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Abstract. Partial differential equations (PDEs) have recently shown to
be very promising for image interpolation and compression. Inspired from
this work, we present a PDE based approach to interpolation of surfaces
from scattered point sets using the geometric diffusion equation. Trian-
gulated surfaces are considered in the discrete setting, and the geometric
diffusion equation is discretized by the finite element method directly on
the triangular mesh. Furthermore, a PDE based method for lossy com-
pression of triangulated surfaces is presented. The idea is to store only
a few relevant vertex coordinates in the encoding step. In the decoding
step, the remaining vertices are reconstructed by solving the geomet-
ric diffusion equation. Finally, two modified reconstruction methods are
proposed that are shown to improve the compression quality for both
images and surfaces. These reconstruction methods approximate instead
of interpolating, and have links to Hopscotch methods for the numerical
solution of PDEs. Experiments are presented illustrating that results of
high quality can be obtained using simple geometric diffusion without
any information on surface normals.

1 Introduction

Compression of mesh geometry is getting increasingly more important. Surfaces
of millions, and even billions of vertices can get acquired. In order to handle such
large amount of data, compression is necessary.

Until recently, the most competitive image and surface compression methods
are based on decorrelating the data in the frequency domain, using methods such
as wavelets or the cosine transform [1,2,3]. For image compression, the work of
[4] proposed a very promosing alternative method, based on interpolation in the
spatial domain with PDEs.

Inspired from this work, we propose a PDE based method for surface inter-
polation from sparse scattered point sets, and a PDE based method for lossy
compression of triangulated surfaces. The interpolation method is formulated in
the continuous setting as finding the steady state of a time dependent geomet-
ric PDE. In the discrete setting, triangulated surfaces are considered, and the



PDE is discretized by the finite element method, yielding a discrete flow for each
vertex coordinate.

The compression method encodes the surface by storing only a suitable small
subset of the vertices. The surface is reconstructed in the decoding step by
interpolating from the scattered set of points by solving a geometric PDE.

In this work, we particularly study the simple geometric diffusion equation,
and show that it has surprisingly good interpolation properties when the inter-
polation points are selected properly. Furthermore, an improvement is presented
based on this equation, which links approximation and numerical methods for
PDEs. A similar improvement is also presented for image compression, show-
ing that the linear diffusion equation can yield equally good results as more
complicated nonlinear PDEs.

The goal of this paper is to prove the concept of the new surface compression
method. We aim to make comparisons with other methods at later stage of
development. At the current stage it is hard to assess the exact compression
rate of our method. Also, in contrary to wavelets which require semi-regular
meshes, our method is applied directly to irregular meshes. This makes a direct
comparison difficult.

The structure of the paper is as follows: In Section 2 we describe the contin-
uous framework behind our surface interpolation. A finite element discretization
is presented in Section 3. In the fourth section we give details on our baseline
method for surface compression, while in Section 5 we introduce two modifica-
tions that avoid singularities at the interpolation points. Numerical experiments
are performed in Section 6, and the paper is concluded with a summary in Sec-
tion 7.

Relation to previous work. PDEs have been used for a growing number
of image and surface processing problems in the recent years. They have shown
to be very powerful for problems such as inpainting, where one wants to fill in
regions of missing information using information at the boundary of the regions
[5,6,7,8,9]. Interpolation is a special type of inpainting problem, where the data
is only known on a scattered set of points. Until recently, PDE based methods
have been little studied for this problem.

For surface interpolation, one method based on solving the Poisson problem
was proposed in [10]. Contrary to this work, we don’t need any information
about the normal vectors. From a compression point of view this is an advantage,
since normal vectors are expensive to store. For unoriented dense point clouds, a
level set approach was proposed in [11], based on finding the surface minimizing
a functional depending on the distance to the interpolation points. In [12,13],
Kobbelt et. al. proposed a method for interpolating a fine polygon from the
vertices of a coarse polygon by minimizing a function of linearized curvature.

