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Abstract—Inpainting techniques  based  on partial differential 
equations (PDEs) such as diffusion processes are gaining growing 
importance as  a  novel  family  of image  compression  methods. 
Nevertheless,  the application of inpainting  in the field of hyper- 
spectral  imagery  has  been mainly  focused on filling in missing 
information or dead  pixels due to sensor  failures.  In this paper 
we propose a novel PDE-based inpainting  algorithm to compress 
hyperspectral images. The method inpaints separately  the known 
data in the spatial and in the spectral  dimensions. Then it applies 
a prediction  model  to the  final inpainting  solution  to obtain  a 
representation much  closer to the original  image. Experimental 
results  over  a  set  of  hyperspectral  images  indicate   that   the 
proposed  algorithm can perform better  than  a recent proposed 
extension to prediction-based standard CCSDS-123.0 at low bit- 
rate,  better   than  JPEG   2000 Part   2  with  the  DWT  9/7 as  a 
spectral  transform at all bit-rates, and competitive to JPEG  2000 
with principal component  analysis  (PCA), the  optimal  spectral 
decorrelation transform for Gaussian  sources. 

 
 

I.  INTRODUCTION 

EMOTE sensing data provides a large amount of spatial, 
spectral and temporal information about the earth sur- 

face. It must meet the needs of a wide range of important 
applications requiring fine and  frequent  coverage of  large 
areas. The increasing number of high resolution sensors 
present a tough challenge for current storage and transmission 
systems. For instance, the NASA instrument Airborne Visible 
Infrared Imaging Spectrometer (AVIRIS) [1] delivers images 
of the upwelling spectral radiance in 224 contiguous spectral 
channels  with  wavelengths  from  400  to  2500  nanometers 
(nm).  Hence,  the  need  for  efficient coding  techniques for 
remote-sensing data becomes more and more imperative to 
improve the capabilities of storage and transmission. 

Most of these coding techniques for remote-sensing data 
are dominated by transform-based concepts that exploit the 
redundancy in  the  spatial  and  in  the  spectral  dimensions. 
Typically, a compression technique applies a 1D spectral 
transform followed by a 2D spatial transform usually based 
on wavelets. Nevertheless, the predictive methods gain more 
importance for lossless and near-lossless coding. For instance, 
the M-CALIC algorithm [2], the standard CCSDS-123.0 [3] 
and a recent proposed extension of CCSDS-123.0 [4] can 
outperform the transform-based methods for high-quality and 
lossless coding. Other recently proposed works combine 
transform-  and  predictive-based  methods  using  regression 
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analysis to tackle the dependencies that still remain among 
the data in the transform domain. These techniques provide 
promising results for lossless and progressive lossy-to-lossless 
coding [5], [6], [7], [8]. 

Besides the aforementioned techniques, a new family of 
compression algorithms based on  partial differential equa- 
tions (PDEs) has emerged in the last years for coding 2D 
images [9], with extensions to color [10] and 3D medical 
images [11]. The idea relies on storing only a small selected 
subset of the image pixels, and reconstructing the remain- 
der of the image by inpainting with a partial differential 
equation (PDE) such as a diffusion process. However, in the 
field of hyperspectral imagery, the use of PDEs and other 
interpolation-based methods focuses on denoising or filling in 
dead pixels and missing information due to sensor failure or 
malfunction [12]. To the best of our knowledge, no approach 
to date has considered PDE-based inpainting for compressing 
hyperspectral images. Several factors make the application 
of PDEs and interpolation-based methods for coding remote- 
sensing data a difficult and complex task, entailing the need 
for sophisticated techniques to provide competitive results. 
Among these factors are the structural surfaces, the high- 
dimensionality of the data and the degradation mechanism 
due to  the sensor characteristics. In  this respect, common 
PDE  approaches that  lead  to  a  smooth recovery may  not 
be appropriate for hyperspectral images. On the other hand, 
successful PDE approaches addressed for denoising or filling 
missing information in hyperspectral images do not account 
for compression constraints related to the efficient selection 
and storage of the known data [13]. 

