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Abstract. Backward diffusion and purely repulsive swarm dynamics are
generally feared as ill-posed, highly unstable processes. On the other
hand, it is well-known that minimising strictly convex energy function-
als by gradient descent creates well-posed, stable evolutions. We prove a
result that appears counterintuitive at first glance: We derive a class of
one-dimensional backward evolutions from the minimisation of strictly
convex energies. Moreover, we stabilise these inverse evolutions by im-
posing range constraints. This allows us to establish a comprehensive
theory for the time-continuous evolution, and to prove a stability condi-
tion for an explicit time discretisation. Prototypical experiments confirm
this stability and demonstrate that our model is useful for global con-
trast enhancement in digital greyscale images and for modelling purely
repulsive swarm dynamics.
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1 Introduction

Backward parabolic partial differential equations such as inverse diffusion are
classical representatives of ill-posed processes. For nonsmooth initial data, they
may have no solution at all. Even if a solution exists, it is highly sensitive and



intrinsically unstable: Already the smallest perturbations of the initial data can
cause huge deviations during the evolution.

Nevertheless, since forward parabolic equations can blur or smooth images,
there have been a number of attempts to invert these evolutions for deblurring
or sharpening degraded imagery. This, however, requires additional stabilisation.
The most widely used strategy is to impose constraints at extrema that aim at
enforcing a maximum–minimum principle. One example is the inverse diffusion
filter of Osher and Rudin [4], which implements backward diffusion everywhere
except at extrema, where the evolution is set to zero. Another example is the
so-called forward-and-backward (FAB) diffusion of Gilboa et al. [3]. It differs
from the closely related Perona–Malik filter [5] by the fact that it uses negative
diffusivities for a specific range of gradient magnitudes. However, at extrema
where the gradient vanishes, it always avoids explosions by imposing forward
diffusion. So far any attempt to adequately implement inverse diffusions with
forward or zero diffusion at extrema requires sophisticated numerical schemes
[4, 8].

A second, less widely-used class of stabilisation attempts adds a fidelity term
that prevents the backward evolution to move too far away from the original
image [7] or from the average grey value of the desired range [6]. In this case the
range of the filtered image obviously depends on the weights of the fidelity and
the backward diffusion term.

In conclusion, we see that handling backward diffusion in practice is prob-
lematic and requires specific care to keep some sort of stability.

In order to gain new insights how to end up with stable backward evolutions,
let us for a moment turn our attention to forward diffusion processes. For sim-
plicity we consider a simple 1-D evolution for signal smoothing. It regards the
original signal f : [a, b]→ R as initial state of the diffusion equation

∂tu = ∂x
(
g(u2x)ux

)
(1)

where u = u(x, t) is a filtered version of the original signal u(x, 0) = f(x),
ux = ∂xu, and reflecting boundary conditions at x = a and x = b are imposed.
Larger diffusion times t create simpler representations. The diffusivity function g
is nonnegative. In order to smooth less at signal edges than in more homogeneous
regions, Perona and Malik [5] propose to choose g as a decreasing function of the
contrast u2x. If the flux function Φ(ux) := g(u2x)ux is strictly increasing in ux we
have a forward diffusion process that cannot sharpen edges. Then the diffusion
process can be seen as a gradient descent evolution for minimising the energy

E[u] =

∫ b

a

Ψ(u2x) dx (2)

with a potential function Ψ̃(ux) = Ψ(u2x) that is strictly convex in ux, increasing
in u2x, and satisfies Ψ ′(u2x) = g(u2x). Since the energy functional is strictly convex,
it has a unique minimiser. This minimiser is given by the (flat) steady state
(t → ∞) of the gradient descent method, and the gradient descent / diffusion



evolution is well-posed. Due to this classical appearance of well-posed forward
diffusion as a consequence of strictly convex energies, one might be tempted to
believe that backward diffusion is necessarily connected to nonconvex energies.
Interestingly, this is not correct! Understanding this connection better opens new
ways to design stable backward processes.