For image interpolation, the recent work of [4] demonstrated that certain
PDEs are very promising. Especially edge enhancing anisotropic diffusion [14],
where an anisotropic diffusion tensor suppresses diffusion across edges and allows
diffusion along them, performed well. Also the linear diffusion equation yielded
good results, provided that the interpolation points were chosen carefully. The



image was reconstructed by solving a Dirichlet boundary value problem with
the interpolation data as boundary conditions. Furthermore, a new image com-
pression method was developed based on these results, shown to outperform the
well-known JPEG standard at high compression rates. The idea was to store
only pixels that were hard to reconstruct by the PDE in the encoding step. In
the decoding step, the image was interpolated from this sparse set of pixels. Se-
lection of the best interpolation points is a difficult combinatorial optimization
problem. For the linear diffusion equation, [15] showed that the exact solution
could be computed. For other PDEs, suboptimal solutions could be estimated
by B-tree triangular coding, or stochastic approaches [4].

We wish to extend the image interpolation ideas to surfaces. Locally, the
coordinate maps of a surface are very similar to an image. We therefore formulate
PDEs, such that the differential operators act directly on the coordinate maps. In
this sense, the geometric diffusion equation can be seen as the surface equivalent
of the linear diffusion equation.

The geometric diffusion equation and the Laplace-Beltrami operator have
been extensively used in geometric modelling. Typically for the purpose of sur-
face fairing or smoothing [16,17,18,19,20]. In [21], a mesh encoding technique
is developed based on quantization of the discrete Laplace-Beltrami operator
applied to the mesh.

2 PDE based surface interpolation

In this section, we present the continuous formulation for our PDE based method
for surface interpolation from sparse scattered point sets.

We begin with some basic notation. Let S denote a smooth, compact, ori-
entable surface embedded in R

3. S can be parameterized by {xα, Ωα}α, where
xα(ξα

1 , ξα
2 ) : Ωα 7→ S are the coordinate maps (patches). For ease of notation,

we from now on drop the subscript α. We let ∇S denote the intrinsic gradient
operator of S. Applied to a function u ∈ C1(S), this operator can be written in
local coordinates

∇Su =
∑
i,j

g−1
ij

∂(u ◦ x)

∂ξj

∂

∂ξi

, (1)

where gij = I( ∂x
∂ξi

, ∂x
∂ξj

) = ∂x
∂ξi
· ∂x

∂ξj
are the metric coefficients with respect to x.

I(·, ·) is the first fundamental form, which at each p ∈ S is the inner product on
the tangent plane TpS. The Laplace-Beltrami operator ∆S is a generalization
of the Laplace operator for manifolds. Applied to a function u ∈ C2(S), it is
defined by the duality

∫
S

∆Su φdx = −

∫
S

I(∇Su,∇Sφ) +

∫
∂S

∂ncou φdσ, ∀φ ∈ C∞(S), (2)

where nco is the co-normal, which at each p ∈ ∂S is the normal vector of the
curve ∂S lying in the tangent plane TpS. Linear diffusion can now be formulated



for a function u defined on a surface

∂u

∂t
= ∆Su on S × [0,∞) (3)

Our interpolation method is based on applying these differential operators
directly to the coordinate maps x. We will particularly focus on the geometric
diffusion equation, defined as

∂x

∂t
= ∆S(t)x on S(t) × [0,∞). (4)

Note that this equation is non-linear, as the differential operators depend on the
unknown x. It can be shown that this equation describes motion by mean cur-
vature (see [22] page 151). A disadvangate of this equation is certain shrinking
effects on the volume enclosed by the surface [23]. Incorporation of boundary
conditions will counteract most of these shrinking effects. An even better coun-
termeasure is presented in Section 5.

Our interpolation method can now be formulated. We let xknown denote the
coordinates of the scattered set of points. The surface S is reconstructed by
solving the geometric diffusion equation with xknown as boundary conditions.

