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Abstract—In image compression, codecs that rely on interpo-
lation with partial differential equations (PDEs) are becoming
increasingly popular. However, there have not been many at-
tempts to transfer this concept to video compression. Since real-
time performance is challenging for PDE-based reconstruction,
first efficient approaches work on a frame-by-frame basis and
focus on parallel implementations without considering coding
quality. So far, there is no fully PDE-based video codec that
exploits temporal redundancies. As a remedy, we propose a
modular framework that combines PDE-based compression with
motion compensation: Intra frames are predicted with PDE-
based inpainting and inter frames with dense optic flow fields.
We use this framework to develop a proof-of-concept codec that
combines homogeneous diffusion inpainting with the variational
optic flow model of Brox et al. (2004). Even without sophisticated
parallelisation, we are able to perform real-time decompression of
colour videos for the first time in PDE-based video compression.

I. INTRODUCTION

Video compression is more popular than ever due to online
streaming services, resulting in vivid research in this field.
The most popular methods belong to the MPEG family [1].
They rely on a combination of prediction and transform coding
of difference images: So called intra frames are predicted
without any reference to other frames, while inter frames are
estimated using preceding or subsequent frames and a motion
field between them.

We can interpret intra frame prediction as image compres-
sion. Here, PDE-based inpainting methods have increasingly
attracted interest. They exploit sparsity in the spatial rather
than the transform domain by storing only a fraction of all
pixel values and reconstructing missing parts with inpainting.
The current state-of-the-art methods in this field for grey value
images by Schmaltz et al. [2] and an adapted version for colour
images by Peter and Weickert [3] can beat JPEG 2000 [4].

While there have been first attempts towards video com-
pression with PDEs [5]–[8], these codecs work on a strict
frame-by-frame basis. Thus, they do not exploit temporal
redundancies.

A. Our Contribution

We aim at taking the first step towards PDE-based video
codecs that integrate popular ideas from established transform-
based methods such as motion-based inter frame prediction.
We put special effort into designing a general framework that
can be used as a basis for future research in this area.

The framework is divided into several modules that each
represents a specific part of video compression and can be
equipped with different methods. There are three main mod-
ules: partitioning into groups of pictures (GOPs), prediction
of frames either through inpainting or motion compensation,
and storage of all data with a suitable encoding.

Furthermore, we propose a first proof-of-concept video
codec for this framework. We want to show that our framework
can be used to acquire codecs with real-time performance
on the decoder side by choosing relatively simple and well-
understood ingredients for the different modules. To this end,
we employ homogeneous diffusion for the inpainting part and
use dense backward optic flow fields (BOFFs) for motion
compensated prediction generated by the method of Brox et
al. [9]. These BOFFs contain the displacements of all pixels in
a frame uk+1 at time step k+ 1 w.r.t. its preceding frame uk.
Finally, we encode all generated data with adaptive arithmetic
coding [10] and bzip2 [11].

B. Related Work

For an overview of the basic concepts of MPEG and in
particular its latest standard H.264/AVC [12], we refer the
reader to the survey by Sullivan and Wiegand [13].

PDE-based video compression has not yet received a lot of
attention so far. Schmaltz and Weickert [14] have proposed a
specialised codec that compresses only the static background
with PDE-based techniques. Köstler et al. [5] have presented
an approach for real-time playback on a Playstation 3 with a
CELL multicore processor. First steps to expand the R-EED
codec by Schmaltz et al. [2] to real-time video compression
have been taken by Baum [6] and have been extended by
Peter et al. [7]. However, these algorithms rely only on a
frame-by-frame compression and do not take redundancies
in time direction into account. They focus more on showing
that inpainting in each frame is possible in real-time with
advanced parallelised algorithms. Furthermore, these coders
do not provide a mode for colour videos.

Gao [8] has used PDE-based compression on motion fields.
However, the remaining parts of his codec are still transform-
based, and he has only been able to reach real-time perfor-
mance in low bit rate scenarios.

There are approaches which incorporate PDE-based ideas
into the H.264/AVC standard. Liu et al. [15] have used
homogeneous inpainting together with edge information for



intra frame prediction. In a similar direction, Doshkov et al.
[16] have combined homogeneous inpainting with template
matching for the same task.