Our Contribution. We consider a space-discrete model where we admit globally
negative diffusivities, corresponding to decreasing penalisers Ψ . However, we re-
quire Ψ(u2x) to be strictly convex in ux. We do not rely on stabilisations through
zero or forward diffusivities at extrema, and we do not incorporate fidelity terms
explicitly. Stabilisation will be achieved in our model on a global level by bound-
ing the range of u. This is achieved by imposing reflecting boundary conditions
in the co-domain. We show that this is sufficient to stabilise the inverse diffusion
in the space-discrete and time-continuous setting. We also prove that a straight-
forward explicit time discretisation inherits this stability, if it satisfies a suitable
time step size restriction. Our model opens up interesting applications in signal
and image filtering, where it can be used for global contrast enhancement, as
well as in swarm-like particle systems with purely repulsive interactions.

Structure of the Paper. In Section 2 we introduce our novel one-dimensional
model and present a comprehensive analysis of its theoretical properties. The
third section establishes stability bounds for an explicit time discretisation. Sec-
tion 4 deals with the application of our model to image enhancement and the
modelling of swarm behaviour. Finally, Section 5 gives conclusions and an out-
look on future challenges.

2 Model and Theory

2.1 Discrete Variational Model

We start by introducing a dynamical system that is motivated from a spatial
discretisation of the energy functional (2) with a decreasing penaliser function
Ψ : R+

0 → R and a global range constraint on u. The corresponding flux function
Φ is given by Φ(s) := Ψ ′(s2)s.

We consider vectors v = (v1, . . . , vN )T ∈ (0, 1)N , where vi for i = 1, . . . , N
are assumed to be distinct. We extend such v with the additional coordinates
vN+1, . . . , v2N defined as v2N+1−i = 2−vi ∈ (1, 2). For this extended v ∈ [0, 2]2N ,
we consider the energy function

E(v) =
1

4
·
2N∑
i=1

2N∑
j=1

Ψ
(
(vj − vi)2

)
. (3)

which models the repulsion potential between all positions vi and vj . A typical
scenario for Ψ is illustrated in Figure 1. First, the function Ψ(s2) is defined as a
continuously differentiable, decreasing, and strictly convex function for s ∈ [0, 1]
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Fig. 1. Top: Exemplary penaliser Ψ̃(s) := Ψ(s2) with Ψ̃(s) = (s − 1)2 − 1 for s ∈
[0, 1], extended to the interval [−1, 3] by imposing symmetry and Ψ((2 + s)2) = Ψ(s2).
Middle: Corresponding diffusivity g̃(s) := g(s2) = Ψ ′(s2) where g̃(s) := 1 − 1/s for
s ∈ (0, 1]. Bottom: Corresponding flux Φ(s) = Ψ ′(s2)s with Φ(s) = s−1 for s ∈ (0, 1].

with Ψ(0) = 0 and Φ−(1) = 0 (left-sided derivative). It is then extended to
[−1, 1] by symmetry and to R by periodicity Ψ

(
(2 + s)2

)
= Ψ(s2). As a result,

Ψ(s2) is continuously differentiable everywhere except at even integers, where it
is still continuous. Note that Ψ(s2) is increasing on [−1, 0] and [1, 2]. The flux Φ
is continuous and increasing in (0, 2) with jump discontinuities at 0 and 2 (see
Figure 1). Furthermore, we have that Φ(s) = −Φ(−s) and Φ(2 + s) = Φ(s). A
gradient descent for (3) is given by

∂tvi = −∂viE(v) =

2N∑
j=1
j 6=i

Φ(vj − vi) , i = 1, . . . , 2N , (4)

where vi now are functions of the time t. Note that for 1 ≤ i, j ≤ N , thus
|vj−vi| < 1, the flux Φ(vj−vi) is negative for vj > vi and positive otherwise, thus
driving vi always away from vj . This implies that we have negative diffusivities



Ψ ′ for all |vj − vi| < 1. Due to the convexity of Ψ(s2), the absolute values of
the repulsive forces Φ are decreasing with the distance between vi and vj . We
remark that the jumps of Φ at 0 and 2 are not problematic here as the vi are
required to be distinct.