∂x

∂t
= ∆S(t)x on S(t) × [0,∞) (5)

x = xknown on ∂S(t) × [0,∞), (6)

S(0) = S0 (7)

where S0 is some initial guess. In order to be well posed in the continuous setting,
xknown is assumed to be patches of non-zero measure. In the discrete setting,
points always have a non-zero measure, so we avoid this problem.

As previously stated, the geometric diffusion equation can locally be seen as
the surface equivalent of the linear diffusion equation, since the Laplace-Beltrami
operator is applied to the coordinate maps. A different philosophy is to process
the normal vectors, which yields higher order PDEs. See [24] for total curvature
minimization in the level set framework. See [25] for minimization of Willmore
energy and approximations on discrete meshes.

It could interesting to formulate the interpolation method with higher PDEs,
however in this paper we focus on second order for a number of reasons: Higher
order PDEs requires information of the normal vectors at the boundary in order
to have a unique solution. From a compression point of view, storage of normal
vectors at the interpolation points would require twice as much space. Numerical
solution of higher order PDEs is computationally harder. Finally, we expect
oscillation problems, since the boundary is so sparsely scattered. On the order
hand, higher order PDEs have many attractive properties such as less shrinking
effects, preservation of edges etc. They should be explored for the interpolation
problem in the future. A generalization we have strongest belief in is anisotropic
geometric diffusion [19].



3 Finite element discretization

Discretization of our continuous surface interpolation model is done by the finite
element method. Using linear elements results in linear coordinate patches, which
suits very well with triangulated surfaces. A finite element discretization for
the Laplace-Beltrami operator was first proposed in [18], and for the geometric
diffusion equation in [17]. We express equation (5) - (7) in weak form. That is,
find x(t) such that∫

S(t)

∂x

∂t
φ dx = −

∫
S(t)

I(∇M(t)x,∇S(t)φ) dx t > 0 (8)

S(0) = S0, (9)

for all φ ∈ C∞(S(t))3 = V 3 with φ = 0 on ∂S(t). Note that the boundary term
in (2) vanishes, because the boundary is held fixed.

Spatial discretization is made by reducing V to a finite dimensional subspace
Vh ⊂ V . The surface coordinate maps are thus reduced to a finite dimensional
subspace. This will result in a discrete surface Sh. Letting X(t) denote the dis-
crete coordinate map, we then obtain∫

Sh(t)

∂X

∂t
φ dx = −

∫
Sh(t)

I(∇Sh(t)X,∇Sh(t)φ) dx t > 0 (10)

Mh(0) = Mh0
(11)

for all φ ∈ V 3
h with φ = 0 on ∂Sh. We choose the subspace consisting of linear

polynomials on each triangle.

Vh = {φ ∈ C0(Mh) s.t. |φ|T is a linear polynomial on each triangle T }.

Choosing time step τ and letting Xn = X(nτ) and Sn
h = Sh(nτ), we discretize

semi-implicitly in time [17] by
∫

Sn
h

Xn+1 −Xn

τ
φ dx = −

∫
Sn

h

I(∇Sn
h
Xn+1,∇Sn

h
φ) dx n ∈ [0, 1, ...) (12)

M0
h = Mh0

, (13)

for all φ ∈ V 3
h such that φ = 0 on ∂Sn

h . We thus observe that the surface Sn+1
h

at time step n + 1 is parameterized over the surface at the previous time step
Sn

h . For each time step n, we choose the nodal basis {Φn
i }

m
i=1 for Vh, where m

is the number of vertices. That is, for each vertex X̄n
i we associate a piecewise

linear basis function Φn
i such that

Φn
j (X̄n

i ) = δij , i, j = 1, ..., m

The coordinate map can now be written in terms of the basis as Xn+1 =∑m

i=1 X̄n+1
i Φn

i and Xn =
∑m

i=1 X̄n
i Φn

i . Using these expressions, equation (12)
can be written as a linear system for the new vertex coordinates X̄n+1.

