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Abstract Inpainting with partial differential equations (PDEs) has been
used successfully to reconstruct missing parts of an image, even for sparse
data. On the other hand, sparse data interpolation is a rich field of its
own with different methods such as scattered data interpolation with
radial basis functions (RBFs).
The goal of this paper is to establish connections between inpainting with
linear shift- and rotation-invariant differential operators and interpola-
tion with radial basis functions. The bridge between these two worlds
is built by generalising inpainting methods to handle pseudodifferential
operators and by considering their Green’s functions. In this way, we find
novel relations of various multiquadrics to pseudodifferential operators.
Moreover, we show that many popular radial basis functions are related
to processes from the diffusion and scale-space literature. We present a
single numerical algorithm for all methods. It combines conjugate gradi-
ents with pseudodifferential operator evaluations in the Fourier domain.
Our experiments show that the linear PDE- and the RBF-based com-
munities have developed concepts of comparable quality.

Keywords: inpainting · sparse data · partial differential equations ·
pseudodifferential operators · scattered data interpolation · radial basis
functions · Green’s functions.

1 Introduction

The problem of restoring damaged or lost parts of an image is known as inpaint-
ing. Solution strategies based on partial differential equations (PDEs) are very
popular [22,2,26] since they can fill in missing (non-textured) data in a visually
plausible way. This may even hold when the data become sparse. However, in
this case one achieves best approximation quality if one optimises the inpaint-
ing data; see e.g. [1,21,13,6]. This idea is used successfully in inpainting-based
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lossy image compression [12]. Although nonlinear anisotropic diffusion methods
perform best in this application [12,24], linear operators such as homogeneous
diffusion or biharmonic inpainting are often preferred: They are simpler and
parameter-free, easier to analyse, and may give rise to faster algorithms [20,23].

Sparse inpainting can also be seen as a scattered data interpolation problem
[11,29]. A popular approach in this field is the interpolation with radial basis
functions (RBFs) [4]. Although these methods are most popular in geometric
modelling and geosciences, they have also been used for image reconstruction;
see e.g. [17,28,14]. However, to our knowledge, a systematic connection between
linear PDE-based inpainting and scattered data interpolation cannot be found in
the literature so far, and it is unclear how both paradigms perform in comparison.

Our Contribution. Our goal is to address these problems. We establish a
general connection between inpainting with shift- and rotation-invariant PDEs
and RBF-based interpolation. Since shift-invariant linear operators perform a
pointwise multiplication in Fourier space, they are pseudodifferential operators.
This motivates us to introduce the concept of pseudodifferential inpainting. By
considering the Green’s functions of rotationally invariant pseudodifferential op-
erators, we derive the desired link to RBFs. We identify popular RBFs with
pseudodifferential operators that are diffusion and scale-space processes, and we
evaluate the performance of pseudodifferential inpainting of sparse data.

Related Work. Pseudodifferential operators are not a novelty for research-
ers working on scale-spaces and variational methods. Already in 1988, Yuille
and Grzywacz [30] have expressed Gaussian convolution as regularisation with
a pseudodifferential operator. Pseudodifferential operators are also a natural
concept for the class of α-scale-spaces (see e.g. Duits et al. [8]), which com-
prises the Poisson scale-space of Felsberg and Sommer [10]. Other scale-spaces
that involve pseudodifferential operators and are relevant for our paper are the
Bessel scale-spaces of Burgeth et al. [5]. More recently, Schmidt and Weickert [25]
have introduced general shift-invariant linear scale-spaces in terms of pseudodif-
ferential operators and identified their corresponding morphological evolutions.
However, to the best of our knowledge, none of these pseudodifferential operators
have been used in inpainting so far.

To solve harmonic and biharmonic inpainting problems, Hoffmann et al. [14]
have used linear combinations of Green’s functions. Their considerations are our
point of departure towards more general inpainting operators.