Let us discuss shortly how the interval constraint for the vi, i = 1, . . . , N ,
is enforced in (3) and (4). First, notice that v2N+1−i for i = 1, . . . , N is the
reflection of vi on the right interval boundary 1. For vi and v2N+1−j with 1 ≤
i, j ≤ N and v2N+1−j − vi < 1 there is a repulsive force due to Φ(v2N+1−j −
vi) < 0 that drives vi and v2N+1−j away from the right interval boundary.
The closer vi and v2N+1−j come to this boundary, the stronger is the repulsion.
For v2N+1−j − vi > 1, we have Φ(v2N+1−j − vi) > 0. By Φ(v2N+1−j − vi) =
Φ
(
(2− vj)− vi

)
= Φ

(
(−vj)− vi

)
, this can equally be interpreted as a repulsion

between vi and −vj where −vj is the reflection of vj at the left interval boundary
0. In this case the interaction between vi and v2N+1−j drives vi and −vj away
from the left interval boundary. Recapitulating both possible cases, it becomes
clear that every vi is either repelled from the reflection of vj at the left or at the
right interval boundary, but never from both at the same time.

As ∂tv2N+1−i = −∂tvi holds in (4), the symmetry of v is preserved. Dropping
the redundant entries vN+1, . . . , v2N , equation (4) can be rewritten as

∂tvi =

N∑
j=1
j 6=i

Φ(vj − vi)−
N∑
j=1

Φ(vi + vj) , i = 1, . . . , N , (5)

where the second sum represents the repulsions between original and reflected
coordinates in a more symmetric way.

Given an initial vector f ∈ (0, 1)N with distinct entries fi, and initialising
vi(0) = fi, v2N+1−i(0) = 2− fi for i = 1, . . . , N , the gradient descent (4) or (5)
evolves v towards a minimiser of E.

A more detailed analysis below shows that in the course of the evolution, no vi
can reach the interval boundaries 0 or 1, and no vi, vj with i 6= j can ever become
equal. Thus the initial rank-order of vi is preserved throughout the evolution.
Each of the N ! possible rank-orders constitutes a connected component of the
configuration space for v. There is a unique minimiser of E in the interior of
each connected component due to the strict convexity of Ψ(s2).

Theorem 1 (Avoidance of Boundaries). The N initially distinct positions
vi ∈ (0, 1) evolving according to (5) never reach the domain boundaries 0 and 1.

Proof. The definition of Ψ implies that

lim
h→0+

Ψ
(
(0 + h)2

)
− Ψ(0)

h
< 0 and lim

h→0−

Ψ(22)− Ψ
(
(2 + h)2

)
h

> 0 , (6)

from which it follows that

lim
vi→0+

(
− Φ(2vi)

)
> 0 and lim

vi→1−

(
− Φ(2vi)

)
< 0 . (7)



Equation (5) can be written as

∂tvi =

N∑
j=1
j 6=i

(
Φ(vj − vi)− Φ(vi + vj)

)
− Φ(2vi) . (8)

Since for j = 1, . . . , N and j 6= i one has

lim
vi→0+

Φ(vj−vi)−Φ(vi+vj) = 0 and lim
vi→1−

Φ(vj−vi)−Φ(vi+vj) = 0 , (9)

it follows that
lim

vi→0+
∂tvi > 0 and lim

vi→1−
∂tvi < 0 . (10)

Consequently, vi can never reach the left interval boundary 0 because it will
move to the right when getting closer to it. The same holds for the right domain
boundary 1 where vi will move to the left before reaching it. ut

Theorem 2 (Nonequality of vi and vj). Among N initially distinct positions
vi ∈ (0, 1) evolving according to (5), no two ever become equal.