(M + τL)X̄n+1 = MX̄n n ∈ [0, 1, ...) (14)



where Mij =
∫

Sn
h

Φn
i Φn

j dx and Lij =
∫

Sn
h

I(∇Sn
h
Φn

i ,∇Sn
h
Φn

j ) dx. At each time

step, this linear system must be solved for each of the three vertex coordinates.
Note that the stiffness matrix (M + τL) is identical for each of the three linear
systems, only the right hand side differs.

By the choice of the basis, we observe that (M + τL) is very sparse, with
non-zeroes mainly concentrated around the diagonal. To numerically solve the
linear systems, iterative methods like the conjugate gradient method (CG) or
SOR can be used. At each time step n, X̄n can be used for initialization, since
we expect X̄n+1 to be close to X̄n.

4 Surface compression

The new compression method can now be formulated. A triangular mesh is en-
coded by deleting all vertices that are reconstructed in acceptable quality by the
PDE. Only the remaining vertices are stored on the computer. In the decoding
step, the unknown vertices are reconstructed via PDE based interpolation.

4.1 Encoding

To achieve a compression rate of p percent, we aim to store only p percent
of the vertices. The vertices should be selected such that the reconstruction
error when using them for interpolation points is minimized. Intuitively, these
points should be located at areas of high curvature. To efficiently find exact or
suboptimal solutions of this combinatorial optimization problem is of interest
in its own. Since the goal of this paper is not efficiency, but to demonstrate
the potential of the method, we present a stochastic approach. The idea is to
progressively reduce the number of vertices. This is achieved by interpolating in
small randomly selected subsets of the vertices, and permanently removing the
vertices with least reconstruction error:

Encoding Algorithm:

Set V = {all vertices in the mesh}.
Repeat until desired sparsification is reached:

1. Randomly remove set R of vertices (e.g. |R| = 5% of |V |).
2. Interpolate in V \R with geometric diffusion.
3. Permanently remove the set P , where reconstruction error is

smallest (e.g. |P | = 5% of |R|)

V ← V \P

In the interpolation step (step 2), the vertices in the known surface are used
for initialization. Finally, a coarse triangulation topologically equivalent to the
original mesh should be defined for the sparse set of vertices. This triangulation
should be stored in addition to the set of vertices.

It is hard to assess the exact compression rate of our method at the current
stage. We assume that if p percent of the vertices are to be stored, the coarse



triangulation requires p percent as much storage as the original triangulation.
Therefore, the compression rate is also p percent. Since the coarse triangulation
can potentially be stored with much less space, the actual compression should
be even higher.

4.2 Decoding

The surface is decoded by interpolating from the stored set of vertices V . Note
that we do not aim to reconstruct the exact locations of the original vertex
positions. Our aim is rather to reconstruct a surface which as close as possible
resembles the original surface. Within that surface, we do not care how the
vertices are distributed relative to the original surface.

Since only a small amount of vertices are known, the interpolation method
requires an initialization of all the unknown vertices. Furthermore an initial tri-
angulation must be defined on the set of all known and initial vertices. Note that
such an initialization, also determines an initialization of the metric coefficients
of the discrete Laplace-Beltrami operator.

The initialization can be computed in many ways. Starting with the coarse
mesh, a possibility is to iteratively refine and solve the PDE, introducing more
vertices in each iteration. At each step, the mesh should be topologically equiv-
alent to the stored mesh. In our experiments, we have simply used the known
mesh for initialization. This will not have any influence on the final result, since
under Dirichlet boundary conditions, the steady state of the geometric diffusion
equation is unique.

5 Surface and image approximation

It is well known that the diffusion equation results in a smooth functions ev-
erywhere, except at the boundary where we in general cannot say anything
about the smoothness. In fact, as the area of the boundary points goes to zero,
a logarithmic singularity will arise at each boundary point. For the interpola-
tion problem, this can be observed as a sharp cusp at each interpolation point,
although in the discrete setting the singularities are not fully developed. The
phenomena happens both for surfaces and images, but is much more visible for
surfaces.

