve the visualisation of images is
the contrast control feature of the Amira software - a typical cryo-EM visu-
alisation software. Figure 10.8 shows an example. The same software has

145



10.3. Conclusions

Figure 10.8: Enhancement with contrast control in Amira software. Contrast control
parameters - Center: 205.2 and Width: 2.2. Left: Default visualisation. Right: With
contrast control.

also been used for producing the graphical renderings in Figures 10.3, 10.7,
and 10.8.

All the experiments in this work have been performed on a GPU (Nvidia
Quadro P5000 graphics card with C++ and CUDA). The computational
time for the experiments in Figures 10.4-10.6 are 3.45, 84.6 and 10 seconds,
respectively.

10.3 Conclusions

We have introduced a method that combines a semi-local Hough transform
with a directional image evolution. This approach is designed to enhance
oriented structures in 3D data sets from electron microscopy. Our variant of
the Hough transform is robust with respect to the unwanted smearing effects
produced by the missing wedge in cryo-EM data acquisition. Our model
enhances structures that are present within the directions where no smearing
occurs. Other methods which are based on derivative information, such as
CED and gradient-based HE, fail to overcome this problem. Additionally,
our approach is also able to deal with the discontinuities that can occur in
cryo-EM data due to CTF correction.

Manuscript details of research content from this chapter:

K. Bodduna, J. Weickert, and A. S. Frangakis. Hough-based evolutions for enhanc-
ing structures in 3D electron microscopy. In M. Vento, G. Percannella, editors,
Computer Analysis of Images and Patterns (CAIP), volume 11678 of Lecture Notes
in Computer Science, pages 102-112, Springer, Cham, 2019.
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Conclusions and Outlook

11.1 Conclusions

A significant part of scientific research deals with discovering physical and
abstract structures in the very complex world we are living in. The con-
tributions of this thesis follow this philosophy. In all the applications dealt
with in this thesis, we faced several complexities: We encountered multiple
noise distributions, faced a severe anisotropic deformation in image acquisi-
tion process, and needed to design a strategy that improved the performance
of not one but several single-frame filters in a multi-frame scenario. Despite
such obstacles, our novel approaches were able to reveal physical structures
that were otherwise difficult to visualise in the raw input images.

One of the main characteristics of a good technology is that it solves a
broader scope of problems than those resolved by previous works. The fol-
lowing summary exemplifies the presence of this attribute in our approaches.

In single-frame denoising, we designed a technique that preserves image
structures, is fast, avoids artefacts, and is robust to the type of noise. A filter
which possesses such wide-ranging qualities is very rare.

For the multi-frame denoising application, we devised an inter-frame con-
nectivity strategy which improved the performance of a vast variety of single-
frame patch-based filters. Moreover, this improvement is irrespective of what
kind of noise is under consideration.

In image enhancement, we modelled an evolution equation which is robust
to whether or not anisotropic deformations in the data (like the missing wedge
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effect in electron microscopy) are present.

Finally, in multi-frame super-resolution we made contributions to both
data and smoothness terms. In the former scenario we came up with a model
which is more than an order of magnitude faster with a very little compromise
in data quality. In the smoothness term study we showed the advantages
of using advanced diffusion-based structure preserving regularisers. These
contributions help extend the coverage of super-resolution techniques to time
critical and noisy image acquisition applications, respectively.

11.2 Outlook

In single-frame denoising, we showed that anisotropic shapes like sector and
stripe are more effective than a disc. Thus, in future, one could explore patch-
matching extensions of stripe and sector diffusion techniques. Especially due
to the fact that a patch-matching extension of a disc in the form of NFPR
was highly productive. Moreover, the one-sided directional derivative-based
modelling of sector diffusion has not been described in the literature so far.
Studying the mathematical properties of such image evolutions is challenging
and could be a direction for future research.

In multi-frame denoising, we concluded that a separable spatio-temporal
filtering is a better solution than combined denoising. However, we only con-
sidered disc and square shaped neighbourhoods enroute this conclusion. In
future, one should include sector and stripe shaped anisotropic neightbour-
hoods along with shape-adaptive filters for the multi-frame study. Moreover,
any improvements in single- or multi-frame denoising layouts would also have
direct repercussions in a super-resolution scenario.

As far as image enhancement techniques are concerned, one could also
study robust anisotropy detection techniques other than the Hough trans-
form, like random sampling consensus algorithms.

