
In N. Pillay, A. P. Engelbrecht, A. Abraham,
M. C. du Plessis, V. Snášel, A. K. Muda (Eds.):
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Abstract. So far most applications of swarm behaviour in image analy-
sis use swarms as models for optimisation tasks. In our paper, we follow
a different philosophy and propose to exploit them as valuable tools for
modelling image processing problems. To this end, we consider models
of swarming that are individual-based and of first order. We show that a
suitable adaptation of the potential forces allows us to model three clas-
sical image processing tasks: grey scale quantisation, contrast enhance-
ment, and line detection. These proof-of-concept applications demon-
strate that modelling image analysis tasks with swarms can be simple,
intuitive, and highly flexible.
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1 Introduction

Understanding and simulating swarm behaviour continues to be an exciting in-
terdisciplinary research area for more than six decades [2]. Numerous researchers
have investigated models of swarming in such different fields as biology [4], com-
puter science [16], mathematics [5], physics [22], and even philosophy [20]. For
recent reviews and comparisons, we refer the reader to [7, 23] and the references
therein. Generally, there exist two different model classes:

1. continuum / population-based / Eulerian / macroscopic models,

2. discrete / individual-based / Lagrangian / microscopic models.
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Continuum models describe the evolution of a swarm’s population density in
space and time. These models provide a large scale description of general swarm
attributes, but they cannot distinguish between individual swarm members.

Such a distinction requires discrete models that address each swarm member
individually by characterising its position, velocity and other properties. Discrete
models define simple rules that affect each individual. These rules are either
based on the sociological behaviour of animals or – considering an artificial
setup – motivated by a given task, which needs to be fulfilled. They control the
attraction, repulsion, and orientation behaviour of the swarm members. Pairwise
potentials model the effects between individuals; see e.g. [8] and the references
therein for some commonly used potential functions. Integrating these rules into
equations of motion describes the temporal evolution of the individuals. The
literature distinguishes between first-order and second-order models [9]: First-
order models use a set of equations that describe the velocities of each individual,
while second-order models involve their acceleration.

Due to its heuristic character, it is common practice to apply discrete mod-
els to approximate solutions for difficult optimisation problems. Two well-known
representatives are ant colony optimization (ACO) [3] and particle swarm opti-
mization (PSO) [11]. By reducing problems to a pure optimisation task, ACO,
PSO, and related models have already been applied numerous times in digital
image analysis. However, apart from the idea of optimisation, discrete swarm
methods have been used only rarely in order to model problems in the domain of
image analysis. Notable exceptions deal with image halftoning [17], colour cor-
rection [19], segmentation [14], contour detection [12], boundary identification
and tracking [15, 21], and the detection of fibre pathways [1]. Most of these mod-
elling applications are fairly new and show convincing performance. However, all
of these authors have focussed on a specific application. It seems that they have
not been interested in exploiting the genericity behind the models of swarming.

Goals of our Paper. Motivated by these recent encouraging results, the
goal of our article is to present novel applications of discrete first-order models
of swarming in image analysis. To this end, we define behavioural rules for three
fairly different image processing problems: grey scale quantisation, contrast en-
hancement, and line detection with the Hough transform. In all scenarios we use
essentially the same model and modify only some of its features. This emphasises
the versatility and genericity of models of swarming.

Paper Structure. Section 2 reviews the modelling of swarm behaviour in a
discrete setup. We present our different behavioural rules and the corresponding
potentials, and we discuss some model characteristics and a time discretisa-
tion. Section 3 adapts this modelling framework to three different applications
in image processing and shows experimental results. Section 4 summarises our
contributions and gives an outlook to future work.
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2 Discrete Modelling of Swarm Behaviour

Basic Notations and Definitions. We consider a set S =
{
Ai
∣∣ i = 1, ..., N

}
,

called swarm, which is composed of N agents Ai. In the following, we use the
terms agent, particle, and individual interchangeably. By xi ∈ Rd we denote the
position of an individual Ai, and vi ∈ Rd describes its velocity. Both the particle
position and its velocity are functions over time t ∈ [0,∞):

xi = xi (t) , vi = vi (t) . (1)

If the agents are intended to have a limited field of perception, many discrete
models such as [16] make use of a disk-shaped neighbourhood with radius δ. For
an agent Ai, it is given by

Ni,δ (t) =
{
Aj ∈ S

∣∣ j 6= i, |xi−xj | ≤ δ
}

(2)

where | . | denotes the Euclidean norm. If the neighbourhoods Ni,δ (t) contain
all swarm mates Aj for all times t, a model is said to be global. Otherwise, it is
called local.