We now present a method to counteract this problem, which is based on
approximation instead of interpolation. Afterwards, a further improvement is
presented which is also able to prevent shrinking effects, and yields a sharper
reconstruction at edges.

The idea is to iteratively exchange the role of interpolation domain and
boundary domain. Letting S1 denote the set of unknown vertices, and S2 the set
of known vertices, the algorithm can be sketched as follows.



Modification I:

for n=1,...,N:
1. Interpolate Sn+1

1 with Sn
2 fixed

2. Interpolate Sn+1
2 with Sn+1

1 fixed

where S0
i is the input and SN

i is the output for i = 1, 2.

This process may be interpreted as Hopscotch iteration for the geometric
diffusion equation in the whole domain. Hopscotch iteration was developed in
the 1960’s as a numerical method for solving time dependent PDEs [26,27]. The
idea is to decompose the spatial domain into two or more subdomains consisting
of scattered regions. The PDE is solved numerically by alternatingly taking one
time step in each subdomain, with function values in the inactive subdomain as
boundary conditions. Attempts to analyze the numerical error has been made in
the above mentioned references. For a given compression rate, S1 and S2 each
contain a certain percentage of vertices. Therefore, this method is independent
on the resolution of the mesh.

Note that this method achieves smoothness at the expense of accuracy, as the
surface will be progressively diffused in each time step. However, the smoothness
will be significantly improved after only one iteration.

A further improvement can be made. For decompression, we observe that
the interpolation points are located at locations of sharp edges and corners,
where the curvature is large. We therefore propose the same iterative scheme,
but instead project the displacements of the interpolation points back in their
opposite direction. This can be seen as inverse diffusion applied to the inter-
polation points. The motivation is to imitate the behaviour of edge enhancing
nonlinear PDEs, which perform inverse diffusion at locations of sharp corners.
In order to maintain a smooth result, backward diffusion is only applied every
second iteration. The algorithm is sketched below.

Modification II:

for n=1,2,...,N:
1. Interpolate Sn+1

1 with Sn
2 fixed.

2. Interpolate Sn+1
2 with Sn+1

1 fixed.
3. if n is odd: Sn+1

2 ← Sn
2 − 2Sn+1

2

We experienced that usually the best results were obtained with one iteration of
modification I, or two iterations of modification II. All experiments in this paper
are made with these number of iterations.

We have also applied this method for image compression with linear diffusion.
In this case S1 and S2 can be replaced by Ω1 and Ω2, where Ω1 is the domain
of unknown pixels, and Ω2 is the domain of known pixels. Analyzing the L1
error, we are able to obtain equally good reconstruction results based on linear
diffusion as the more expensive nonlinear anisotropic diffusion.



(a) Ground truth (b) interpolation points (c) Geometric diffusion

Fig. 1. Reconstruction from 10% of vertices

6 Numerical experiments

This section presents numerical results. The mean L2 error measures for all
surface experiments, computed by the metro tool [28], are shown in Table 1. An
illustrative example is shown in Figure 1, where 10 percent of the interpolation
vertices have been selected. The coordinates of these vertices are depicted as dark
dots in Figure 1(b). This demonstrates that the encoding step tends to select
vertices at locations of high curvature, such as sharp edges. For this particular
example, the compression is not lossy, as the exact surface can be reconstructed.

The next example, Figure 4, aims to show the differences between the in-
terpolation method and the different approximation modifications. For this low
resolution mesh, the sharp cusps at each interpolation point are particularly vis-
ible, Figure 4 (b). As seen in Figure 4(c)(d), the two modifications significantly
reduces the problem. In addition, modification II yields a sharper reconstruction
with less shrinking effects. Although it may be hard to see this difference when
the surfaces are placed next to each other, the effect is clear from the error mea-
sures in Table 1, Moai. As expected, modification I yields slightly higher errors
than geometric diffusion, while modification II is significantly better than both
geometric diffusion and modification I.