In  this  paper, we  focus on  simpler inpainting operators 
like homogeneous and biharmonic ones, while adopting the 
transform-based idea of exploiting separately the spatial and 
spectral redundancy. Moreover, a prediction step is performed 
to reduce the reconstruction error. 

Building   upon   that,   this   paper   introduces   a   novel 
2D+1D+h(·) diffusion-based scheme for coding hyperspectral 
images.  The  idea  is  based  on  applying  three  basic  steps. 
First, 2D homogeneous diffusion inpainting is applied in the 
spatial dimensions, then the difference between the original 
image and the 2D inpainting solution is computed. Second, a 
1D biharmonic inpaining is applied to this difference in the 
spectral dimension. Finally, the 2D+1D inpainting solution is 
used by a prediction model h(·) to give a representation much 
closer to the original image. 

Our paper is organized as follows. Section II reviews the 
PDE-based interpolation and formulates the discrete problem.

Postprint of: Amrani, Naoufal et al. “Diffusion-based inpainting for coding remote-
sensing data” in IEEE Geoscience and Remote Sensing Letters, March 2017. 
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Section III introduces our inpainting scheme to encode hyper- 
spectral images. Section IV provides the experimental results 
and Section V concludes the paper. 

 
II.  PDE-BASED INPAINTING AND COMPRESSION 

In this section we describe the PDE-based inpainting prob- 

We  can  proceed  similarly  for  a  1D  inpainting process  in 
the spectral dimension. Using a binary mask ci ∈ Rz   for a 
spectral pixel xi   = (f  )j    Z ∈ Rz , where Z = {1, · · · , z}, 
the linear system to solve is 
 

(Ci − (Iz×z − Ci ) L) vi∗  = Ci xi∗ .               (5)

lem and the discrete formulation. Afterwards we explain the Here vi∗  ∈ R is the inpainting solution, and Ci ∈ {0, 1} z×z

mask selection and the optimization of gray values. 

 
A. PDE compression model 

Let f :  Ω →  R  denote an image that maps a domain 
Ω to the corresponding values. Let ΩK   ⊂  Ω be a subset 
of the image domain where the original image f is known. 
Diffusion-based inpainting aims at computing a reconstruction 
image  u  :  Ω  →  R  that  reproduces the  missing parts  of 
f on the inpainting domain Ω \ ΩK  based on smoothness 
assumptions. To this end, one solves the PDE 

 

(1 − c(x))Lu − c(x)(u − f ) = 0,                 (1) 
 

where u is the inpainting solution, L is a differential operator, 
and the characteristic function c(x) specifies whether a point 
is known or not: 

   
1   if x ∈ ΩK

 

is a diagonal matrix having the mask vector ci ∈ {0, 1}   as 
the main diagonal entries. 
 

 
C. Mask selection 

In addition to the differential operator, the selection of the 
mask that indicates the location of the known data plays a key 
role in reconstructing the image. Selecting this mask by using 
heuristics based on grid subdivision results in an efficient 
storage, but usually not in an efficient reconstruction. In this 
paper, we apply two optimization approaches [14]. The first 
one is called probabilistic sparsification. It starts by consider- 
ing all the data points (|J |) and iteratively removes the least 
significant pixels until only a desired density 0 < d < 1 of 
the known pixels |K | = 

 
d·|J |

   
remains. Specifically, in each 

iteration the following steps are applied: 

1.  Initialize |K | = |J |.c(x) = (2) 0   if x ∈ Ω \ ΩK . 
 

2.  Remove a random fraction p 
 

· |J | 
 

of candidates pixels,

This guarantees that on ΩK , f is reproduced perfectly, i.e. 
the known data stays fixed. Together with reflecting boundary 
conditions on the outer image boundaries ∂Ω, the inpainting 
equation (1) leads to a propagation of the known data into 
the missing areas according to the smoothness constraints im- 
posed by the differential operator L. Typical choices include 
the Laplacian L = ∆ and the biharmonic operator L = −∆2 . 