Independent of whether it is structure preserving or enhancing models, in
this thesis we did not focus on colour images as well as image adaptive and
automated parameter selection. These are some other research directions
which one could pursue in the future. No matter what the specific direction
is, we should not forget one of the chief characteristics of a good technol-
ogy: Whenever possible, it must be applicable in a broad-ranging number of
situations than those dealt with by an existing one.
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U. Lücken, H. Rullg̊ard, O. Öktem, and B. Rieger. Image formation
modeling in cryo-electron microscopy. Journal of Structural Biology,
183(1):19–32, July 2013.

[9] J. E. Evans, C. Hetherington, A. Kirkland, L. Y. Chang, H. Stahlberg,
and N. Browning. Low-dose aberration corrected cryo-electron mi-
croscopy of organic specimens. Ultramicroscopy, 108(12):1636–1644,
November 2008.

[10] J.R. Jinschek, K.J. Batenburg, H.A. Calderon, R. Kilaas, V. Rad-
milovic, and C. Kisielowski. 3D reconstruction of the atomic posi-
tions in a simulated gold nanocrystal based on discrete tomography:
Prospects of atomic resolution electron tomography. Ultramicroscopy,
108(6):589–604, May 2008.

[11] D. R. Brillinger. Some wavelet analyses of point process data. In
Proc. IEEE Asilomar Conference on Signals, Systems and Comput-
ers (ACSSC), volume 2, pages 1087–1091, Pacific Grove, CA, USA,
November 1997.

[12] I. Rodrigues, J. Sanches, and J. Bioucas-Dias. Denoising of medical
images corrupted by Poisson noise. In Proc. IEEE International Con-
ference on Image Processing (ICIP), pages 1756–1759, San Diego, CA,
USA, October 2008.

[13] J. Weickert. Coherence-enhancing diffusion filtering. International
Journal of Computer Vision, 31(2):111–127, April 1999.

[14] M. Lebrun, A. Buades, and J. M. Morel. A nonlocal Bayesian image
denoising algorithm. SIAM Journal on Imaging Sciences, 6(3):1665–
1688, September 2013.

[15] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by
sparse 3D transform-domain collaborative filtering. IEEE Transactions
on Image Processing, 16(8):2080–2095, August 2007.

[16] M. Mainberger, A. Bruhn, J. Weickert, and S. Forchhammer. Edge-
based compression of cartoon-like images with homogeneous diffusion.
Pattern Recognition, 44(9):1859–1873, September 2011.

151



Bibliography

[17] J. Weickert. Anisotropic diffusion filters for image processing based
quality control. In A. Fasano and M. Primicerio, editors, Proc. Sev-
enth European Conference on Mathematics in Industry, pages 355–362.
Teubner, Stuttgart, 1994.

[18] I. Ram, M. Elad, and I. Cohen. Image processing using smooth ordering
of its patches. IEEE Transactions on Image Processing, 22(7):2764–
2774, July 2013.

[19] I. Ram, M. Elad, and I. Cohen. Image denoising using NL-means via
smooth patch ordering. In Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1350–1354,
Vancouver, BC, Canada, May 2013.

[20] R. Lerallut, E. Decenciere, and F. Meyer. Image filtering using morpho-
logical amoebas. Image and Vision Computing, 25(4):395–404, April
2007.

[21] N. Pierazzo, M. E. Rais, J. M. Morel, and G. Facciolo. DA3D: Fast
and data adaptive dual domain denoising. In Proc. IEEE International
Conference on Image Processing (ICIP), pages 432–436, Quebec City,
QC, Canada, September 2015.

[22] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-adaptive
DCT for high-quality denoising and deblocking of grayscale and color
images. IEEE Transactions on Image Processing, 16(5):1395–1411,
May 2007.

[23] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. BM3D image
denoising with shape-adaptive principal component analysis. In Proc.
of the Workshop on Signal Processing with Adaptive Sparse Structured
Representations (SPARS), Saint-Malo, France, April 2009.

[24] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian. Video de-
noising, deblocking, and enhancement through separable 4-d nonlocal
spatiotemporal transforms. IEEE Transactions on Image Processing,
21(9):3952–3966, September 2012.