Sullivan and Wiegand [13] note in their survey that the
most significant improvements in video compression were due
to more sophisticated methods in the motion compensated
prediction. Therefore, we want to allow including optic flow
methods that provide accurate, dense displacement vector
fields between subsequent frames in our framework.

Moulin et al. [17] as well as Han and Podilchuk [18] have
employed dense optic flow fields for motion compensated
prediction of inter frames. Both approaches optimise their
methods with respect to the coding efficiency of the resulting
residual. More recently, Chen and Mied [19] used a block
based representation of their motion fields using bilinear
polynomial functions. Although they have not given a rigorous
comparison of compression ratios, they showed that their
predictions were more accurate than standard block matching.

C. Paper Structure

In Section II we propose our framework for PDE-based
video compression. It acts as a basis for a proof-of-concept
codec in Section III. The corresponding experiments are shown
in Section IV, and we conclude our work in Section V.

II. FRAMEWORK FOR PDE-BASED VIDEO COMPRESSION

In the following, we present a framework for video com-
pression that combines the concepts of intra and inter coding
with PDE-based approaches: First, we predict intra frames
with PDE-based inpainting from a small amount of stored
image pixels. These frames are self-contained and can thus be
used for random access. In contrast, inter frames use motion
compensation based on preceding or subsequent frames. We
compensate the resulting errors of both prediction types with
residual images.

The framework is divided into self-contained parts allowing
us to change methods within these parts easily. This modularity
is important for future work on PDE-based video compression,
since we can examine the influence of different methods
without having to reimplement other parts. To give a better
overview over the submodules of our framework, we divide
them into three main modules. The first module deals with
the partitioning of the video into GOPs. The second module
handles all submodules that engage in the prediction of frames.
Finally, the third module contains the storage and encoding
of the data that has been produced in the second module.
Figure 1 provides an overview of the interactions between all
submodules.

A. Partitioning

We assume that our input videos contain semantically
coherent scenes. Using scene detection to partition a video
into GOPs is advantageous for several reasons. We can treat
each GOP individually, resulting in a reduced computational
effort and lower memory consumption. Furthermore, it allows
to adapt our prediction to the local structure of each individual
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Fig. 1: Structure of the proposed framework.

scene. Detecting scenes often correlates with setting frame
types: A scene change indicates to set an intra frame, as we
cannot predict it reliably with motion compensation. Since this
affects the first frame of a GOP, this is also useful for random
access. All other frames within one scene are usually inter
frames, possibly belonging to subtypes for different prediction
methods. Long contiguous scenes can also be separated into
multiple GOPs. Individual codecs define the exact criteria for
type setting depending on the prediction modules used.

B. Prediction

Since prediction is the core module of our framework,
codec performance depends significantly on its submodules.
Our intra frame prediction employs PDE-based compression:
We only store a small fraction of pixels and reconstruct the
missing image parts with inpainting. Let f : Ω → R3 be a
colour image that maps positions x in the image domain Ω to
RGB values. Colour values are only known for the inpainting
mask K ⊂ Ω. We reconstruct the missing values in Ω \K by
solving the general inpainting problem

∂tuc = Luc on Ω \K × (0,∞), (1)
uc(x, t) = fc(x) on K × [0,∞). (2)

Here, uc with c = {R,G,B} are the colour channels of
the evolving image u(x, t) with time parameter t, and L
is a suitable differential operator. Furthermore, we impose
reflecting boundary conditions on ∂Ω. Known colour values
stay fixed (2), while the steady state (t→∞) of the evolution
in (1) yields the restored image in the unknown regions. The
choice of L and K influences the inpainting performance
significantly and is an important element of codec design.

For inter frames, our module for dense optic flow compu-
tation provides displacement vector fields with floating point
precision on a per-pixel basis. There are two types of these
fields: Backward optic flow fields (BOFFs) give displacements
from a frame uk+1 to its preceding frame uk and are used
for forward prediction from uk to uk+1. Forward optic flow
fields (FOFFs) are used for the opposite direction. With
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this information, the motion compensation module computes
predictions.

We acquire the corresponding residuals by comparing the
predictions with the original data. Note that during decoding,
only the stored motion fields and residuals are available.
Therefore, we have to incorporate potential lossy compression
steps in the storage module into the residual computation to
avoid error propagation.

