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Abstract—Inpaintingtechniques based quartial differential
equations (PDEs) such as diffusion processes argngagrowing
importanceas a novel family of image compressionethods.
Nevertheless, thapplicationof inpainting in the field ohyper
spectral imagery has been mainly focused dimdilin missing
informationor dead pixels due to sensor failures. In théper
we propose a novel PDE-based inpaintiatgorithmto compiess
hyperspectraimages. The method inpaints separately khewn
data in the spatial and in the spectral dimensidinen itapplies
a prediction model to the final inpainting d@la to obtain a
representatiormuch closer to the original imagExperimental
results over a set ofhyperspectralimages indicate thatthe
proposed algorithm can performbetter than aecentproposed
extension toprediction-based standa@iCSDS-123.0 at lowbit-
rate, better than JPEG 2000 Part 2 witk DWT 9/7 asa

spectral transformat all bit-rates,and competitive to JPEG 2000

with principal component analysis (PCA), the optimspectral
decorrelation transfornfor Gaussiansources.

|. INTRODUCTION

analysis to tackle the dependencies that still renamong
the data in the transform domain. These techniguegide
promising results for lossless and progressiveylbsgossless
coding [5], [6], [7], [8].

Besides the aforementioned techniques, a new faofily
compression algorithms based on partial diffeeénéiqua-
tions (PDEs) has emerged in the last years forngp@D
images [9], with extensions to color [10] and 3D digel
images [11]. The idea relies on storing only a $salected
subset of the image pixels, and reconstructing rémeain-
der of the image by inpainting with a partial diffatial
equation (PDE) such as a diffusion process. Howenmethe
field of hyperspectral imagery, the use of PDEs afiger
interpolation-based methods focuses on denoisirfiliog in
dead pixels and missing information due to senaiurg or
malfunction [12]. To the best of our knowledge, ajgproach
to date has considered PDE-based inpainting forpcessing
hyperspectral images. Several factors make theicapiph

EMOTE sensing data provides a large amount of afpatiof PDEs and interpolation-based methods for codargote-
Rspectral and temporal information about the eamth s Sensing data a difficult and complex task, entgilihe need

face. It must meet the needs of a wide range obitapt for sophisticated techniques to provide competitigsults.
applications requiring fine and frequent coveradelarge Among these factors are the structural surfaces, High-
areas. The increasing number of high resolutionsaen dimensionality of the data and the degradation meisim
present a tough challenge for current storage mms$mission due to the sensor characteristics. In this respsmmon
systems. For instance, the NASA instrument Airbovisible PDE approaches that lead to a smooth recomey not
Infrared Imaging Spectrometer (AVIRIS) [1] deliveireages b€ appropriate for hyperspectral images. On therofiand,
of the upwelling spectral radiance in 224 contiguspectral successful PDE approaches addressed for denoisifigjngy
channels with wavelengths from 400 to 25Gfhameters Missing information in hyperspectral images do actount
(nm). Hence, the need for efficient codinghtdques for for compression constraints related to the efficiselection

remote-sensing data becomes more and more imperativand storage of the known data [13].

improve the capabilities of storage and transmissio

Most of these coding techniques for remote-sensigig
are dominated by transform-based concepts thabixyble
redundancy in the spatial and in the spedtiaiensions.
Typically, a compression technique applies a 1Dcspk
transform followed by a 2D spatial transform uspdibsed
on wavelets. Nevertheless, the predictive methads more
importance for lossless and near-lossless codimginstance,

In this paper, we focus on simpler inpaintingexators
like homogeneous and biharmonic ones, while adgptie
transform-based idea of exploiting separately thatial and
spectral redundancy. Moreover, a prediction stgperformed
to reduce the reconstruction error.

Building upon that, this paper introduces novel

2D+1D+h¢) diffusion-based scheme for coding hyperspectral

images. The idea is based on applying thrasic steps.