The connection between specific RBFs and partial differential operators, more
precisely variational minimisation problems, was already used by Duchon [7] to
establish thin-plate splines. Later on, several researchers derived suitable kernels
for certain interpolation and approximation problems; see e.g. [16,19,9]. However,
most publications are either specialised on one or two types of RBFs or consider
the connection in a rather abstract setting. What is missing is a practical method
that directly translates between an arbitrary (pseudo-)differential operator and
a radial basis function. Our paper closes this gap.

Organisation of the Paper. In Section 2, we review the framework of
harmonic inpainting and extend it to pseudodifferential inpainting. RBF inter-
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polation is sketched in Section 3. We connect both worlds in Section 4 via the
concept of Green’s functions. Our numerical method, based on conjugate gradi-
ents and Fourier techniques, is described in Section 5, followed by a discussion
of experimental results in Section 6. Section 7 gives a summary and an outlook.

2 From Harmonic to Pseudodifferential Inpainting

Let us consider a rectangular image domain Ω = [0, a] × [0, b] ⊂ R2 and a
greyscale image f : Ω → R, which is only known on a subdomain K ⊂ Ω. A
possible way to recover the missing data is so-called harmonic inpainting, which
can be formulated as follows: Keep the data where it is known and solve the
Laplace equation where no data is known, i.e.,

u = f on K, (1)
−∆u = 0 on Ω \K, (2)

with reflecting boundary conditions on ∂Ω. This approach minimises the energy

E(u) =

∫
K

(u− f)2 dx+

∫
Ω\K
|∇u|2 dx, (3)

where |·| denotes the Euclidean norm and ∇ the nabla operator in R2.
We define the Fourier transform as

û(ζ) = F [u](ζ) :=
∫
R2

u(x) exp
(
−i 2π ζTx

)
dx. (4)

The action of a linear, shift-, and rotation-invariant operator can be characterised
by a factor p̂(|ζ|) in the Fourier domain. This factor is called a symbol. Given
a symbol, we can define a pseudodifferential operator p(−∆) by reversing the
Fourier transform, i.e.,

p(−∆)u(x) :=

∫
R2

p̂(|ζ|) û(ζ) exp
(
i 2π ζTx

)
dζ. (5)

For example, if we choose as operator the negative Laplacian (−∆), its symbol
is given by

p̂(−∆)(ζ) = 4π2 |ζ|2 . (6)

This motivates the notation p(−∆) for the pseudodifferential operators which
we consider here.

An inpainting problem with a pseudodifferential operator reads

u = f on K,
p(−∆)u = 0 on Ω \K,

(7)
(8)

with reflecting boundary conditions.
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Our pseudodifferential inpainting framework comprises naturally integer powers
of the negative Laplacian. This so-called multiharmonic inpainting includes e.g.
biharmonic and triharmonic inpainting. However, also non-integer powers α > 0
are allowed, leading to α-harmonic inpainting. The special case α = 0.5 yields
Poisson inpainting. Also other pseudodifferential operators from scale-space the-
ory can be used, for instance the Bessel operators. These and more examples of
pseudodifferential operators and their symbols are listed in Table 1.

To interpret pseudodifferential inpainting in terms of energy minimisation,
we allow only symbols which are nonnegative. Furthermore, we assume that the
value zero is attained at most for ζ = 0. Then the root of a pseudodifferential
operator p(−∆) is defined via√

p(−∆)u(x) :=

∫
R2

√
p̂(|ζ|) û(ζ) exp

(
i 2π ζTx

)
dζ, (9)

and pseudodifferential inpainting minimises the energy functional

E(u) =

∫
K

(u− f)2 dx+

∫
Ω\K

(√
p(−∆)u(x)

)2
dx (10)

with reflecting boundary conditions. Table 1 also lists the corresponding penal-
ising function

Ψ(u) :=
(√

p(−∆)u(x)
)2

(11)

for each pseudodifferential operator.
Note that for a given pseudodifferential operator, the corresponding energy

functional is not unique. For instance, for harmonic inpainting, Eq. (10) gives

E(u) =

∫
K

(u− f)2 dx+

∫
Ω\K

(√
−∆u(x)

)2
dx, (12)

which obviously differs from the energy functional (3). Here, the square root
of the Laplacian

√
−∆ is the pseudodifferential operator defined by having√

p̂(−∆)(ζ) as its symbol.

