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Abstract. Connecting interrupted line-like structures is a frequent prob-
lem in image processing. Here we focus on the specific needs that occur
in 3D biophysical data analysis in electron microscopy (EM). We intro-
duce a powerful framework for connecting line-like structures in 3D data
sets by combining a specific semilocal Hough transform with a directional
evolution equation. The Hough transform allows to find the principal ori-
entations of the local structures in a robust way, and the evolution equa-
tion is designed as a partial differential equation that smoothes along
these principal orientations. We evaluate the performance of our method
for enhancing structures in both synthetic and real-world EM data. In
contrast to traditional structure tensor based methods such as coherence-
enhancing diffusion, our method can handle the missing wedge problem
in EM, also known as limited angle tomography problem. A modified
version of our approach is also able to tackle the discontinuities created
due to the contrast transfer function correction of EM images.

Keywords: Structure enhancement, electron microscopy, Hough trans-
form, partial differential equations, missing wedge problem.

1 Introduction

Enhancing oriented structures is a classical problem in image processing. Grading
the quality of fabrics and wood, fingerprint analysis, and processing cellular
structures from electron microscopes are specific areas where enhancing oriented
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structures is required. On a broader scale, this application is encountered in
fluid dynamics, meteorology, forensic studies, computer vision, biomedical and
biophysical image analysis.

In 2D, analysing and processing oriented structures has a long tradition, and
the structure tensor [6] and its equivalent concepts plays a prominent role in this
context. While early work by Kass and Witkin [12] and Rao and Schunck [16]
apply it as a pure analysis tool, Weickert et al. [20, 21] use it to steer a so-called
coherence-enhancing anisotropic diffusion (CED) process. This has triggered sev-
eral follow up works that employ diffusion based ideas to enhance oriented struc-
tures [9, 17, 19]. Mühlich et al. [14] have studied the presence of multiple orien-
tations in a local neighbourhood. Stochastic models [22] have also been used for
analysis of contour shapes in images. More recently, template matching based
on orientation scores [3] has been proposed for detecting combined orientation
and blob patterns.

In 3D, the first technique for coherence enhancement was proposed by Weick-
ert et al. [21]. Related works to this anisotropic diffusion technique in 3D include
papers by Krissian et al. [13] and by Payot et al. [15] for medical imaging applica-
tions. Also in our days, methods based on partial differential equations continue
to be important for enhancing 3D data sets that are difficult and expensive to
acquire, such that deep learning approaches are less suited. However, in order to
achieve optimal quality, these methods should be well adapted to the imaging
process.

Our Goals. In our work, the main goal is to design a filter that extends
the application of oriented structure enhancement in 3D to the specific needs
in Electron Microscopy (EM). One challenge in designing filters for EM data is
the limited angle tomography problem, also known as missing wedge problem
[7, 8]. It arises from the geometric design of data acquisition using the electron
microscope. One cannot acquire data from all orientations of the sample, which
leads to presence of the missing wedge in the Fourier space. When one recon-
structs the 3D data in the Cartesian space from individual projections, the data
is blurred/smeared in the directions where the missing wedge exists. Figure 1
shows the directions in which the data is blurred at every pixel in the Carte-
sian space. Here we depict a particular xz plane. The two triangles represent
the directions where the data is smeared at every pixel. This region extends
throughout the y direction. Due to the smearing effect of the data, classical for-
mulas based on gradient calculations cannot be considered for processing this
reconstructed data in order to enhance the image structures. Another challenge
in EM is created by discontinuities in the image structures due to the contrast
transfer function (CTF) correction of EM data. We will see that the direct and
modified approaches of the Hough based evolution (HE) method introduced by
us in this work is effective in dealing with both problems.

Paper Structure. The organisation of our paper is as follows: In Section 2
we introduce the HE method. We also mention the specific changes that have to
be made to the classical ideas used for structure enhancement, in order to adapt
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Fig. 1: Directions where the data is smeared at every pixel in Cartesian space
due the presence of the missing wedge.

them to electron microscopy data. In Section 3, we compare the performance of
the HE method with the popular CED approach on synthetic and EM data. We
also discuss how the ideas used in the modelling of the HE algorithm lead to
the desired enhancement of oriented structures in the images. In Section 4, we
conclude with a summary and give an outlook to future work.