the M-CALIC algorithm [2], the standard CCSDS-128) First, 2D homogeneous diffusion inpainting is agglin the
and a recent proposed extension of CCSDS-123.0c44] spatial dimensions, then the difference betweenattiginal
outperform the transform-based methods for highiguand image and the 2D inpainting solution is computegtdid, a
lossless coding. Other recently proposed works @eenblD biharmonic inpaining is applied to this diffecenin the
transform- and predictive-based methods usiegression spectral dimension. Finally, the 2D+1D inpaintirgjusion is

used by a prediction modhb(-) to give a representation much
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Section Ill introduces our inpainting scheme toaetechyper- We can proceed similarly for a 1D inpaintipgocess in
spectral images. Section IV provides the experialengisults the spectral dimension. Using a binary maske R* for a
and Section V concludes the paper. spectral pixelx;, = (fi; )jez € R?, where Z={1,--- , z},

the linear system to solve is
II. PDE-BASEDINPAINTING AND COMPRESSION _

In this section we describe the PDE-based inpajminb- (G = (zz = G D Vi = CGixi.. ®)
lem and the discrete formulation. Afterwards welaixpthe Herev;, € R? is the inpainting solution, an@; € {0, 1}***
mask selection and the optimization of gray values. is a diagonal matrix having the mask veatore {0, 1} as

the main diagonal entries.
A. PDE compression model

Let f : Q - R denote an image that maps a domdh Mask selection

Q to the corresponding values. L& c Q be a subset |5 aqdition to the differential operator, the séiae of the
of the image domain where the original imafges known. mask that indicates the location of the known géags a key
Diffusion-based inpainting aims at computing a restouction role in reconstructing the image. Selecting thisknay using
image u :Q - R that reproduces the missing parts Réuristics based on grid subdivision results in edficient
f on the inpainting domaif2 \ Qx based on smoothnesstorage, but usually not in an efficient recongtaurc In this
assumptions. To this end, one solves the PDE paper, we apply two optimization approaches [14]e Tirst
one is called probabilistic sparsification. It $alby consider-

(1= coLtu=clyu - 1) =0, @ ing all the data point§J|) and iteratively removes the least
where u is the inpainting solution, L is a diffetiahoperator, significant pixels until only a desired density<0d < 1 of
and the characteristic function c(x) specifies wketa point the known pixel$K | = d-|J| remains. Specifically, in each
is known or not: iteration the following steps are applied:

c(x) = 1 ifxeQg @) 1. Initialize K | = [J].
0 if x € Q\ Q. 2. Remove a random fraction- pJ| of candidates pixels,
This guarantees that a2, f is reproduced perfectly,e. and apply inpainting.

the known data stays fixed. Together with reflegtioundary ~ 3. Compute the reconstruction error for thesidppixels.

conditions on the outer image boundade€y theinpainting 4. Remove a small fractianp-|J| of the candidate pixels

equation (1) leads to a propagation of the know é#o with the smallest error.

the missing areas according to the smoothnessradmtsim- Update K=K \ {removedpixels}.

posed by the differential operator L. Typical clesinclude Repeat the steps (2) to (5) whike| >d-[J].

the Laplacian L= A and the biharmonic operator£ —A2. The second approach is called non-local pixel exgea It
In contrast to other contexts such as denoisinfijlimg in IS @ post-optimization step that allows to imprdkie results

corrupted areas, the basic idea of PDE-based methade Of any previously selected mask. In each iteratrset T

compression context is to reduce the image data set of of m non-mask pixel is randomly selected frah\ K as

sparse points that can be encoded efficiently. @deoding candidates and the local erreris computed for all i€ T.

consists then of interpolating these scatteredtpdm order Then, n<|T| pixel indices i are randomly selected from K,

to achieve an approximation of the original image. and exchanged with n pixels from T with the Iatgerror
g . If the inpainting solution is worse than befovee revert

the switch. Otherwise we proceed with the new mask.

ou

B. Discrete formulation

To provide the necessary notation for a dischgtper- o
spectral image, a discrete formulation of (Eq.1)néeded. D- Gray value optimization
Let f =[f.,,---,f ] € R™ be a hyperspectral image ygyally in inpainting, the original gray valuestbe input
with z spectral bands and m x x y spatial samples. Eachinage f are used to propagate the information énrtfissing
bandf.; = (fi;);, € R™ is reshaped to a vector, wherg,ssitions. However, allowing arbitrary gray valueay lead,
I'={1,---,m} denotes the pixel indices. o in global, to a better reconstruction, even thosghme error
For a 2D inpainting process in the spatial dimemsiosing i |ocally introduced in the known data. Theay value
a binary mask; € {0,1;" for abandf ,; € R™, the discrete ntimization approach [14] uses least square appition to
equation that we have to solve is find the optimal gray values g that minimize theamsquared
(Imxm- Cj)Lu,j -Cj uj-f,; =0¢€ {0}, (3) error for a given mask c. If we denote by= r(c,f) the

) inpainting solution for a given mask c, then thenimization
where Uj € R™ denotes the solution vectoC; € pecomes
mx

{0,1} is a diagonal matrix having the mask vector . 5

¢ € {0,1}™ as the main diagonal entriekn.m is the argminkf - r(c,g)k; . (6)
identity matrix and Le R™ ™M is a square matrix describing gek

the discrete differential operator. (Eq.3) can bemiulated as
a linear system with a unique solution:

i

I1l. PROPOSED DIFFUSION SCHEME

The main idea of our inpainting scheme is (i) tglei
G = (mxm - C) L u,; =G T ;. (4) separately the spectral and the spatial redundandy(ii) to



apply a prediction function to the inpainting sadatin order
to minimize the reconstruction error.