3 Interpolation with Radial Basis Functions

In the sparse interpolation problem we have in mind, K is a set of finitely many
distinct pixels x0,...,xN at which the image f is known. For RBF interpolation,
the interpolating function u is obtained from the ansatz

u(x) =

N∑
j=0

cj g(|x− xj |) , (13)

with a so-called radial basis function g : R+
0 → R. Popular choices include thin

plate splines, polyharmonic splines, Matérn kernels, multiquadrics (MQs), in-
verse MQs, and inverse cubic MQs. Their formulas are displayed in Table 1.
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The unknown coefficients c0,...,cN ∈ R are computed as solutions to the
interpolation problem u(xk) = f(xk) for all k. This yields the linear system

N∑
j=0

cj g(|xk − xj |) = f(xk) for all k = 0, . . . , N. (14)

A common condition to guarantee that this system has a unique solution is that
its symmetric matrix (g(|xk − xj |))Nj,k=0 is positive definite. Due to Bochner’s
theorem, this is equivalent to g having a positive (generalised) Fourier transform
[29]. If the radial basis function has no compact support, the system matrix is
dense. Then the numerical solution of the linear system is slow for large N .

Requiring a positive definite system matrix can be relaxed to positive semi-
definiteness. For details and further information on RBF interpolation we refer
to the monographs [4,29].

4 Connecting Both Worlds

Let us now establish a bridge between the pseudodifferential inpainting (8) and
the RBF interpolation (13). Solving (8) requires inversion of a pseudodifferen-
tial operator, while (13) has a convolution-like structure. Thus, we employ the
concept of Green’s functions. The idea behind Green’s functions is to define an
inverse to a differential or pseudodifferential operator in the form of a convolution

(v ~ g)(x, y) :=

∫ a

0

∫ b

0

v(s, t) g(x− s, y − t) dtds. (15)

A Green’s function to the operator p(−∆) is defined as a function g for which
holds

p(−∆) (v ~ g)(x) = v(x) (16)

for all functions v which are orthogonal to the nullspace of p(−∆) for all x ∈ Ω.
Due to the convolution theorem, Fourier transform turns Eq. (16) into

p̂(|ζ|) (ĝ(|ζ|) v̂(ζ)) = v̂(ζ) for all ζ ∈ R2. (17)

At this point, the fact that v is orthogonal to the nullspace of p(−∆) comes
into play, as this means that v̂(ζ) equals zero whenever p̂(|ζ|) equals zero, such
that Eq. (17) can still be satisfied in these cases. We can now obtain a Green’s
function g to p(−∆) by defining its (generalised) Fourier transform to be

ĝ(|ζ|) :=

{
0, if p̂(|ζ|) = 0,

1
p̂(|ζ|) , else,

(18)

and the condition that g satisfies the reflecting boundary conditions on ∂Ω. This
shows that Green’s functions are pseudoinverses to pseudodifferential operators.
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We can also read Eq. (18) the other way around: Given a radial basis function
g(|x|), compute its (generalised) Fourier transform ĝ(|ζ|) and use Eq. (18) to
find the corresponding pseudodifferential operator p(−∆) such that the chosen
radial basis function is a Green’s function to the newly defined pseudodifferential
operator. Thus, Eq. (18) establishes a simple and elegant one-to-one mapping
between pseudodifferential operators and radial basis functions. Consequently,
pseudodifferential inpainting on sparse data is equivalent to sparse interpolation
with radial basis functions.