In contrast to other contexts such as denoising or filling in 
corrupted areas, the basic idea of PDE-based methods in the 
compression context is to reduce the image data to a set of 
sparse points that can be encoded efficiently. The decoding 
consists then of interpolating these scattered points in order 
to achieve an approximation of the original image. 

 
B. Discrete formulation 

To  provide the  necessary notation for  a  discrete hyper- 
spectral image, a discrete formulation of (Eq.1) is needed. 

and apply inpainting. 
3.  Compute the reconstruction error for these p · |J | pixels. 
4.  Remove a small fraction q · p · |J | of the candidate pixels 

with the smallest error. 
5.  Update K = K \ {removed pixels}. 
6.  Repeat the steps (2) to (5) while |K | > d · |J |. 

The second approach is called non-local pixel exchange. It 
is a post-optimization step that allows to improve the results 
of any previously selected mask. In each iteration, a set T 
of m  non-mask pixel is randomly selected from J \ K  as 
candidates and the local error ei  is computed for all i ∈ T . 
Then, n < |T | pixel indices i are randomly selected from K , 
and exchanged with n  pixels from T  with the largest error 
ei . If the inpainting solution is worse than before, we revert 
the switch. Otherwise we proceed with the new mask. 
 

 
D. Gray value optimization

Let f  = [f  ∗1 , · · · , f  ]  ∈ Rm×z  be a hyperspectral image Usually in inpainting, the original gray values of the input
with z spectral bands and m = x × y spatial samples. Each 

m
 image f are used to propagate the information in the missing

band f  ∗ 
= (f i,j  )i∈I  ∈ R is reshaped to a vector, where positions. However, allowing arbitrary gray values may lead,

I = {1, · · · , m} denotes the pixel indices. 
For a 2D inpainting process in the spatial dimensions using 

in global, to a better reconstruction, even though some error 
is  locally  introduced  in  the  known  data.  The  gray  value

a binary mask cj   ∈ {0, 1 m
 for a band f  ∈ Rm

 , the discrete optimization approach [14] uses least square approximation to
equation that we have to solve is 

 

(Im×m − Cj  ) Lu∗j   − Cj 
 
u∗j  − f ∗j 

  
= 0 ∈ {0} 

 

 
,    (3) 

find the optimal gray values g that minimize the mean squared 
error for a given mask c. If we denote by u = r(c, f ) the 
inpainting solution for a given mask c, then the minimization

where  u∗j      ∈   R 
m×m denotes  the  solution  vector,  Cj      ∈ becomes

{0, 1} is  a  diagonal  matrix  having  the  mask  vector 
m                                                                                                                                                                           2cj    ∈ {0, 1} as  the  main diagonal entries, Im×m  is  the argmin kf − r(c, g)k2  .                          (6)

identity matrix and L ∈ Rm×m is a square matrix describing 
the discrete differential operator. (Eq.3) can be formulated as 
a linear system with a unique solution: 

 

(Cj  − (Im×m − Cj ) L) u∗j  = Cj f ∗j .             (4) 

g∈K 

 
III.  PROPOSED DIFFUSION SCHEME 

The main idea of our inpainting scheme is (i) to exploit 
separately the spectral and the spatial redundancy, and (ii) to
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apply a prediction function to the inpainting solution in order 
to minimize the reconstruction error. 