The first point is motivated by the fact that tleéationships
among the data coefficients are significantly déf& in the
spatial dimensions than in the spectral dimengisually, the
spectral correlation is much higher than the spatie, and
the spectral variation is much slower. This resuita high
correlation not only between neighbor bands, bet etween
bands widely separated. As a result, separatelpigrg the

3

Finally, the difference between the or@i image
and the 2D inpainting solution is corgol to yield
r.j=f,;-u.;€RM. This difference, the so-called residual,
represents the information that was not ately recon-
structed by the spatial diffusion inpainting. Sirtbe residual
is still highly correlated in the spectral dimensiove aim at
removing this redundancy with 1D diffusion inpamngiin the
following.

redundancy in each dimension has proven to be tbst nC. 1D biharmonic diffusion

appropriate model of hyperspectral data for manyilfas
of compression techniques. For instance, the toamsbased
coders achieve better performance by applyngpectral
transform followed by a spatial one [15].

The second point is motivated by the fact thattpainting
solution may be highly correlated with theconstruction
error. Hence, a prediction model that exploits tiugelation
will provide an estimation much closer to the anaiimage.

Following the previous intuitions, our schemef@smed
by three basic steps. First, a 2D inpainting isliadpin the
spatial dimensions to each band. Then the differdmetween
the original image and the inpainting solution @mputed.
Second, a 1D spectral inpainting is applied to dfiference,
which usually still exhibits large spectral cortaa, since
only a 2D diffusion reconstruction has been remofredn
the original image. Finally, a prediction modelapplied to
the sum of the inpainting solutions 2D+1D to mirdmithe
reconstruction error. In what follows we explairese three
steps with more details.

A. Differential opeator

In this paper we deal with two operators: the hoemzgpus
diffusion operator that uses the Laplacian Ludgu+dyy u

Note that from the original image we removed a 2pxaint-
ing solution based on exploiting the spatial recumy using
a fixed mask. Thus, the residugly = [F1.,-*-,Fm«]”~ €
R™*Z# (seen as a set of m spectral vectqrse R?) usually
still exhibits a large correlation along ttspectraldimension.
To illustrate that, Fig. 1 depicts the correlatiomtrices of
an original image and the difference image aftenadng
a 2D inpainting solution obtained from using 5% spfatial
pixels. Note that the correlation among spectrahdsais
largely maintained, while the variancesignificantly reduced.
The 1D inpainting aims at reconstructing an appnation of
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to be applied in the spatial dimensions, and thedononic Fig. 1: Correlation matrices for AVIRIS Yellowstorse 00

operator Lu
dimension. These choices are based on the re$@ktemsive
experiments over a set of hyperspectral images.

B. 2D homogeneous diffusion

= —0,,,,u to be applied in the spectrdRadiance (224 components).

roq using a small number of points. Again, for an éfit
storage we select a fixed masly = R? for all the spectral

vectorsri. € RZ | i.e., we seek for a reconstruction of

rog from a small number of bands. The mask selection is

Let f =[f.1,"-, T, ] € R™Z be a hyperspectral image.performed through nonlocal pixel exchange appiiecthe

From each spectral barfd,; € R™ only a small number
of pixels is selected using probabilistic sparsifien. For an
efficient storage, the same fixed mask ¢s selected for all

spectral dimension, having as initial mask the ob&ined
by applying probabilisticspasification.
To provide the best inpainting solution using tleéested

Fhe spectral bandk,;. To achieve .that, the random selectiofhask, the gray value optimization is applied talfthe gray
in Step 2 chooses the same positions for all telhaThen y51yes that minimize the error betwereq and the biharmonic

Step 3 computes the mean square error of eachgmoalong

inpainting solution v. Let gg¢ R™*# be an image containing

all the spectral bands. Finally, Step 4 removespikels with 4,4 optimized values in the mask positions anduhienown

the smallest error.