Proof. Using (5) it is possible to derive the difference

∂t (vj − vi) = 2 · Φ(vi − vj) +

N∑
k=1
k 6=i,j

(
Φ(vk − vj)− Φ(vk − vi)

)

−
N∑
k=1

(
Φ(vj + vk)− Φ(vi + vk)

)
(11)

where 1 ≤ i, j ≤ N . Assume w.l.o.g. that vj > vi and consider (11) in the limit
vj − vi → 0. Then we have

lim
vj−vi→0

∂t(vj − vi) = lim
vj−vi→0

2 · Φ(vi − vj) > 0 . (12)

The latter inequality follows from the fact that Φ(s) > 0 for s ∈ (−1, 0). This
means that vj will always start moving away from vi (and vice versa) when
the difference between both gets sufficiently small. Since the initial positions are
distinct, it follows that vi 6= vj for i 6= j for all times t. ut

Theorem 3 (Explicit Steady-State Solution). Under the assumption that
(vi) is in increasing order and that Ψ(s2) is twice continuously differentiable
in (0, 2) the unique minimiser of (3) is given by v∗ = (v∗1 , . . . , v

∗
2N )T, v∗i =

(i− 1/2)/N , i = 1, . . . , 2N .

Proof. Equation (3) can be rewritten without the redundant entries of v as

E(v) = 2 ·
N−1∑
i=1

N∑
j=i+1

Ψ
(
(vj−vi)2

)
+

N∑
i=1

Ψ(4v2i )+2 ·
N−1∑
i=1

N∑
j=i+1

Ψ
(
(vi+vj)

2
)

(13)



from which one can verify by straightforward, albeit lengthy calculations that
∇E(v∗) = 0, and the Hessian of E at v∗ is

D2E(v∗) =

N∑
k=1

AkΦ
′
(
k

N

)
(14)

with sparse symmetric N ×N -matrices

Ak = 4I − 2Tk − 2T−k + 2Hk+1 + 2H2N−k+1 , k = 1, . . . , N − 1 , (15)

AN = 2I + 2HN+1 (16)

where the unit matrix I, single-diagonal Toeplitz matrices Tk and single-anti-
diagonal Hankel matrices Hk are defined as

I =
(
δi,j
)N
i,j=1

, Tk =
(
δj−i,k

)N
i,j=1

, Hk =
(
δi+j,k

)N
i,j=1

. (17)

Here, δi,j denotes the Kronecker symbol, δi,j = 1 if i = j, and δi,j = 0 otherwise.
All Ak, k = 1, . . . , N are weakly diagonally dominant with positive diagonal,
thus positive semidefinite by Gershgorin’s Theorem. Moreover, the tridiagonal
matrix A1 is of full rank, thus even positive definite. By strict convexity of Ψ(s2),
all Φ′(k/N) are positive, thus D2E(v∗) is positive definite.

As a consequence, the steady state of the gradient descent (5) for any initial
data f (with arbitrary rank-order) can be computed directly by sorting the fi:
Let σ be the permutation of {1, . . . , N} for which (fσ−1(i))i=1,...,N is increasing
(this is what a sorting algorithm computes), the steady state is given by v∗i =
(σ(i)− 1/2)/N for i = 1, . . . , N . ut

Theorem 4 (Convergence). For t→∞ any initial configuration v ∈ (0, 1)N

with distinct entries converges to a unique steady state v∗ which is the global
minimiser of the energy given in (13).

Proof. As a sum of convex functions, (13) is convex. Therefore the function
V (v) := E(v)−E(v∗) (where v∗ is the equilibrium point) is a Lyapunov function
with V (v∗) = 0 and V (v) > 0 for all v 6= v∗. Furthermore, we have

∂tV (v) = −
N∑
i=1

(
∂viE(v)

)2 ≤ 0 . (18)

Note that due to the positive definiteness of (14) we know that E(v) has a strict
(global) minimum which implies that the inequality in (18) becomes strict except
in case of v = v∗. This guarantees asymptotic Lyapunov stability of v∗ and thus
convergence to v∗ for t→∞. ut

2.2 Generalisation with Weights

Let us now consider a generalised version of our model that allows for localisation
and different treatment of distinct vi. For this purpose we make use of vectors



w = (w1, . . . , wN )
T ∈ (0,∞)