Potential Energies and Forces. To describe a desired collective behaviour,
discrete models of swarming define update rules for the positions and velocities of
their individuals. These rules include effects based on attractive, repulsive, and
orientating behaviour among agents [4, 5, 16, 22], as well as on the environment
[11], or a combination of both [8, 17]. In our paper, we restrict ourselves to the
treatment of attraction and repulsion among the agents.

The influence of the swarm mates on an agent Ai is described by a pairwise
function W : Rd → R that denotes the potential energy. The total potential
energy of the swarm is given by

Epot (S) =
1

2

∑
Ai∈S

∑
Aj∈S\{Ai}

W (xi − xj). (3)

Our potential functions model either attraction,

Wa(xi − xj) =
1

2
· |xi − xj |2 , (4)

or repulsion,

Wr(xi − xj) =
c2

2
· exp

(
−|xi − xj |2

c2

)
(c 6= 0), (5)

where c serves as a spatial scale of repulsion. If we compute the partial derivative
w.r.t. xi, we arrive at the potential forces −∇xi

W : Rd → Rd that act on the
agent Ai:

−∇xi
Wa(xi − xj) = − (xi − xj) , (6)

−∇xi
Wr(xi − xj) = exp

(
−|xi − xj |2

c2

)
· (xi − xj). (7)



4

For further details on potential functions and their use in discrete models of
swarming, we refer the reader to [8].

First-Order Models. First-order models are based on the (physically simpli-
fied [10]) assumption that the particle velocity vi can be expressed in terms of
the potential forces −∇xi

W :

dxi(t)

dt
= vi(t) = −

∑
Aj∈S\{Ai}

∇xi
W (xi(t)− xj(t)) ∀Ai ∈ S, (8)

where we assume that we know the initial state at time t = 0.

Time Discretisation. Since we cannot expect to find an analytical solution
to the dynamical system (8), we have to approximate it numerically on the
computer. This requires to discretise it in time.

Let τ > 0 denote some time step size, and let tk := kτ . Moreover, we abbre-
viate xi(tk) by xki . The simplest time discretisation of Equation 8 approximates
the time derivative by its forward difference:

dxki
dt
≈

xk+1
i − xki

τ
. (9)

This turns (8) into the following explicit update scheme:

xk+1
i = xki − τ ·

∑
Aj∈S\{Ai}

∇xki
W
(
xki − xkj

)
(k = 0, 1, ...) (10)

with some appropriate initialisation x0
i for all Ai ∈ S.

If we restrict the interactions of agent Ai to its δ-neighbourhood Ni,δ(tk) from
(2), we can replace (10) by the local update rule

xk+1
i = xki − τ ·

∑
Aj∈Nki,δ

∇xki
W (xki − xkj ).

(11)

It is well-known from the theory of numerical methods for differential equations
that such explicit schemes may require a fairly small time step size τ in order
to be stable [13], in particular if the right hand side fluctuates strongly w.r.t. its
argument.1

The experiments below make use of the explicit schemes (10) and (11) with
the potential forces ∇xki

W given by (6) or (7).

1 If this becomes too time-consuming, one can also consider more efficient, so-called
implicit schemes [13]. However, they require to solve linear or nonlinear systems of
equations.
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3 Application to Image Processing Problems

Let us now apply our discrete first-order model of swarming to three different
image processing problems: grey scale quantisation, contrast enhancement, and
line detection. This requires to interpret the specific image processing problem in
terms of swarming agents, and to specify our potential forces in an appropriate
way.