Table 1 lists a number of pseudodifferential operators and their corresponding
RBFs. For the sake of recognisability, we display the version of the functions
which does not obey any boundary conditions. This is equivalent to considering
a free-space problem, i.e., Ω = R2. Moreover, the radial basis functions may
differ from the Green’s functions by a constant factor, which does not matter in
applications.

Our results prove that many RBF concepts are equivalent to inpainting with
well-known scale-space operators, ranging from α-scale-spaces to Bessel scale-
spaces. Moreover, they also establish additional interesting findings, such as the
interpretations of various MQs in terms of pseudodifferential operators.

One of the most important columns in Table 1 is the smoothness of the
RBF, since (13) implies that it immediately carries over to the smoothness of
the interpolant. On one hand, this column confirms some known facts such as the
logarithmic singularity in the Green’s function for harmonic inpainting, and the
C1-smoothness of biharmonic inpainting. On the other hand, Table 1 displays
also many smoothness results that are not well-known for the corresponding
pseudodifferential operators. Note that all smoothness results hold only in 2D:
For instance, the Green’s function for harmonic inpainting is continuous with a
kink in 1D, and it has a singularity of type |x|2−d in Rd for d ≥ 3.

5 One Numerical Algorithm for All Approaches

Interestingly, our unifying framework for pseudodifferential inpainting also car-
ries over to the discrete setting, where a single algorithm handles all approaches.

We replace the continuous image domain Ω by a regular Cartesian grid with
nx and ny pixels in x- and y-direction. The corresponding grid sizes are hx and
hy. Our discrete image is reflected in x- and y-direction to implement reflect-
ing boundary conditions. The data on the resulting domain are then extended
periodically such that we can apply the discrete Fourier transform.

We discretise the negative Laplacian by the usual five-point stencil with sym-
bol

p̂
(5)
`,m =

(
2
hx

sin
(
`π
nx

))2
+
(

2
hy

sin
(
mπ
ny

))2
. (19)

This ensures that Fourier and finite difference techniques produce identical res-
ults. To discretise other pseudodifferential operators, we substitute 4π2 |ζ|2 in
their symbol by p̂(5)`,m and consider the results for all ` and m as eigenvalues of a
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Figure 1. Test images trui, peppers, and walter.

matrix A whose eigenvectors are given by the discrete Fourier transform. Then
the discrete inpainting problem can be written as

C (u− f) + (I −C)Au = 0. (20)

Here the vectors u and f are discretisations of u and f , and I is the unit matrix.
As C has 1 on the diagonal for mask points and 0 for non-mask points, the first
term in Eq. (20) corresponds to the interpolation condition (7), whereas the
second term corresponds to Eq. (8). Rewriting (20) yields the linear system(

C + (I −C)A
)
u = Cf . (21)

By considering only non-mask points, Eq. (21) can be reduced to a system of
linear equations with a symmetric positive definite matrix with arguments sim-
ilar to the ones in [20]. In other words, substituting some rows of a positive
(semi)definite matrix A by corresponding rows of a unit matrix yields a pos-
itive definite matrix. Thus, we can use a standard conjugate gradient (CG)
solver. Its matrix–vector products with the circulant matrix A ∈ R2nxny×2nxny

are computed in the Fourier domain with an effort that does not depend on
the pseudodifferential operator. We stop the CG iterations when the Euclidean
norm of the residual vector has dropped by a factor 10−20.

6 Experiments

To evaluate the performance of the different pseudodifferential operators, we
inpaint three greyscale images with size 256×256 and range [0, 255]: trui, peppers,
and walter (Fig. 1). As known data, we use the grey values of each image at the
locations given by a fixed random mask (Fig. 2 top left). Its density is 5%, i.e.
we know the grey values for 5% of the pixels. The parameters α and t have been
optimised by a simple grid search to produce the minimal mean squared error
(MSE) w.r.t. the ground truth. Table 2 reports these errors for all three images,
and Fig. 2 illustrates the inpainting results for trui.