[25] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi. Nonlocal
transform-domain filter for volumetric data denoising and reconstruc-

152



Chapter 12

tion. IEEE Transactions on Image Processing, 22(1):119–133, July
2012.

[26] P. Arias and J. M. Morel. Video denoising via empirical Bayesian
estimation of space-time patches. Journal of Mathematical Imaging
and Vision, 60:70–93, January 2018.

[27] M. Elad and A. Feuer. Restoration of a single superresolution image
from several blurred, noisy, and undersampled measured images. IEEE
Transactions on Image Processing, 6(12):1646–1658, December 1997.

[28] J. Weickert, B. M. ter Haar Romeny, A. Lopez, and W. J. van Enk.
Orientation analysis by coherence-enhancing diffusion. In Proc. Real
World Computing Symposium, pages 96–103, Tokyo, Japan, January
1997.

[29] P. V. C. Hough. Methods and means for recognising complex patterns.
U.S. Patent No. 3069654, December 1962.

[30] P. V. C. Hough. Machine analysis of bubble chamber pictures. Proc.
of the International Conference on High Energy Accelerators and In-
strumentation, pages 554–556, September 1959.

[31] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–15,
January 1972.

[32] D. H. Ballard. Generalizing the Hough transform to detect arbitrary
shapes. Pattern Recognition, 13(2):111–122, 1981.

[33] A. J. P. Theuwissen. Solid-State Imaging with Charge-Coupled Devices.
Kluwer, Dordrecht, 1995.

[34] A. J. Blanksby, M. J. Loinaz, D. A. Inglis, and B. D. Ackland. Noise
performance of a color CMOS photogate image sensor. In Proc. IEEE
International Electron Devices Meeting (IEDM), pages 205–208, Wash-
ington, DC, USA, December 1997.

[35] R. E. Jacobson, S. F. Ray, G. G. Attridge, and N. R. Axford. The Man-
ual of Photography: Photographic and Digital Imaging. Focal Press,
Waltham, MA, USA, 2000.

153



Bibliography

[36] J.R. Janesick. Scientific Charge-Coupled Devices. SPIE, Bellingham,
WA, USA, 2001.

[37] L. G. Shapiro and G. C. Stockman. Computer Vision. Prentice-Hall,
Englewood Cliffs, NJ, USA, 2001.

[38] B. W. Keelan. Handbook of Image Quality: Characterization and Pre-
diction. Marcel Dekker Inc., New York, NY, USA, 2002.

[39] F. Rooms, W. Philips, and P. Van Oostveldt. Integrated approach for
estimation and restoration of photon-limited images based on steer-
able pyramids. In Proc. IEEE EURASIP Conference Focussed on
Video/Image Processing and Multimedia Communications (EC-VIP-
MC), pages 131–136, Zagreb, Croatia, July 2003.

[40] R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew. Color image
processing pipeline. IEEE Signal Processing Magazine, 22(1):34–43,
January 2005.

[41] J. Nakamura. Image Sensors and Signal Processing for Digital Still
Cameras. CRC Press, Boca Raton, FL, USA, 2005.

[42] W. C. Kao, S. H. Wang, L. Y. Chen, and S. Y. Lin. Design consider-
ations of color image processing pipeline for digital cameras. IEEE
Transactions on Consumer Electronics, 52(4):1144–1152, November
2006.

[43] J. G. Pellegrino, J. Zeibel, R. G. Driggers, and P. Perconti. Infrared
Camera Characterization. CRC Press, Boca Raton, FL, USA, 2006.

[44] L. MacDonald. Digital Heritage: Applying Digital Imaging to Cultural
Heritage. Butterworth-Heinemann, Oxford, UK, 2006.

[45] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice-
Hall, Englewood Cliffs, NJ, USA, 2007.

[46] M. A. Covington. Digital SLR Astrophotography. Cambridge Univesity
Press, Cambridge, UK, 2007.

[47] J. Ohta. Smart CMOS Image Sensors and Applications. CRC Press,
Boca Raton, FL, USA, 2008.

154



Chapter 12

[48] C. Boncelet. Image noise models. In A. Bovik, editor, The Essen-
tial Guide to Image Processing, pages pp. 143–167, Academic Press,
Boston, USA, July 2009.

[49] K. Dabov. Image and Video Restoration with Nonlocal Transform-
Domain Filtering. PhD thesis, Department of Information Technology,
Tampere University of Technology, Finland, 2010.