C. Storage

Finally, all data required for frame reconstruction need to
be stored efficiently. Individual modules for storing tree and
colour, optic flow, and residual data employ lossy compression
techniques such as quantisation. An efficient codec needs to
apply adequate strategies for each kind of data. In a final
step, we remove remaining redundancies with lossless entropy
encoding. Note that omitting lossy steps in the residual storage
module leads to fully lossless video compression.

III. A PROOF-OF-CONCEPT CODEC

In order to show that the proposed framework can be used
effectively as a basis for new PDE-based video codecs, we
implement a proof-of-concept codec. We want to show that
such a codec is able to compress video data by a reasonable
amount and can decode compressed videos in real-time, even
if only basic methods are used within each module. In the
following, we describe our design choices for every module.

A. Encoder

We combine scene detection and the identification of frame
types by setting a new GOP as soon as we encounter an
intra frame. All subsequent frames are inter frames which we
predict with the directly preceding frame and a corresponding
BOFF. As a criterion when to use an intra frame, we use the
root mean square error (RMSE) between subsequent frames.

For PDE-based intra frame prediction, we use the simplest
possible differential operator L: Choosing the Laplacian oper-
ator results in homogeneous diffusion inpainting [20]. We get
the evolution

∂tuc = ∆uc on Ω \K × (0,∞) (3)

for the propagation of values in unknown regions. Homo-
geneous diffusion does not have any additional parameters
that have to be optimised and there exist highly efficient
solvers. In contrast to Peter et al. [7], we do not require heavy
parallelisation on GPUs and can use the sequential multigrid
solver by Mainberger et al. [21].

For the selection of the inpainting mask we choose the
approach of Schmaltz et al. [2], which allows mask points
only at grid positions of a rectangular subdivision of a frame.
We adapt the inpainting mask to the image structure by adding
mask points at locations with high local error after inpainting.
Since we can describe these locations based on the underlying
rectangular subdivision, the mask is coded as a binary tree.

For each GOP, we compute a dense BOFF which contains
displacement vectors in a frame pointing to the previous frame.

We use an implementation [22] of the method of Brox et al.
[9]. Since this is a variational method, the flow computation
is also PDE-based. Afterwards, we subsample the flow fields
coarsely. This high quality approach reduces coding costs and
allows reconstruction in real-time. The size of the blocks in
the acquired flow fields is a free parameter and influences the
compression rate in two different ways. On one hand, smaller
blocks yield more accurate predictions and thus the residuals
are easier to compress. On the other hand, smaller blocks mean
more data to store for each flow field. Afterwards we transform
the displacements channelwise to the range [0, 255] with an
affine transformation that can be adapted to the minimal and
maximal values in the flow field. Thus, we can store the motion
vectors with two bytes per block.

We use the acquired displacement fields for inter frame
prediction via motion compensation. Let us assume that we
have two consecutive discrete frames uk and uk+1 and their
BOFF (vk, wk)> that gives the displacement from frame uk+1

to uk. Then we predict uk+1 in (i, j) with

uk+1,i,j = uk,̃i,j̃ with ĩ = i + vi,j , j̃ = j + wi,j , (4)

assuming that the grid sizes are 1. Since in general vi,j , wi,j /∈
Z, we have to approximate uk,̃i,j̃ . To this end, we compute
a weighted average of the four grid neighbours around the
intergrid position (̃i, j̃).

Afterwards we immediately acquire the corresponding resid-
ual as the difference to the original frame. We shift the
residual such that all values lie in [0, 255] and then quantise
the resulting values. Since we can expect that most values
are predicted with high accuracy, we assume that the shifted
values lie close to 128. Therefore, we use a finer quantisation
in the vicinity of 128 for higher quality. For every frame,
we compute the reconstruction that the decoder will produce
with the available data and use this frame for further motion
compensated predictions. This way, errors due to lossy storage
of data are not amplified within one GOP.

As soon as we reach the end of a GOP, we store colour
values and tree data for the intra frame, displacement vectors
for the inter frames, and residuals for both types. Adaptive
arithmetic coding provides a good trade-off between coding
efficiency and runtime for the colour values and motion vec-
tors. Since the residual is not sparse and we expect very long
runs of the same value we employ bzip2 which combines run
length encoding with fast performance. Finally, we concatenate
all files to the final output file. After we have encoded the
last GOP, we generate the global header which contains all
information necessary for decoding.