In our application scenarios, we consider a digital greyscale image f that is
discrete in its domain and its codomain. The domain contains nx equally spaced
pixels in x-direction and ny pixels in y-direction. The grey value range is given
by the set {0, ..., 255}, which results from a bytewise encoding:

f : {1, ..., nx} × {1, ..., ny} → {0, ..., 255}. (12)

For such a two-dimensional greyscale image f , its histogram h[f ](k) counts how
often each grey value k ∈ {0, ..., 255} is attained. Thus, h[f ] is a one-dimensional
function from {0, ..., 255} to N0.

3.1 Grey Scale Quantisation

The discretisation of the codomain of an image is called quantisation. Obviously,
the number of different greyscales in an image determines how expensive it is
to store them: While 256 different values require a full byte, 8 values can be
encoded already with 3 bits. Since humans cannot distinguish many greyscales,
one can compress image data without severe visual degradations by reducing the
number of quantisation levels.

To design a model of swarming for obtaining a coarser quantisation of some
digital greyscale image f , we proceed as follows. We consider its histogram h[f ]
and identify some histogram value h[f ](n) = cn with cn agents sharing the same
position xi = n. Thus, we have a one-dimensional model of swarming. Note that
multiple agents that share the same position have to undergo the same joint
motion. This reduces the computational complexity in a substantial way: The
computational effort becomes proportional to the number of greyscales instead
of the number of pixels.

In order to cluster multiple quantisation levels into a single level, we use the
linear attraction force from (6). As we will see below, it makes sense to localise
the interaction to a δ-neighbourhood, which requires the update scheme (11).

In our quantisation experiments we have chosen τ = 10−5. This leads to
a stable steady state solution after at most 4 · 104 iterations. For a 512 × 512
image, this can be accomplished in far less than one minute on a single core of a
standard PC. Fig. 1 illustrates the effect of our model of swarming for different
δ values. We observe that increasing δ reduces the number q of quantisation
levels. Interestingly there seems to be an almost inverse relation, such that 2δq
is roughly equal to the length of the original greyscale interval (255 in our case).



6

grey value

fr
eq

ue
nc

y

0 50 100 150 200 250

0
10

00
20

00
30

00
40

00
50

00
60

00

grey value

fr
eq

ue
nc

y

0 50 100 150 200 250

0
20

00
0

60
00

0
10

00
00

grey value

fr
eq

ue
nc

y

0 50 100 150 200 250

0
50

00
0

10
00

00
15

00
00

20
00

00

Fig. 1. Swarm-based image quantisation. Top, from left to right: (a) Original image
from [18], 512 × 512 pixels, q = 255 greyscales. (b) Swarm-based quantisation with
δ = 8, yielding q = 16 greyscales. (c) δ = 16, q = 8 greyscales. Bottom, from left to
right: (d)–(f) Corresponding histograms.

This suggests that our model of swarming clusters the grey scales into q bins of
approximately2 the same size 2δ. Note that the interval length 2δ is the diameter
of the neighbourhood Ni,δ. Hence, the model of swarming can be interpreted and
handled in a very intuitive way.

3.2 Contrast Enhancement

The contrast of an image is characterised by the modulus of the difference be-
tween the greyvalues of neighbouring pixels. For recognising interesting image
structures, their contrast should be sufficiently high. This may require some
preprocessing that enhances the image contrast.

Let us now adapt our model of swarming to this application. To this end,
it is sufficient to find a mapping of the greyvalues that yields a better contrast.
As before, we consider the histogram h[f ] of the image f , and we assign cn
agents to a grey value n if h[f ](n) = cn. However, since we want to increase the
global contrast this time, we use the global explicit scheme (10), and we equip

2 It is clear from the structure of our approach and the experiments that the quantisa-
tion levels depend on the actual image histogram and are not necessarily equidistant.
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Fig. 2. Swarm-based contrast enhancement. (a) Top left: Moon surface image from
[18], 256× 256 pixels. (b) Top right: Its histogram. (c) Bottom left: After swarm-
based histogram enhancement with c = 1, and 2 · 106 iterations with step size τ =
10−3. (d) Bottom right: Enhanced image using the grey values from the transformed
histogram.

it with the repulsion forces from (7). Moreover, we employ reflecting boundary
conditions to prevent that agents leave the admissible greyscale range [0, 255].
For t → ∞, the swarm converges to a steady state distribution, where the
grade of contrast enhancement grows with the repulsion parameter c. Once the
histogram is enhanced, one simply replaces the grey values of the image by their
transformed values.