N
and x = (x1, . . . ,xN )T ∈ (Rn)N which we ex-

tend – similar to v – with the coordinates wN+1, . . . , w2N and xN+1, . . . ,x2N .
Both are defined as w2N+1−i = wi and x2N+1−i = xi. Each wi denotes the
weight, or importance, of the corresponding vi, whereas the xi provide addi-
tional n-dimensional position information which will become relevant in our
future research. Neither wi nor xi change over time. Additionally, we introduce
a weighting function γ

(
|x|
)

which is 1 for |x| ≤ % and 0 else for % > 0. Now
regard the adapted variant of (3) given by

E(p,x,w) =
1

4

2N∑
i=1

2N∑
j=1

wi · wj · γ
(
|xj − xi|

)
· Ψ

((
pj√
wj
− pi√

wi

)2
)
, (19)

where we make use of the coordinate transform pi :=
√
wi · vi, i = 1, . . . , 2N .

Referring to (4), a gradient descent can be formulated as

∂tpi =
√
wi ·

2N∑
j=1
j 6=i

wj · γ
(
|xj − xi|

)
· Φ
(

pj√
wj
− pi√

wi

)
(20)

for i = 1, . . . , 2N . Since ∂tp2N+1−i = −∂tpi, we can drop the redundant entries
and rewrite (20) with ∂tpi =

√
wi · ∂tvi for i = 1, . . . , N as

∂tvi =

N∑
j=1
j 6=i

wj · γ
(
|xj −xi|

)
·Φ(vj − vi)−

N∑
j=1

wj · γ
(
|xj −xi|

)
·Φ(vi + vj) . (21)

Properties of the Generalised Model. Proceeding similar as in Section 2.1
it can be shown that Theorem 1 also holds for the generalised model. Theorem
2 applies for all pairs vi, vj with |xi − xj | ≤ %. A minimiser p∗ for E(p,x,w)
depends in general on the definition of Ψ . As evident from Theorem 3 this depen-
dency vanishes in the special case γ = 1, wi = 1, for i = 1, . . . , N . For nontrivial
wi we assume for the moment that Φ belongs to the class of linear functions, i.e.
Φ(s) = a · (s− 1), a > 0 (cf. Figure 1). For adequate % – implying γ = 1 for all
pairs (xi,xj) – our model acts globally and we get

p∗i =
√
wi · v∗i =

√
wi ·

i∑
j=1

wj − 1
2wi

N∑
j=1

wj

, i = 1, . . . , N (22)

as a sufficient condition for the elements of a global minimiser p∗ (and v∗). A
restriction to linear functions Φ also allows to prove convergence in accordance
with Theorem 4.



2.3 Relation to Variational Signal and Image Filtering

We will interpret v1, . . . , vN as samples of a smooth 1D signal u : Ω → [0, 1] over
an interval Ω of the real axis, taken at sampling positions xi = x0 + i h with
grid mesh size h > 0. We consider the model (19) with all wi fixed to 1.

Theorem 5 (Space-Continuous Energy). Equation (19) with wi = 1 for all
i can be considered as a discretisation of

E[u] =
1

2

∫
Ω

(
W (u2x) +B(u)

)
dx (23)

with penaliser W (u2x) ≈ C Ψ(u2x) and barrier function B(u) ≈ DΨ(4u2), where
C and D are positive constants.

Remark 1. The functionW represents a decreasing penaliser convex in ux, where-
as B denotes a convex barrier function that enforces the interval constraint on u
by favouring values u away from the interval boundaries. The discrete penaliser
Ψ generates both the penaliser W for derivatives and the barrier function B.

Remark 2. Note that by construction of W the diffusivity g(u2x) := W ′(u2x) ∼
Ψ ′(u2x) has a singularity at 0 with −∞ as limit.

Remark 3. The cut-off of γ at radius % implies the locality of the functional (23)
that can thereby be linked to a diffusion equation of type (1). Without a cut-off,
a nonlocal diffusion equation would arise instead.