Once the mask is selected, the homogeneous inpgisti
applied in the spatial dimensions using (Eq.4)dach band
f ;. The solution equation can be expressed in tHewolg
matrix form:

(Cod = (Imxm = Coq) A) U.j = Couf o (7)

data in the complement positions. Then (Eq.5) Igesbusing
g instead of . The solution can be expressed in the following
matrix form:

Cid = (Izxz - C1a) A2 Vi. =C1q0;., 8)

wherevi. € R? is the biharmonic inpainting solution of.
and Cq € {0, 1;**% is a diagonal matrix having the mask

where A € R™™ is a symmetric square matrix describingectorc;q € {0, 3% as the main diagonal entries.

the discrete Laplacian operator with reflecting fuary con-
ditions, Coq € {0,13™ ™

With this step, the global 2D + 1D inpainting saduat of

is a diagonal matrix having thef = ( + 4 becomes

mask vector g € {0,1}™ as the main diagonal entries, and

u.j € R™M is the inpainting solution.

W =u +Vv :[W*lu”' ’W*Z] e RM*Z,

9)
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D. Prediction model also called known data. Given a density d, the knalata

The quality of the inpainting solution can be diésed is se_lgcte_d through the prc_aviously describgobabilistic
by the reconstruction error & f — w. The smaller the SParsification or non-local pixel exchange apprescfld].
error, the better the quality. However, some statik rela- However, following our 2D+1D scheme, the egn of

tionships may exist between the inpainting solutioni the ("€ known data is performed twice. First,fraction ¢
reconstruction error, i.e., part of this error dem described 'S Spatially selected from the original image. Tramother

by the reconstructed image. Here, we propose aiqicd fraction d is spectrally selected from the residurg}, with

model that exploits these statistical relationshipse idea d = di + dz. Distributing this data equally may not be the
is to predict each original barfi ; from the bands of the most appropriate choice. Beyond the pixel ritages or

in order to minimize the reconstruction error: raq than for the original image, the main isstnsists
of analyzing in which dimension it is mofavorable to
fi= hy (w) +eo*j : (10) invest more pixels. To this end, Fig. 3 depicts toeling

Any suitable prediction functiot; (-) could be applied to Performance of our inpainting scheme (2D+1Dyhépplied
remove the aforementioned dependencies. In ourienpets, 10 @ hyperspectral image using different distribogi. As can
we used a linear regression model that takes ag amries P€ Seen, selecting more pixels from the residaafor the 1D
for predicting a banfi  some adjacent bands to that of indesPectral inpainting is beneficial for compressibar a given

j from the 2D and 1D inpainting solutions. Specifigathe 9/0bal density d, we used a distribution f= 0.25d for 2D
proposed model is as follows: inpainting and g = 0.75- d for 1D inpainting. This choice

has experimentally been shown to provide a goodetcHf
h; (w) =’P*j =Bj,0+Bj,1 Usj—2+ - - - +PBj sUsj+2+ between coding cost and quality gain.
(Xj’]_V*j_2+"‘+0Lj'5V*j+2. (11)

n
Q

The parameterst = (“j,-)jez and3 = (Bj-‘)jez are found

by using the least squares method that minimizestuared a%

distances betweefi,; and b*j. The final2D+1D+h() rep- ad
resentation becomes

44

hw) =[hiw) -~ b W] eR™. (12) .,

To illustrate the prediction step, Fig. 2apitts a cross-

correlation matrix of w and e. It contaitise pairwise * _ 2R 109l
correlations (in terms of the squared correlatioefiicient 28 2D 259610

r?) of each pai(w,;, e.j;) formed by one component from SN R N il
the 2D+1D inpainting solution w and one componfeain Bitrate

. . (bpppc)
the error image e. Furthermore, Fig. 2b showes thoss-

correlation matrix of h(w) and after applying the predictionFig. 3: Different distributions of the known datar fAVIRIS
model (Eq.11). The reconstruction has been achipyasing Yellowstone sc 00 Radiance (224 components).