Figure 2 illustrates this procedure, where the evolution reaches a steady state.
We observe a clear visual contrast improvement of the test image.This is also
confirmed quantitatively by its standard deviation, which has increased from
27.74 to 56.86.

3.3 Line Detection

Our third application scenario for models of swarming is concerned with an-
other important image processing problem, the detection of lines. Our goal is to
improve a classical method which is based on the so-called Hough transform [6].

The basic idea behind line detection with the Hough transform is as follows.
For some greyscale image f , one searches for locations that may lie on signifi-
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cant lines by computing the gradient magnitude |∇f |. For a digital image, this
requires finite difference approximations. A location is significant if its gradient
magnitude exceeds a certain threshold Tg. In a next step, the line candidate
pixels vote for all lines that pass through them. All lines through a pixel (x, y)
satisfy the normal representation

ρ = x · cos θ + y · sin θ, (13)

where θ denotes the angle between the line normal and the x-axis, and ρ is the
distance to the origin. Thus, a candidate point is mapped to a trigonometric
curve ρ(θ) in the Hough space (θ, ρ). If n candidate points lie on a line with
parameters (θ̃, ρ̃), then their corresponding n trigonometric curves in Hough
space intersect in (θ̃, ρ̃). Therefore, one can find lines in the input image f by
searching for clustering points in its Hough space: One discretises the Hough
space (θ, ρ), and each trigonometric curve votes for all cells that it crosses. The
cells with the most votes characterise the most significant lines in the original
image. Typically one finds these clustering points by applying a threshold Ta on
the votes in Hough space.

While this sounds nice in theory, in practice it is not easy to find appropriate
thresholds that avoid false negatives and false positives. Also the bin size of the
discrete Hough space is problematic: If the discretisation is too fine, it is unlikely
that many votes will fall in the same cell. If it is too coarse, the line parameters
are prone to imprecisions.

As a remedy, we propose the following procedure. First we consider a rela-
tively fine discretsation in Hough space and threshold the votes. Afterwards we
process the surviving votes with a swarm-based clustering. To this end, we set
up n agents at every position (ρ, θ) that received n votes. Note that in contrast
to our clustering for quantisation – which took place in the one-dimensional
histogram space – this is a two-dimensional clustering. In analogy to the quanti-
sation setting, we use the linear attraction force (6) within the localised update
scheme (11), and compute its steady state.

Fig. 3 shows how this works in a real-world setting. We observe that the
classical Hough transform suffers from the fact that lines in the image cluster
in several adjacent cells in Hough space. As a consequence, we obtain a bundle
of almost parallel lines instead of a single line. Our swarm-based clustering in
Hough space is well-suited to solve this problem, since votes from the neighbours
move towards the local centroids. In this way they sharpen the clusters and avoid
multiple almost parallel lines.

4 Conclusions

Our paper shows that discrete first-order models of swarming have a high po-
tential in image processing that goes far beyond classical applications as tools
for difficult optimisation tasks: By means of three proof-of-concept applications
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Fig. 3. Swarm-based line detection. (a) Left: Test image, 512× 512 pixels. (b) Mid-
dle: 71 lines detected with the Hough transform. (Tg = 19, Ta = 244). (c) Right: 13
lines detected with the Hough transform with swarm-based postprocessing (Tg = 19,
Ta = 244, δ = 5, τ = 10−4, 300 iterations).

we have demonstrated their usefulness as powerful modelling methods. The fact
that these applications serve fairly different goals underlines the genericity of the
swarm-based paradigm: It is a highly versatile framework that can be adapted
in an intuitive way to a broad spectrum of problems.

In our ongoing work, we intend to study more efficient numerical algorithms,
evaluate different ways to incorporate neighbourhood information, equip our
models with more problem-specific features, and compare them to non-swarm
based approaches. Last but not least, we will also study other models of swarming
and apply them to further problems in the broad area of visual computing.
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