[50] J. Frank. Three-dimensional Electron Microscopy of Macromolecular
Assemblies: Visualization of Biological Molecules in their Native State.
Oxford University Press, NY, USA, second edition, 2006.

[51] J. Frank. Electron Tomography: Methods for Three-dimensional Visu-
alisation for Structures in the Cell. Springer, New York, second edition,
2006.

[52] D. A. Evans, P. P. Allport, G. Casse, A. R. Faruqi, B. Gallop, R. Hen-
derson, M. Prydderch, R. Turchetta, M. Tyndel, J. Velthuis, G. Vil-
lani, and N. Waltham. CMOS active pixel sensors for ionising radi-
ation. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
546(1-2):281–285, July 2005.

[53] A. R. Faruqi and D. M. Cattermole. Pixel detectors for high-resolution
cryo-electron microscopy. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment, 549(1-3):192–198, September 2005.

[54] A.R. Faruqi, D. M. Cattermole, and C. Raeburn. Applications of pixel
detectors to electron microscopy. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 512(1-2):310–317, October 2003.

[55] A.R. Faruqi, D. M. Cattermole, and C. Raeburn. Direct electron detec-
tion methods in electron microscopy. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 513(1-2):317–321, November 2003.

[56] A. R. Faruqi, D. M. Cattermole, R. Henderson, B. Mikulec, and C. Rae-
burn. Evaluation of a hybrid pixel detector for electron microscopy.
Ultramicroscopy, 94(3-4):263–276, April 2003.

155



Bibliography

[57] A. R. Faruqi, R. Henderson, M. Pryddetch, P. Allport, and A. Evans.
Direct single electron detection with a CMOS detector for electron mi-
croscopy. Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 546(1-2):170–175, July 2005.
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nal of Statistics, Series A, 64(4):359–372, December 1964.

[94] C. J. Stone. Consistent nonparametric regression. The Annals of Statis-
tics, 5(4):595–620, July 1977.

[95] W. S. Cleveland and S. J. Devlin. Locally weighted regression: An
approach to regression analysis by local fitting. Journal of the American
Statistical Association, 83(403):596–610, 1988.

[96] W. S. Cleveland. Robust locally weighted regression and smooth-
ing scatterplots. Journal of the American Statistical Association,
74(368):829–836, 1979.

[97] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications.
Chapman and Hall, London, UK, 1996.

[98] J. Astola, V Katkovnik, and K. Egiazarian. Local Approximation Tech-
niques in Signal and Image Processing, volume PM157. SPIE, Belling-
ham, WA, USA, 2006.

[99] A.Foi. Anisotropic Nonparametric Image Processing: Theory, Algo-
rithms and Applications. PhD thesis, Departmento Di Matematica,
Politecnico di Milano, Italy, 2005.

[100] P. Hall, S. J. Sheather, M. C. Jones, and J. S. Marron. On optimal data-
based bandwidth selection in kernel density estimation. Biometrika,
78(2):263–269, June 1991.

[101] J. Fan and I. Gijbels. Data-driven bandwidth selection in local poly-
nomial fitting: Variable bandwidth and spatial adaptation. Journal of
the Royal Statistical Society: Series B (Methodological), 57(2):371–394,
July 1995.

160



Chapter 12

[102] M. C. Jones, J. S. Marron, and S. J. Sheather. Progress in Data-based
Bandwidth Selection for Kernel Density Estimation. Technical report,
Dept. of Statistics, North Carolina State University, 1992.

[103] S. J. Sheather and M. C. Jones. A reliable data-based bandwidth
selection method for kernel density estimation. Journal of the Royal
Statistical Society: Series B (Methodological), 53(3):683–690, 1991.

[104] D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth
selector for local least squares regression. Journal of the American
Statistical Association, 90(432):1257–1270, 1995.

[105] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of
bandwidth selection for density estimation. Journal of the American
Statistical Association, 91(433):401–407, 1996.

[106] A. Goldenshluger and A. Nemirovski. On spatially adaptive estima-
tion of nonparametric regression. Mathematical Methods of Statistics,
6(2):135–170, 1997.

[107] V. Katkovnik. A new method for varying adaptive bandwidth selection.
IEEE Transactions on Image Processing, 47(9):2567–2571, September
1999.