2 Hough Based Evolution

2.1 A General Directional Data Evolution

Let Ω ⊂ R3 denote a cuboid and consider some 3D data set f : Ω → R. We
can obtain a family {u(., t) | t ≥ 0} of smoothed versions of f by regarding f
as initial value of a 3D directional image evolution that satisfies the following
partial differential equation:

∂tu = ∂ηηu = η>Hess(u) η (1)

with reflecting boundary conditions. Here Hess(u) denotes the spatial Hessian of
u. The smoothing direction η is space-variant and is characterised by its angles
θ(x) and φ(x) in the spherical coordinate system:

η = η(x) =

sin(θ(x)) cos(φ(x))
sin(θ(x)) sin(φ(x))

cos(θ(x))

 . (2)

Equations of type (1) have a long tradition, in particular in the 2D setting. For
instance, for 2D mean curvature motion [1], one chooses η(x, t) ⊥∇u(x, t).
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Pseudo Code: Hough based Evolution

Input: Original discrete data set f and the following parameters:
ρ1 - radius of the sphere shaped neighbourhood,
ρ2 - half of the length of the line segments,
T - threshold for the Hough transform,
τ - time step size of the explicit scheme,
kmax - total number of iterations.

Modified Hough Algorithm for Computing η(x):

1. Select a ball B of radius ρ1 around each pixel of f .
2. Line segments of half length ρ2 centered at every pixel within B are consid-

ered by discretising the angles θ and φ.
3. The θ and φ values of the line segment which has the largest percentage of

pixels with grey values > T represent the local dominant direction η.
To tackle the missing wedge, only line segments within the angle αW from
Figure 1 are considered in the voting process.

Main Algorithm:

1. Initialisation: u0 = f
2. For k = 0, 1, 2, ..., kmax − 1:

uk+1 = uk + τ · η>Hess(uk) η,
where Hess(uk) is approximated with central finite differences.

Output: Image with enhanced structures ukmax .

Obviously such a choice – which smoothes along isophotes – cannot close inter-
rupted structures. To this end, one needs more advanced local structure descrip-
tors than the gradient, e.g. the Gabor transform based methods that are used
in the evolution equation of Carmona and Zhong [4]. The Carmona–Zhong ap-
proach, however, is designed for processing 2D images and has not been adapted
to tackle 3D EM data. We prefer another local structure descriptor that is etter
suited for our specific needs. It is based on a semilocal Hough transform and
shall be discussed next.

2.2 Choosing the Smoothing Direction with a Hough Transform

The novelty of our work is that we choose the smoothing direction η(x) men-
tioned above using a semilocal Hough transform [2, 5, 11] on the original data f .
To be more precise, we compute the Hough transform to find the direction η(x)
corresponding to the line segment in a local neighbourhood, which represents
the orientation along which the image structure to be enhanced is present. It
has to be mentioned that the Hough transform is very robust in detecting the
local dominant direction because a small relative majority in the voting process
suffices for obtaining the dominant direction. In this sense, for noise of isotropic
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nature, the Hough based image evolution is more robust when compared to
structure tensor based methods such as CED. Moreover, as we will see in the
upcoming section, our modified Hough based selection of dominant directions
is able to tackle the missing wedge in EM. The above mentioned pseudo-code
explains the complete algorithm and its parameters in detail.

Note that we compute the Hough transform only for the initial data set f ,
not for its evolution u(., t). This saves computational time and leads to a linear
method. We have not noticed qualitative differences compared to a nonlinear
variant where we adapt the dominant direction to the evolving image u(., t).

2.3 Modification of Classical Ideas for Adapting to EM Data

Let us now discuss the exact modifications we have made to classical concepts
in order to adapt them better to the scenario of limited angle tomography.

Restricting the Search Space of Dominant Directions. It was already
explained in Section 1 that the missing wedge problems arises due to the design
of the data acquistion process: The specimen whose images are acquired cannot
be tilted above a certain angle (generally 60o). Thus, we do not have projections
from all the angles. This leads to missing information while reconstructing the
3D data from the available projections, which creates a smearing effect of the
reconstructed data in the directions where the data cannot be collected. In order
to tackle this, the modified Hough algorithm mentioned above just considers
the line segments which are outside the wedge represented in Figure 1, in the
voting process. In other words, since our aim is to enhance the structures in the
directions where we do not encounter the smearing effect, the search space of
Hough directions is restricted by choosing αW = 300 (Figure 1). This value is
chosen such that the search space is smaller than the entire space representing
the directions where the data is not smeared.