B. Decoder

The main method of the decoder first reads the global
header information and then starts three threads containing
entropy decoding, the reconstruction of frames, and playback.
These threads share data structures for decoded data and fully
reconstructed frames and communicate via global counters.
The reconstruction method checks if decoded data is available
and if the cache for playback is not full. If this is the
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case, we gather all required data, build the inpainting mask,
reverse the quantisation applied by the encoder for colour
value and residual data and transform motion and residual data
back to their original representation. Then we either perform
inpainting or motion compensation depending on the type of
the current frame (intra or inter). Afterwards we subtract the
residual to correct the error.

IV. EXPERIMENTS

We run our experiments on an Intel Xeon CPU
W3565@3.20GHz. As a test set we use a sequence of 1000
frames of the well-known Sintel video by Rosendaal [23] in
a resolution of 854 × 364. This short film incorporates all
aspects on which we want to test our codec: It is a colour
movie, contains a lot of textured areas, as well as complicated
motion.

We want to compare our results with the fully PDE-based
video codec by Peter et al. [7]. It employs R-EED image
compression [2] on each frame with some additional overhead
such as GOP information. However, this codec does not have
a colour mode. Therefore, we exchange the R-EED frame
compression method with the current state of the art in PDE-
based colour image compression: R-EED-LP by Peter and
Weickert [3].

We choose the compression ratio of the inpainting-based
intra frame prediction to be 10 : 1 and find an optimal
quantisation with respect to the MSE. We only use 1% of all
motion vectors in the BOFFs and set the residual quantisation
parameter to q = 16. The resulting compression rate is 10:1,
which we also use the R-EED-LP video codec.

Figure 2 shows two original frames of Sintel [23]. We
predict frame 4642 as an intra frame and 4643 as an inter
frame. Correspondingly, we show the inpainting mask, BOFF,
and residuals. Since a value of 128 means an error of 0, the
residual image is mostly grey. The contrast enhanced zooms
shows a typical region of errors: Inpainting struggles with
texture, while motion compensation has problems at motion
boundaries where we can expect problems with occlusions or
disocclusions.

Figure 3 compares the results of our method with the R-
EED-LP video codec. We are able to consistently reach higher
quality in reconstructed frames at the same compression rate.
For the currently used set with 1000 frames, the overall MSE
of the R-EED-LP video codec is 28.3, while we achieve an
MSE of 12.0. This is particularly remarkable, since we did not
use advanced concepts such as anisotropic nonlinear diffusion
or YCbCr colour space representations. This indicates that our
proof-of-concept approach still has a high potential for further
improvements.

V. CONCLUSION AND OUTLOOK

We introduced a modular framework for PDE-based video
compression that supports a wide variety of different methods
for inpainting, motion compensation, and encoding. As a
proof-of-concept, we implemented the first fully PDE-based
video codec that exploits temporal redundancy. The core

idea in our approach is to employ inpainting and motion
compensation as prediction mechanisms. Since we use mostly
inter frames that can bedecoded very fast with motion com-
pensation, we can reach real-time performance on colour
videos without advanced parallelised algorithms for inpainting.
Furthermore, using inpainting only for prediction enables us
to compensate resulting errors. Compared to a pure frame-
by-frame codec with PDEs, our incorporation of temporal
redundancy reduced the MSE by a factor 2.3.

The modularity of our framework allows us to improve our
codec by simply substituting the methods in the different parts.
Our ongoing work includes the introduction of new inter frame
types, more advanced techniques in the inpainting and optic
flow computation, and exploring different possibilities to store
and encode motion and residual data.
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(c) Inpainting mask. (d) BOFF.

(e) Residual for (intra) frame 4642. (f) Residual for (inter) frame 4643.

Fig. 2: Intermediate results of our video codec at a compression rate of 10:1 with contrast enhanced zooms. The colour coding
of the BOFF is adapted from [24].

(a) Our method. MSE = 12.0 (b) R-EED-LP video codec. MSE = 28.2

Fig. 3: Reconstruction of frame 4643 with our video codec and the R-EED-LP codec at compression rate 10:1.
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