[108] V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola. Directional varying
scale approximations for anisotropic signal processing. In Proc. IEEE
European Signal Processing Conference (EUSIPCO), pages 101–104,
Vienna, Austria, September 2004.

[109] H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image pro-
cessing and reconstruction. IEEE Transactions on Image Processing,
16(2):349–366, February 2007.

[110] L. P. Yaroslavsky. Digital Picture Processing: An Introduction.
Springer Verlag, 1985.

[111] J. S. Lee. Digital image smoothing and the sigma filter. Computer Vi-
sion, Graphics and Image Processing, 24(2):255–269, November 1983.

[112] S. M. Smith and J. M. Brady. SUSAN - A new approach to low level
image processing. International Journal of Computer Vision, 23(1):45–
78, May 1997.

161



Bibliography

[113] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color
images. In Proc. IEEE International Conference on Computer Vision
(ICCV), page 839–846, Bombay, India, January 1998.

[114] M. Elad. On the origin of the bilateral filter and ways to improve it.
IEEE Transactions on Image Processing, 11(10):1141–1151, October
2002.

[115] J. Wang, D. Xu, C. Lang, and B. Li. An adaptive tone mapping method
for displaying high dynamic range images. Journal of Information Sci-
ence and Engineering, 26(3):977–990, May 2010.

[116] B. Zhang and J. P. Allebach. Adaptive bilateral filter for sharpness
enhancement and noise removal. IEEE Transactions on Image Pro-
cessing, 17(5):664–678, May 2008.

[117] M. Zhang and B. K. Gunturk. Compression artifact reduction with
adaptive bilateral filtering. In M. Rabbani and R. L. Stevenson, editors,
Visual Communications and Image Processing, volume 7257, pages 413
– 423, San Jose, CA, USA, 2009. International Society for Optics and
Photonics, SPIE.

[118] G. Sapiro. Geometric Partial Differential Equations and Image Anal-
ysis. Cambridge University Press, Cambridge, UK, 2001.

[119] G. Aubert and P. Kornprobst. Mathematical Problems in Image Pro-
cessing: Partial Differential Equations and the Calculus of Variations.
Springer, New York, 2002.

[120] T. F. Chan and J. Shen. Image Processing and Analysis: Variational,
PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia, 2005.

[121] F. Guichard, L. Moisan, and J. M. Morel. A review of PDE mod-
els in image processing and image analysis. Journal de Physique IV,
12(1):137–154, March 2002.

[122] N. Sochen, R. Kimmel, and A. M. Bruckstein. Diffusions and confusions
in signal and image processing. Journal of Mathematical Imaging and
Vision, 14(3):195–210, May 2001.

162



Chapter 12

[123] D. Barash. A fundamental relationship between bilateral filtering,
adaptive smoothing and the nonlinear diffusion equation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(6):844–847,
June 2002.

[124] A. P. Witkin. Scale-space filtering. In Proc. International Joint Con-
ference on Artificial Intelligence, volume 2, pages 945–951, Karlsruhe,
West Germany, August 1983.

[125] J. J. Koenderink. The structure of images. Biological Cybernetics,
50(5):363–370, August 1984.

[126] T. Lindeberg. Scale-space for discrete signals. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(3):234–254, March 1990.

[127] L. Florack. Image Structure, volume 10 of Computational Imaging and
Vision. Kluwer, Dordrecht, 1997.

[128] P. Perona and J. Malik. Scale space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 12(7):629–639, July 1990.
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[235] G. Peyré. Image processing with nonlocal spectral bases. Multiscale
Modeling and Simulation, 7(2):703–730, July 2008.

[236] G. Steidl and J. Weickert. Relations between soft wavelet shrinkage and
total variation denoising. In L. Van Gool, editor, Pattern Recognition
(DAGM), volume 2449 of Lecture Notes in Computer Science, pages
198–205. Springer, Berlin, 2002.
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[280] M. Mäkitalo and A. Foi. On the inversion of the Anscombe transforma-
tion in low-count Poisson image denoising. In Proc. IEEE International
Workshop on Local and Non-Local Approximation in Image Processing
(LNLA), pages 26–32, Tuusula, Finland, August 2009.
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[282] M. Mäkitalo and A. Foi. Noise parameter mismatch in variance sta-
bilization, with an application to Poisson-Gaussian noise estimation.
IEEE Transactions on Image Processing, 23(12):5348–5359, December
2014.