Proof (of Theorem 5). We notice first that vj − vi and vi + vj for 1 ≤ i, j ≤ N
are first-order approximations of (j − i)hux(xi) and 2u(xi), respectively.

Derivation of the Penaliser W . Assume first for simplicity that Ψ(s2) = −κs,
κ > 0 is linear in s on [0, 1] (thus not strictly convex). Then we have for a part
of the inner sums of (19) corresponding to a fixed i

1

2

( N∑
j=1

γ
(
|xj − xi|

)
Ψ
(
(vj − vi)2

)
+

2N∑
j=N+1

γ
(
|xj − x2N+1−i|

)
Ψ
(
(vj − v2N+1−i)

2
))

=

N∑
j=1

γ
(
|xj − xi|

)
· Ψ
(
(|vj − vi|)2

)
≈ −κhux(xi)

N∑
j=1

γ
(
|j − i|h

)
· |j − i|

= hΨ
(
ux(xi)

2
) N−i∑
k=1−i

|k| γ
(
|k|h

)
≈ hΨ

(
ux(xi)

2
)
b%c
(
b%c+ 1

)
(24)

where in the last step the sum over k = 1 − i, . . . , N − i has been replaced
with a sum over k = −b%c, . . . , b%c, thus introducing a cutoff error for those
locations xi that are within the distance % from the interval ends. Summation
over i = 1, . . . , N approximates

∫
Ω
b%c
(
b%c+1

)
Ψ(u2x) dx from which we can read

off W (u2x) ≈ b%c
(
b%c+ 1

)
Ψ(u2x).



For Ψ(s2) that are non-linear in s, Ψ(ux(xi)
2) in (24) is changed into a

weighted sum of Ψ
(
(kux(xi))

2
)

for k = 1, . . . , N − 1, which still amounts to a
decreasing function W (u2x) that is convex in ux. Qualitatively, W ′ then behaves
the same way as before.

Derivation of the Barrier Function B. Collecting the summands of (19) that
were not used in (24), we have, again for fixed i,

1

2

( 2N∑
j=N+1

γ
(
|xj − xi|

)
Ψ
(
(vj − vi)2

)
+

N∑
j=1

γ
(
|xj − x2N+1−i|

)
Ψ
(
(vj − v2N+1−i)

2
))

=

N∑
j=1

γ
(
|xj − xi|

)
Ψ
(
(vi + vj)

2
)
≈
(
2b%c+ 1

)
Ψ
(
4u(xi)

2
)
, (25)

and thus after summation over i analogous to the previous step
∫
Ω
B(u) dx with

B(u) ≈ h−1
(
2b%c+ 1

)
Ψ(4u2). ut

Similar derivations can be made for patches of 2D images. A point worth
noticing is that the barrier function B is bounded. This differs from usual contin-
uous models where such barrier functions tend to infinity at the interval bound-
aries. However, for each given sampling grid and patch size the barrier function
is just strong enough to prevent W from pushing the values out of the interval.

3 Explicit Time Discretisation

Using forward differences to approximate the time derivative in (21) and using
γi` := γ

(
|x` − xi|

)
the explicit scheme of the generalised model reads

vk+1
i = vki +τ ·

N∑
`=1
6̀=i

w`·γi`·Φ(vk`−vki )−τ ·
N∑
`=1

w`·γi`·Φ(vki +vk` ), i = 1, . . . , N, (26)

where τ denotes the time step size and an upper index k refers to the time kτ .

Theorem 6 (Stability Guarantees for the Explicit Scheme). Let LΦ be
the Lipschitz constant of Φ restricted to the interval (0, 2). Moreover, assume that

the time step size used in the explicit scheme (26) satisfies τ <

(
2LΦ

N∑
i=1

wi

)−1
.

Then the following stability properties hold:

(i) If 0 < vki < 1, then 0 < vk+1
i < 1, for every 1 ≤ i ≤ N .

(ii) If γ = 1 and 0 < vki < vkj < 1, then vk+1
i < vk+1

j .