Finally,   the   difference   between   the   original   image 
and   the   2D   inpainting   solution   is   computed   to   yield 

mThe first point is motivated by the fact that the relationships r∗j =f ∗j −u∗j ∈R . This difference, the so-called residual,
among the data coefficients are significantly different in the 
spatial dimensions than in the spectral dimension. Usually, the 
spectral correlation is much higher than the spatial one, and 
the spectral variation is much slower. This results in a high 
correlation not only between neighbor bands, but also between 
bands widely separated. As a result, separately exploiting the 
redundancy in each dimension has proven to be the most 
appropriate model of hyperspectral data for many families 
of compression techniques. For instance, the transform-based 

represents  the  information  that  was  not  accurately  recon- 
structed by the spatial diffusion inpainting. Since the residual 
is still highly correlated in the spectral dimension, we aim at 
removing this redundancy with 1D diffusion inpainting in the 
following. 
 
C. 1D biharmonic diffusion 

Note that from the original image we removed a 2D inpaint- 
ing solution based on exploiting the spatial redundancy using

coders  achieve  better  performance  by  applying  a  spectral 
transform followed by a spatial one [15].

 a fixed mask. Thus, the residual r2d = [r1 ∗ , · · · , r m∗ ]>   ∈
 

The second point is motivated by the fact that the inpainting 
Rm×z  (seen as a set of m spectral vectors ri  

still exhibits a large correlation along the
 ∈ Rz ) usually 

dimension. 

solution  may  be  highly  correlated  with  the  reconstruction 
error. Hence, a prediction model that exploits this correlation 
will provide an estimation much closer to the original image. 

Following the previous intuitions, our scheme is formed 
by three basic steps. First, a 2D inpainting is applied in the 
spatial dimensions to each band. Then the difference between 
the original image and the inpainting solution is computed. 
Second, a 1D spectral inpainting is applied to this difference, 

spectral 
To illustrate that, Fig. 1 depicts the correlation matrices of 
an original image and the difference image after removing 
a 2D inpainting solution obtained from using 5% of spatial 
pixels. Note that the correlation among spectral bands is 
largely maintained, while the variance is significantly reduced. 
The 1D inpainting aims at reconstructing an approximation of

which usually still exhibits large spectral correlation, since 
only a 2D diffusion reconstruction has been removed from 
the original image. Finally, a prediction model is applied to 
the sum of the inpainting solutions 2D+1D to minimize the 
reconstruction error. In what follows we explain these three 
steps with more details. 
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A. Differential operator 

In this paper we deal with two operators: the homogeneous 
diffusion operator that uses the Laplacian Lu := ∂xx u + ∂yy u 

 
224 

(a) Original (σ2 =2.35×105 ) 

 
224                                                                      0 

(b) Residual (σ2 =1.17×104 )

to be applied in the spatial dimensions, and the biharmonic 
operator  Lu   :=   −∂zzzz u  to  be  applied  in  the  spectral 
dimension. These choices are based on the results of extensive 
experiments over a set of hyperspectral images. 

Fig. 1: Correlation matrices for AVIRIS Yellowstone sc 00 
Radiance (224 components). 
 
r2d  using a small number of points. Again, for an efficient 
storage we select a fixed mask c1d   ∈ Rz   for all the spectral 

z
B. 2D homogeneous diffusion vectors  ri∗    ∈  R ,  i.e.,  we  seek  for  a  reconstruction of

 

Let f = [f  
 

∗1 , · · · , f  
 

] ∈ Rm×z be a hyperspectral image. 
r2d  from a small number of bands. The mask selection is 
performed through nonlocal  pixel exchange applied in the

From each spectral band f ∗ ∈ Rm  only a small number spectral dimension, having as initial mask the one obtained
of pixels is selected using probabilistic sparsification. For an 
efficient storage, the same fixed mask c2d   is selected for all 

by applying probabilistic sparsification. 
To provide the best inpainting solution using the selected

the spectral bands f  . To achieve that, the random selection ∗ mask, the gray value optimization is applied to find the gray
in Step 2 chooses the same positions for all the bands. Then 
Step 3 computes the mean square error of each position along 
all the spectral bands. Finally, Step 4 removes the pixels with 
the smallest error. 