[283] P. Fryzlewicz and G. P. Nason. A Haar-Fisz algorithm for Poisson in-
tensity estimation. Journal of Computational and Graphical Statistics,
13(3):621–638, 2004.

[284] B. Zhang, J. M. Fadili, and J. L. Starck. Wavelets, ridgelets, and
curvelets for Poisson noise removal. IEEE Transactions on Image Pro-
cessing, 17(7):1093–1108, July 2008.

[285] P. Besbeas, I. De Feis, and T. Sapatinas. A comparative simulation
study of wavelet shrinkage estimators for Poisson counts. International
Statistical Review, 72(2):209–237, August 2004.

[286] M. Jansen. Multiscale Poisson data smoothing. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68(1):27–48,
February 2006.
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Mathématique, 138(1):235–279, July 2019.

182



Chapter 12

[315] Z. Shi, S. Osher, and W. Zhu. Generalization of the weighted nonlocal
Laplacian in low dimensional manifold model. Journal of Scientific
Computing, 75(2):638–656, May 2018.

[316] L. Wang, S. Zhou, X. Lin, T. Qi, X. Yin, and Y. Yang. A novel adap-
tive image zooming method based on nonlocal Cahn–Hilliard equation.
Knowledge-Based Systems, 166:118–131, February 2020.

[317] I. Cohen and G. Gilboa. Introducing the p-Laplacian spectra. Signal
Processing, 167:107281, February 2020.

[318] M. Cárdenas. Nonlocal Evolutions in Image Processing. PhD thesis,
Department of Mathematics and Computer Science, Saarland Univer-
sity, Germany, July 2018.

[319] M. Lebrun. An analysis and implementation of the BM3D image de-
noising method. Image Processing On Line, 2:175–213, August 2012.

[320] Y. Hou, J. Xu, M. Liu, G. Liu, L. Liu, F. Zhu, and L. Shao. NLH:
A blind pixel-level non-local method for real-world image denoising.
IEEE Transactions on Image Processing, 29:5121–5135, March 2020.

[321] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color
images. In Proc. IEEE Sixth International Conference on Computer
Vision (ICCV), pages 839–846, Bombay, India, January 1998.

[322] A. Buades, B. Coll, and J. M. Morel. Non-local means denoising. Image
Processing On Line, 1:208–212, September 2011.

[323] Eastman Kodak Company. Kodak true color image suite. http://

r0k.us/graphics/kodak/, 1999. Online.

[324] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can
plain neural networks compete with BM3D? In Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2392–
2399, Providence, RI, USA, June 2012.

[325] P. Chatterjee and P. Milanfar. Patch-based near-optimal image denois-
ing. IEEE Transactions on Image Processing, 21(4):1635–1649, April
2012.

183



Bibliography

[326] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image
denoising using scale mixtures of Gaussians in the wavelet domain.
IEEE Transactions on Image Processing, 12(11):1338–1351, November
2003.
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Abbreviations

AF average then filter
AWGN additive white Gaussian noise
BM3D 3D block matching
CCD charge-coupled device
CED coherence-enhancing diffusion
CF combined filtering
CMOS complementary metal oxide semiconductor
cryo-EM cryo-electron microscopy
CTF contrast transfer function
DCT discrete cosine transform
DD disc diffusion
DDID dual-domain image denoising
DnCNN denoising convolutional neural network
EED edge-enhancing diffusion
FA filter then average
FRC Fourier ring correlation
GTF ground truth flow
HE Hough-based evolution
HR high-resolution
FPN fixed pattern noise
LFSPO linear filtering on smooth patch orderings
LPA local polynomial approximation
LR low-resolution
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MF multiple reference frame f iltering
MSE mean squared error
NFPR non-linear filtering on fast patch reordderings
NLDD non-local dual-domain denoising
NLB non-local Bayes
NLM non-local means
NSD non-symmetric stripe diffusion
PDE partial differential equation
PSNR peak signal-to-noise ration
SD sector diffusion
SF single reference frame f iltering
SOF sub-optimal flow
SR super-resolution
SSD symmetric stripe diffusion
SSIM structural similarity index measure
VNLNET video non-local network
VST variance stabilising transformation
V-BM4D video - 4D block matching
V-NLB video - non-local Bayes
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List of Symbols