We observe that Poisson inpainting performs much worse than all other ap-
proaches. It suffers from the strongly visible singularity of the RBF. The second
worst is harmonic inpainting, whose logarithmic singularity is also visible.
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Biharmonic, α-harmonic, MQ and inverse MQ inpainting produce very good
results of comparable quality. For optimal parameters, their RBFs are at least
in the smoothness class C1 such that no singularities are visible. However, since
these operators involve higher order powers of the Laplacian, they may violate
a maximum-minimum principle. This becomes visible in over- and undershoots
and ripple artifacts. These artifacts are slightly more pronounced for inverse
cubic MQs, which is also confirmed by a somewhat worse MSE.

Bessel inpainting uses almost the same optimal α values as optimised α-
harmonic inpainting, and its optimal t-values are large. In this setting both
approaches are almost identical, since for large t, we have

(
I − t

α∆
)α ≈ (− t

α∆)α,
and the latter is equivalent to α-harmonic inpainting.

The optimal α parameters for α-harmonic inpainting are close to 2. Thus,
practitioners may prefer the parameter-free biharmonic inpainting as a method of
choice. Since the corresponding thin plate splines can be seen as a rotationally
invariant 2D extension of cubic spline interpolation, this also confirms earlier
findings where cubic splines are reported as favourable interpolation methods
[18]. Moreover, this indicates that on average, natural images can be approxim-
ated well by continuously differentiable functions.

The fact that biharmonic inpainting and the various MQs give results of
similar quality is remarkable: It shows that the linear PDE community and the
RBF community have reached a comparable level of maturity and sophistication,
even without many interactions. Of course, for PDE-based inpainting, nonlin-
ear methods may offer further improvements [12,24]. However, they cannot be
treated adequately within a pseudodifferential framework, which is based on
intrinsically linear concepts such as Fourier techniques.

Table 2. MSE results for the different inpainting approaches applied to the test images.

Operator trui peppers walter

harmonic 211.14 226.39 233.40

biharmonic 136.65 152.91 121.58

Poisson 759.26 751.61 773.27

α-harmonic 135.89 (α = 1.86) 152.57 (α = 1.9) 121.28 (α = 2.09)

Bessel 135.79 152.57 121.23
(α = 1.89, t = 485) (α = 1.9, t = 106) (α = 2.13, t = 386)

multiquadric (MQ) 137.97 (t = 5.13) 166.83 (t = 4.98) 124.34 (t = 5.9)

inverse MQ 135.63 (t = 3.89) 161.99 (t = 3.79) 121.97 (t = 4.63)

inverse cubic MQ 167.08 (t = 7.05) 198.23 (t = 6.79) 137.90 (t = 7.11)
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random mask harmonic biharmonic
5 % density MSE: 211.14 MSE: 136.65

Poisson α-harmonic (α = 1.86) Bessel (α = 1.89, t = 485)
MSE: 759.26 MSE: 135.89 MSE: 135.79

MQ (t = 5.13) inverse MQ (t = 3.89) inv. cubic MQ (t = 7.05)
MSE: 135.97 MSE: 135.63 MSE: 167.08

Figure 2. Inpainting results for the image trui from Fig. 1.

7 Conclusions and Outlook

We have established pseudodifferential inpainting as a unifying concept that
connects linear PDE-based inpainting and RBF interpolation. This framework
is surprisingly simple and general: It can handle any linear shift- and rotation-
invariant operator, not only analytically but also algorithmically. It enabled us
to find a number of interesting, hitherto unknown insights and relations, ranging
from smoothness results for all inpainting methods to connections between RBFs
and scale-space operators. Last but not least, we have shown that the linear PDE-
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and RBF-based communities have come up with approaches of similar maturity
and quality.

Currently we are investigating additional RBFs such as truncated RBFs,
and we are going to extend our evaluation to the setting of inpainting-based
compression. The latter involves several new aspects, e.g. their performance for
optimised data and sensitivity w.r.t. quantisation.
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search Council (ERC) under the European Union’s Horizon 2020 research and
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