Avoiding the Usage of Gradients. Due to the smearing effect of the EM
data, classical formulas for gradient calculation can no longer be used for pro-
cessing. Generally, gradients calculated on a Gaussian-smoothed image (with
standard deviation σ) are used for making the decision in the voting process
of the Hough transform. We instead use the grey values for making this deci-
sion as mentioned in the modified Hough algorithm. If dark structures are to
be enhanced, we choose as Hough direction in 3D the one that contains the
largest percentage of pixels with greyscale value below a certain threshold. For
enhancing bright structures, we consider pixels above the threshold. Most of the
previously designed filters mentioned in Section 1 are based on the structure
tensor [6]. The structure tensor averages directional information over a local
neighbourhood using gradient formulation. Thus, as we will see in the upcoming
section, both gradient based Hough algorithm and CED (which is built upon the
structure tensor) are not successful in enhancing the structures. On the other
hand, we will also see that the usage of the grey value based Hough algorithm
in the directional image evolution produces the desired results.
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Fig. 2: Performance of the different approaches for a synthetic data set of size
49 × 49 × 49. Left to Right: xy, xz, and yz slices. (a) First Row: Original
data. (b) Second Row: Grey value based HE (ρ1 = 3, ρ2 = 21, T = 10,
τ = 0.1, kmax = 10). (c) Third Row: Gradient based HE (ρ1 = 3, ρ2 = 21,
T = 5, σ = 0.5, τ = 0.1, kmax = 10). (d) Fourth Row: CED (λ = 1.0, σ = 0.5,
ρ = 5.0, α = 0.001, τ = 0.1, kmax = 1000).

2.4 Numerical Algorithm

For discretising the 3D evolution equation (1), we use a straighforward explicit
scheme as mentioned in the main algorithm of the pseudo-code. We use central
derivative approximations to calculate the spatial derivatives in the Hessian. For
a spatial grid size of 1, we observe experimentally L2-stability if the time step
size τ satisfies τ < 1

6 . This stability bound is identical to the one for an explicit
scheme for 3D homogeneous diffusion filtering. A more detailed theoretical study
of the Hough based image evolution behaviour will be a topic for future research.

3 Results and Discussion

3.1 Synthetic Data

The Shepp–Logan phantom data set [10, 18] is a popular synthetic data set used
for testing 3D reconstruction algorithms. However, it is not suited for testing the
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(a) xy slice (b) HE (c) CED

(d) xz slice (e) CED output xz slice

Fig. 3: Cellular regions of rat liver enhanced using 3D HE. In Figure 3(b) we can
see the enhanced double walled cell membranes of neighbouring cells. We can also
see the desmosomes (structures made of proteins) in directions perpendicular
to the cell membrane. HE parameters: ρ1 = 3, ρ2 = 21, T = 200, τ = 0.1,
kmax = 50. CED parameters: λ = 1.0, σ = 0.5, ρ = 5.0, α = 0.001, τ = 0.1,
kmax = 100. Data set size: 256× 256× 50.

capability of enhancing line-like structures in the presence of a missing wedge. A
synthetic image for testing this particular capability of methods is simply missing
in the image processing community. Thus, we have created a 3D image which
mimics the effect of the missing wedge and also has discontinuous structures that
need to be connected while enhancing them. Figure 2(a) shows different slices of
the 3D data set we have created. We can clearly see the disconnected structures
in the xy slice and the elongated/smeared structures in the other slices. This
mimics the effect of the missing wedge. Figure 2(b) depicts the results of our
grey value based HE method. It is able to connect the disconnected structures.
We observe that this approach outperforms both the gradient based HE method
and CED whose results are presented in Figures 2(c) and 2(d), respectively.

3.2 Real World Data

Figure 3(a),(d) shows a reconstructed 3D cellular region acquired from an elec-
tron microscope. One can see that the data in the z direction is smeared and
resembles the above mentioned synthetic data set. Figure 3(b) displays the re-
sulting enhanced cell structures using the HE algorithm. This image allows bet-
ter visualisations than the original image in Figure 3(a). The enhanced image
(Figure 3(b)) contains two double walled cell membranes of neighbouring cells.
The structures arising in directions perpendicular to the cell membrane are the
desmosome networks which are made of proteins. These networks bind neigh-
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(a) Desmosome in 2D (b) HE enhanced in 2D