Some more realistic examples are depicted next. In Figure 5, we compare
interpolation with geometric diffusion, modification I, and modification II. For
this example, 90 percent of the vertex coordinates have been deleted in the
encoding step. We observe that the overall shape can be reconstructed quite
well with geometric diffusion, Figure 5(b). A disadvantage is the sharp cusps at
each interpolation point. The result of one iteration of modification I is shown
in Figure 5(c). The surface is smoother, but has the drawback of smooth corners
and edges, and slight shrinking effects. Figure 5(d) is the result of two iterations
of modification II, which we observe yields both a sharper results at edges, while
removing singularities at the boundary points. See also Table 1, Armadillo.

Another example is shown in Figure 6, where 95 percent of the vertex coordi-
nates have been removed. This example demonstrates that quite amazing results



Table 1. Mean L2 errors (metro) for surfaces

Compression rate Geometric diffusion Modification I Modification II

2 percent - - -
Moai 5 percent 0.047 0.050 0.024

10 percent 0.021 0.024 0.009

2 percent 0.218 0.226 0.171
Armadillo 5 percent 0.128 0.138 0.082

10 percent 0.065 0.079 0.049

2 percent 0.107 0.112 0.091
Max-Planck 5 percent 0.074 0.082 0.056

10 percent 0.045 0.059 0.033

can be obtained with geometric diffusion. The improved result with modification
II is also shown. At such high compression rate some small scale detail, such as
wrinkles, may become less prominent.

We also demonstrate the approximation method presented in Section 5 for
image compression. In Figure 2 and 3, the reconstruction results of linear diffu-
sion, anisotropic diffusion and modification II are shown. In Table 2, we compare
the L1 reconstruction error of the different PDEs. We observe that modifica-
tion II yields equally good results as the more sophisticated anisotropic dif-
fusion, although it seems to have a slightly lesser ability of preserving edges.
Anisotropic diffusion was shown to outperform the well known JPEG standard
in [4]. Since modification II is based on linear diffusion, it is several times faster
than anisotropic diffusion.

7 Conclusions

We have presented new PDE based methods for interpolation, approximation
and compression of triangulated surfaces. Experiments show that amazingly
good results can be obtained with the simple geometric diffusion equation acting
on the coordinate map from unoriented points (i.e. without any normal vectors)
when the interpolation points are selected properly.

This work may only be considered a proof of concept, as further developments
are necessary for a practical method. In the future, we will study anisotropic
geometric diffusion equations [19] and develop a faster algorithm for selecting the

Table 2. Average absolute errors (L1 errors) for images

Linear diffusion Anisotropic diffusion Modification II

Trui 14.614 7.697 8.037
Peppers 12.967 10.591 9.471



best interpolation points in the encoding step. Comparisons with other methods
will also be made.
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Fig. 2. Input images. Left: Trui, Right: Peppers. Resolution: 256 × 256



Fig. 3. Reconstructions from 2.5 % of pixels. Top: Trui. Bottom: Peppers. From left
to right: linear diffusion, anisotropic diffusion, modification II.

(a) Ground truth (b) Geometric diffu-
sion

(c) Modification I (d) Modification II

Fig. 4. Reconstruction from 10% of vertices, Moai experiment. Total number of ver-
tices: 10002, total number of triangles: 20000. (a) Ground Truth, (b) interpolation by
geometric diffusion, (c) modification I, (d) modification II



(a) Ground truth (b) Geometric diffusion

(c) Modification I (d) Modification II

Fig. 5. Reconstruction from 10% of vertices, Armadillo man experiment. Total number
of vertices: 165954, total number of triangles: 331904. (a) Ground Truth, (b) interpo-
lation by geometric diffusion, (c) modification I, (d) modification II



(a) Ground Truth (b) Interpolation points

(c) Geometric diffusion (d) Modification II

Fig. 6. Reconstruction from 5% of vertices, Max Planck experiment. Total number
of vertices: 199169, total number of triangles: 398043. (a) Ground Truth, (b) selected
interpolation points, (c) interpolation geometric diffusion, (d) modification II