Proof. (i). Let 0 < vki , v
k
j < 1. We have the following three cases:

If vki < vkj then vkj − vki , vki + vkj ∈ (0, 2). Thus,∣∣Φ(vki + vkj )− Φ(vkj − vki )
∣∣ < LΦ · 2vi . (27)



If vkj < vki ≤ 1
2 , then vkj − vki ∈ (−1, 0) and vkj + vki ∈ (0, 1). Thus,

0 ≤ Φ(vkj − vki )− Φ(vki + vkj ) and 0 ≤ −Φ(2vi) . (28)

Finally, if vkj < vki and 1
2 < vki , using Φ(1) = 0 and the periodicity of Φ we get∣∣Φ(vkj − vki )− Φ(vki + vkj )
∣∣ =

∣∣Φ(vki + vkj )− Φ(2 + vkj − vki )
∣∣ < 2viLΦ and

|Φ(2vi)| = |Φ(2vi)− Φ(1)| ≤ |2vi − 1|LΦ ≤ 2viLΦ . (29)

Combining (27), (28) and (29), we obtain that

− τ ·
N∑
`=1
6̀=i

w` · γi` ·
(
Φ(vki + vk` )− Φ(vk` − vki )

)
− τ · wi · Φ(2vki )

< τ · LΦ · 2vki ·
N∑
`=1

w` < vki . (30)

This, together with (26) shows that vk+1
i > 0, as claimed.

The proof of vk+1
i < 1 proceeds in a similar way.

(ii). Considering the explicit discretisation of (26) for ∂tvi and ∂tvj and γ = 1,
we obtain for i, j = 1, . . . , N

vk+1
j − vk+1

i = vkj − vki + τ · (wi + wj) · Φ(vki − vkj )+

τ ·
N∑
`=1
6̀=i,j

w` ·
(
Φ(vk` − vkj )− Φ(vk` − vki )

)
−

τ ·
N∑
`=1

w` ·
(
Φ(vk` + vkj )− Φ(vk` + vki )

)
. (31)

Using the fact that Φ is Lipschitz in the interval (0, 2), we also know that

τ ·
N∑
`=1
6̀=i,j

w` ·
∣∣Φ(vk` − vkj )− Φ(vk` − vki )

∣∣+ τ ·
N∑
`=1

w` ·
∣∣Φ(vk` + vkj )− Φ(vk` + vki )

∣∣
< τ · LΦ · 2 |vkj − vki | ·

N∑
`=1

w` < vkj − vki . (32)

Finally, since 0 < Φ(vki − vkj ), (31) and (32) imply that 0 < vk+1
j − vk+1

i , as
claimed. ut



(a) Original image. (b) Result for t = 5 · 10−7.

(c) Result for t = 10−6. (d) Steady state following (22).

Fig. 2. Processing a photography of “Flatowturm (Potsdam)” taken by the authors.

4 Applications

Image Enhancement. Similar to the approach proposed in [1] we apply our
model to enhance the global contrast of digital grey value images f : {1, . . . , nx}×
{1, . . . , ny} → [0, 1]. As illustrated in Figure 2, this can be achieved in two ways.
The first option uses the explicit scheme (26) to describe the evolution of grey
values vi up to some time t (see Figure 2 (b) and (c)) where the weights wi reflect
the multiplicity of each grey value vi. Note that all grey values are mapped to
the interval (0, 1) beforehand to ensure the validity of our model and γ is fixed
to 1. The amount of contrast enhancement grows with increasing values of t. In
our experiments an image size of 683× 384 pixels and the application of a flux
function Φ with LΦ = 1 (see Figure 1) imply an upper bound of 1/(2 · 683 · 384)
for τ and allow us to achieve the presented results after just one iteration.

If one is only interested in an enhanced version of the original image with
maximum global contrast there is an alternative, namely the derived steady state
solution for linear flux functions (22). The result is shown in Figure 2 (d). Figure
2 also confirms that the solution of the explicit scheme (26) converges to the
steady state solution (22) for t→∞. From (22) it is clear that the steady state
is equivalent to histogram equalisation. It is therefore interesting to compare our
evolution with the histogram modification flow introduced in [6] which can have
the same steady state. Indeed, the flow from [6] can also be translated into a
combination of repulsion among grey-values and a barrier function. However, as
in [6] the repulsive force is constant, and the barrier function quadratic, they



cannot be derived from the same kind of interaction between the vi and their
reflected counterparts.