(c) Desmosome in 3D (d) HE enhanced in 3D

Fig. 4: Connecting disconnected desmosome structures. Visualisation threshold
for both structures is 140. The length of each vertical desmosome is around 28
nm. Full data set size: 128× 128× 128. Parmeters used: τ = 0.025, kmax = 300.

bouring cells together. The structures are more evident in the enhanced image
than the original image (Figure 3(a)). Also, since the original image has more
signal in the intra-cellular region than the extra-cellular region, the enhanced
image also has clear desmosome networks in the intra-cellular region. Figure
3(c) depicts the result using CED with a straightforward explicit scheme. This
structure tensor based enhancement method fails to enhance the structures in
the presence of the missing wedge, as was explained in Section 2.3. Figure 3(e)
shows the xz slice after applying CED. In the presence of a missing wedge, this
method would always smooth in the z-direction as is visible in the image. This
is because CED always detects the coherent structures in the z-direction. Con-
sequently, we do not get the desired structure enhancement in the xy slices;
see Figure 3(c). In the grey value based HE method, on the other hand, this
is avoided by restricting the search space of angles and using grey value based
detection of dominant orientations.
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Another application of the HE is presented in Figure 4. The vertical struc-
tures in white in Figure 4(a) are discontinuous desmosomes. We infer that the
presence of discontinuities in the horizontal direction is due the CTF correction of
the data after acquisition. We see the desmosome structures in the extra-cellular
regions clearly when compared to the images in the previous experiment. This
is because several similar structures were averaged to get this final image. Due
to this averaging, the missing wedge effect is minimised. Also, we just want to
enhance the structures only in the direction perpendicular to the discontinuities.
Hence, we need not perform the Hough transform. Smoothing in this required
direction is governed by setting θ = 0o. The result after removing the disconti-
nuities using HE is displayed in Figure 4(b). The graphical renderings of these
structures are depicted in Figure 4. The vertical structures are nicely connected.

It has to be mentioned that the cell structure data sets underwent an affine
rescaling to [0, 255] before the algorithms were applied. This facilitates the re-
producibility of results while selecting the threshold parameter. It does not have
any other effect on the model itself.

3.3 Parameter Selection

There are five parameters which need to be selected, out of which mainly two of
them are critical and need to be adapted to the specific data set.

The radius of the sphere ρ1, half of the length of the line segment ρ2 and the
threshold T for voting process in the Hough transform are the model parameters.
The time step size τ and the number of iterations kmax are numerical parameters
to reach a desired stopping time.

As already mentioned, τ has to obey a stability criterion caused by the ex-
plicit scheme. Fixing τ implies that the stopping time is proportional to kmax.
We obtain smoother data for a larger number of iterations. Also, if the gaps
to be closed are large, we need to increase the number of iterations until the
structures get connected.

We suggest ρ1 = 3 for the radius of the sphere shaped neighbourhood. This
allows for searching the dominant orientation in a small neighbourhood instead
of just around a specific pixel.

The selection of the parameters ρ2 and T is important. They must be adapted
to the data set. The parameter ρ2, which specifies the length of the line segment,
must be greater than the length of the discontinuites in order to detect and
remove them. The threshold parameter T for the Hough transform voting process
must be selected according to the greyscale range at which the structures are
present in the image.

The spherical polar coordinate angles θ and φ are sampled 18 times each in
their respective ranges.

Performing Gaussian smoothing and specifying the Gaussian standard de-
viation σ is only necessary for a gradient based Hough transform, due to the
ill-posedness of differentiation. It is not required for our grey value based vari-
ant.
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3.4 Computational Time

All the experiments in this work have been performed with ANSI C and CUDA
on an Nvidia Quadro P5000 device. The computational time for the synthetic
data experiment with grey value based HE method is 3.45 seconds. The time
consumed for the real world data experiments is 84.6 seconds and 10 seconds,
respectively.

4 Conclusions and Outlook

We have introduced a method that combines a semilocal Hough transform with
a directional image evolution. This approach is designed to enhance oriented
structures in 3D data sets from electron microscopy. Our variant of the Hough
transform is robust with respect to the unwanted effects produced by the missing
wedge effect in EM data. This helps to enhance structures in the data that
are present in the directions where no smearing due to the missing projections
occurs. Other methods which are based on derivative information, such as CED
and gradient based HE, fail to overcome this problem. Additionally, our approach
is also able to deal with the discontinuities that can occur in EM data due to
the CTF correction.
In our future work we plan to also study applications beyond electron microscopy
where the data acquisition is performed in a similar manner.
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