ai, bi normalisation constants in NFPR
A discrete approximation of the continuous gradient operator
AHD homogenous diffusion operator
ASD sector diffusion operator
AEED edge enhancing diffusion operator
Bi,ρ disc B or radius ρ around pixel i
Bsearch search area in NFPR
B,B> blur operator that models point spread function
c normalisation constant in sector diffusion
D 2×2 diffusion tensor and downsampling factor in SR
D> upsampling operator
e standard mathematical constant
ei error vector that depicts noise in low resolution images
E variational energy functional
Edata data term of energy functional
Esmooth smoothness term of energy functional
f raw input image
fnr non-registered multi-frame data
f registered multi-frame data
g diffusivity function
h weighting function for inter-patch distances
h1, h2 Gaussian smoothing functions for sector diffusion
H1, H2 dimensions of high resolution image
H(x́) point spread function in Fourier space for cryo-EM
i index for central pixel in diffusion process
I(x́) image in Fourier space for cryo-EM
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j index for neighbouring pixel in diffusion process
J spatial weighting function for diffusion processes
k iteration number for image evolution process
kmax maximum iterations for image evolution process
L total number of frames for multi-frame denoising
L1, L2 dimensions of low resolution image
m minimiser or maximiser of functional
M total number of pixels in the discrete image grid

and also total number of sectors/stripes in a diffusion model
Mi total number of pixels in Pi and P add

i together
n noise distribution
nG Gaussian noise distribution
nP Poissonian noise distribution
N total number of pixels in set Pi
NH size of high resolution image
NL size of low resolution image
O(x́) object in Fourier space for cryo-EM
ppost posterior probability function
pprior prior of posterior probability function
plike likelihood of posterior probability function
Pj set of sectors in which pixel j is present
Pi, P

add
i nearest neighbours to pixel i acc. to inter-patch distances

P` reference patch in BM3D/NLB from frame `
P(P`) set of most similar patches to reference patch P`
qi,j entries of matrix Q
Q system matrix for diffusion-based evolutions
R real number line
R+ positive real number line
ri ring number i in Fourier Ring Corrrelation measure
S` set of pixels within sector/stripe `
T threshold in voting process of Hough transform
u processed image
uσ Gaussian smoothing of u in Cartesian domain in general or

the domain defined by inter-patch distances for NFPR
û Fourier transformation of image u
uinitial denoised image after first step in BM3D/NLB
ufinal final denoised image in BM3D/NLB
v ground truth image
v1,v2 eigenvectors of diffusion tensor
ws spatial weight for image denoising
wt tonal weight for image denoising
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wnbd neighbourhood weight for image denoising
w motion vector in optical flow computation
Wi warping operator for each low resolution image
W> backward registration operator
x, y, z positions within image domain
x́ frequency vector in Fourier space
αSR smoothness term weight in SR variational model
α, αOF gradient term weight in optical flow
χ mulitiplication factor that controls amount of Poissonian noise

and also indicator function in multi-frame BM3D/NLB
∂tu derivative of u in temporal dimension t
∂θu derivative of u in direction θ
∂+
θ u one-sided derivative of u in orientation θ
∂ηηu double derivative of u in direction η
ε ensures strict convexity of optical flow functional
η downsampling factor of warping scheme in optical flow
η1, η2 inner and outer iterations in optical flow scheme
γ, γOF smoothness term weight in optical flow
λ parameter within diffusivity function and

also within regularisation function of optical flow
µG mean of Gaussian noise distribution
∇u gradient of u - either spatial or spatio-temporal
ω successive over-relaxation parameter in optical flow scheme
Ω image domain
|Ω| Cardinality of set Ω
Ω(x,h) neighbourhood around x whose size is determined by h
π standard mathematical constant
Φ regularisation function in optical flow
Ψ function responsible for dealing with outliers in

optical flow energy functional
ρ radius of disc for DD, SD, NSD and SSD
ρsearch radius of search area in NFPR
ρsim disc radius in NFPR for patch-matching
ρt half of the thickness of each stripe in NSD and SSD
ρ1 radius of sphere in HE method
ρ2 half length of line segment in HE method
σG standard deviation of Gaussian noise distribution
σnoise standard deviation of mixed Poissonian-Gaussian noise
τ time step size of image evolution process
⊥ perpendicular to
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