Repulsive Swarm Dynamics. Recent swarm models with individual particles
often employ a pairwise potential U : Rn → R to model the attraction and
repulsion behaviour among swarm mates (see e.g. [2] and the references therein).
Physically simplified models describe the particle velocity directly (first order
models):

∂tvi = −
N∑
j=1
j 6=i

∇U
(
|vi − vj |

)
, i = 1, . . . , N . (33)

These models are often inspired by biology and describe long-term attractive and
short-term repulsive behaviour between particles. The interplay of attractive and
repulsive forces leads to flocking and allows to gain stability for the swarm. In
the following we show that our model can be understood in terms of a purely
repulsive first order swarm model. To the best of our knowledge there exists no
model so far which restricts itself to pure repulsion among particles.

Our Purely Repulsive Swarm Model. Let v ∈ (0, 2)
2N

denote the extended vector

of particle positions and w ∈ (0,∞)
2N

a constant vector containing the corre-
sponding particle weights (extension of both vectors as described in Section 2.1
and Section 2.2). Then the evolution of particles is given by

∂tvi =

2N∑
j=1
j 6=i

wj ·Φ(vj−vi) =

2N∑
j=1
j 6=i

wj ·k(vj−vi) · (vj−vi) , i = 1, . . . , 2N , (34)

where k(s) = Φ(s)/s for s 6= 0. The latter kernel function k describes the amount
of repulsion between two particles and can also be interpreted in terms of a
diffusivity Ψ ′(s2). Comparing (33) and (34) it becomes clear that our model rep-
resents a first order swarm model which defines purely repulsive forces among N
particles and their N reflections at the domain boundaries. A specific character-
istic of our model compared to others is that it describes the repulsive movement
of N particles in a closed system.

Results. Our experiments on purely repulsive swarm behaviour presented in
Figure 3 and 4 illustrate the basic properties of our model. We start with a
random initial particle distribution for N = 7 assuming that vi ∈ (0, 1). In our
first experiment (Figure 3) the initial weights wi are set to 1 which results – as
described in Section 2.1 – in a uniform distribution of the particles in the steady
state. In the second experiment (Figure 4) we assume that the initial weights are
given by wi = 1/i, for i = 1, . . . , N . These weights are illustrated by the area of
the particles in Figure 4. We apply the linear flux function Φ from Figure 1. We
notice that in the steady state given by (22), all particles are still in the same
order as before. However, the distance between neighbouring particles varies and
depends on the particle weights: the larger the weight, the larger the distance.



1 2 3 4 5 6 7

0 1initial state

1 2 3 4 5 6 7

0 1steady state

Fig. 3. Application of the model to a system of 7 particles with weights wi = 1.

1 2 3 4 5 6 7

0 1initial state

1 2 3 4 5 6 7

0 1steady state

Fig. 4. Application of the model to a system of 7 particles with weights wi = 1/i.

5 Summary and Conclusions

In our paper we have shown an unexpected result: Pure backward diffusion and
fully repulsive swarm behaviour can be modelled as gradient descent of strictly
convex energies. Moreover, we have demonstrated that it is neither necessary to
impose forward or zero diffusion at extrema nor to add classical fidelity terms:
Stability can already be guaranteed by reflecting boundary conditions in the
diffusion co-domain or the domain of the positions of the swarm members. This
stability carries over directly to a straightforward explicit scheme. No sophisti-
cated numerics is required. A multi-dimensional extension of our model was left
out for reasons of clarity and simplicity and is part of our current research.

We expect that our two key ingredients – convex energies combined with
range constraints – are not only beneficial for modelling backward diffusion and
repulsive swarm dynamics: They may pave the road to a number of new backward
models for visual computing applications. This is part of our ongoing research
as well.
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