10% of pixels from a typical hyperspectral imagahw224

spectral bands. As can be seen, the proposed segresodel

efficiently exploits the correlation and signifi¢gnreduces IV. EXPERIMENTAL RESULTS

the reconstruction error. . . oo
In this section we evaluate our diffusion-basedecddr a

set of hyperspectral images from AVIRIS, CASI antR&

sensors. For comparison purposes, we provide sefaula re-
cent extension of prediction-based standard CCSEES01]4]
and for the JPEG 2000 Part 2 standard applyingereifit
spectral transforms, including the PCA transfoand the

AR A |

R T l spectral DWT 9/7 (8 levels) before the 2D spati&l/D 9/7
.H ,l‘. "' ‘_ ‘I Il!!!l!}!m ‘ with 5 levels. The Kakadu software implementatiédBEG
iaEi ki B 2000 has been used. For all the experiments, wd tise
]“ I l”!ﬂﬂ lI ilm parameters $9=0.1 for probabilistic sparsification. For non-
(a) Correlgtione vs. w. : ° local pixel exchange, we used the parameters 0, n=1,
MSE=1" & =6537 (l?/l) g(l)_z”ﬁ'alf'@ﬁie;gs;hg‘g- and 1000 iterations as a stopping criterion. Thewkn data
- [ A

n i n

has been decorrelated losslessly by the RWA trams{s],
and compressed by the PAQ software [16] .

Figure 4 provides the rate-distortion performance the
transform-based methods applied to the Hawaii umreaed
image. Table | reports the results of our algoritasncom-
E. Known data distritation pared to [4]. The rate-distortion performance iseased

As said, the idea of PDE-based image compressi@sre through the relation between the target bitrateasueed in
on storing a small fraction (a density d) of imageels, bits per pixel per component (bpppc), and the rstantion

Fig. 2: Cross-correlation matrices for AVIRIS Yelistone
sc 10 Radiance (224 components).



quality, measured as the sigri_a,l—to-noise ratAio (BNFRRmM-
puted as 1g;, ij.k fiz,j,k/ i,j,k(fiz,j,k -1 i2,j,k) :

the

the

* the
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The scheme propagates the known informatepamately
in the spatial and in the spectral dimensions, theduces

reconstruction error by applying a predictioodel to
final inpainting solution. The prediction stepows that
quality of the inpainting solution relies natly on the

extent of the reconstruction error, but also on tapabil-
ity of this solution to estimate the original imagsing a

£ aq suitable prediction model. The propos#id+1D+h¢) scheme
> P S — provides competitive results to the most prominsate-of-
24 s - fg%;g;?h;;t " the-art standard JPEG 2000 Part 2 and to an egteosithe
@ o= o= es om =o == prevailing standard CCsDs-123.0.
Fig. 4: Rate-Distortion performance for Hawaii ulitwaated REFERENCES
(512 rows, 614 columns and 224 bands). [1] Jet  Propulsion Laboratory, = NASA [Online]. Available:

(2]
TABLE [|: Comparison between owD+1D+h¢) and the
recently proposed extension to CCSDS-123.0 [4] 13]
Image 2D+1D+h(’) Ext. CCSD&123.( [4]
rate (bpppc ‘ SNF (dB) | rate (bpppc ‘ SNF (dB) (4]
YST 0C unca 0.3¢ 34.3¢ 0.3t 32.3¢
512 rows 0.48 37.57 0.53 36.20
680 columns 1.07 48.04 1.01 46.42
224 bands 2.00 53.66 2.00 55.96 5]
AIRS-GRANG 0.2¢ 56.0¢ 0.2¢ 36.3¢
135 rows 0.50 57.03 0.50 46.82
90 columns 1.00 58.10 1.00 53.91
1501 bands 2.02 61.58 2.02 63.21 6]
CASI-TO477F 0.3¢ 25.7¢ 0.37 19.9(
1225rows 0.53 28.57 0.52 23.79
406 columns 1.03 38.62 1.01 40.53
72 bands 2.03 47.14 2.03 50.61 7

In general, our inpainting-based approach perfobetser
than JPEG 2000 Part 2 with the DWT 9/7 in the gpéct
dimension and it is competitive to PCA spectrahsfarm,
which is the optimal decorrelation transform for uSsian
sources. When compared to a prediction-based agiproar
inpainting scheme is superior to [4] at higbmpression [10]
ratios, usually even up to a bit-rate of 1 bppwhile at
moderate to low compression ratios, our approaghthehind, [11]
a prevalent behaviour when comparing transform-ghasel
prediction-based approaches [17], [18].

With regard to the impact of the prediction modhl),
Fig. 5 provides the rate-distortion performance éar in-
painting scheme with and without the predictidaps As
can be seen, the prediction model significantlyriomps the [13]
performance, in some cases by more than 10 dB.

(8]

(9]

[12]

[14]
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Fig. 5: Prediction impact for uncalibrated AVIRI®ages [17]

V. CONCLUSION (18]

Diffusion-based inpainting has shown to beefuis for
image compression. In this paper we proposed asilifi-
based inpainting algorithm for coding hyperspecinzges.
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