Once the mask is selected, the homogeneous inpainting is 
applied in the spatial dimensions using (Eq.4) for each band 

values that minimize the error between r2d and the biharmonic 
inpainting solution v. Let g ∈ Rm×z be an image containing 
the optimized values in the mask positions and the unknown 
data in the complement positions. Then (Eq.5) is solved using 
g instead of f . The solution can be expressed in the following 
matrix form:

f ∗j  . The solution equation can be expressed in the following   
C        (I C    ) A2 

  
v  

= C    g  

,          (8)matrix form: 1d  − 
z
 

z×z −    1d i∗         1d     i∗

where vi∗  ∈ R is the biharmonic inpainting solution of ri∗(C2d − (Im×m − C2d ) A) u∗j  = C2d f ∗j ,          (7)  

and C 
 

1d   ∈ { 0, 1 z×z 
 

is a diagonal matrix having the mask
where A ∈ Rm×m  is a symmetric square matrix describing

 
vector c

 
0, 1 z1d  ∈ { } as the main diagonal entries.

the discrete Laplacian operator with reflecting boundary con- 
m×m With this step, the global 2D + 1D inpainting solution of

ditions, C2d  ∈ {0, 1} is a diagonal matrix having the 
m f = u + r2d becomes

mask vector c2d  ∈ {0, 1} 
m

 as the main diagonal entries, and  

w = u + v = [w∗1 , · · · , w∗z ] ∈ R m×z 
 

.            (9)u∗j  ∈ R is the inpainting solution.
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D. Prediction model 

The quality of  the inpainting solution can be  described 
by  the  reconstruction error  e  = f − w.  The  smaller  the 
error, the better the quality. However, some statistical rela- 
tionships may exist between the inpainting solution and the 
reconstruction error, i.e., part of this error can be described 
by the reconstructed image. Here, we propose a prediction 
model that exploits these statistical relationships. The idea 

also called known data. Given a density d, the known data 
is selected through the previously described probabilistic 
sparsification or non-local pixel exchange approaches [14]. 
However,  following  our  2D+1D  scheme,  the  selection  of 
the  known  data  is  performed  twice.  First,  a  fraction  d2 

is spatially selected from the original image. Then another 
fraction d1  is spectrally selected from the residual r2d , with 
d = d1  + d2 . Distributing this data equally may not be the

is to predict each original band f  
∗ 

from the bands of the most  appropriate choice.  Beyond  the  pixel  magnitudes or

2D+1D inpainting solution through a prediction function hj (·) 
in order to minimize the reconstruction error: 

the variance, which is usually much lower for the residual 
r2d  than  for  the  original  image,  the  main  issue  consists 
of  analyzing  in  which  dimension  it  is  more  favorable  to

f ∗j  = hj  (w) + e0
 .                         (10) invest more pixels. To this end, Fig. 3 depicts the coding

Any suitable prediction function hj (·) could be applied to 
remove the aforementioned dependencies. In our experiments, 
we used a linear regression model that takes as input entries 

performance of our inpainting scheme (2D+1D+h(·)) applied 
to a hyperspectral image using different distributions. As can 
be seen, selecting more pixels from the residual r2d for the 1D

for predicting a band f  
∗ 

some adjacent bands to that of index spectral inpainting is beneficial for compression. For a given

j from the 2D and 1D inpainting solutions. Specifically, the 
proposed model is as follows: 

hj (w) =fb∗j =βj,0 +βj,1 u∗j−2 + · · · +βj,5 u∗i+2 + 
αj,1 v∗j−2  + · · · + αj,5 v∗j+2 .     (11) 

 

The parameters α = (αj,· )j∈Z   and β = (βj,· )j∈Z   are found 
by using the least squares method that minimizes the squared 

global density d, we used a distribution of d2  = 0.25·d for 2D 
inpainting and d1  = 0.75 · d for 1D inpainting. This choice 
has experimentally been shown to provide a good trade-off 
between coding cost and quality gain. 
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48

distances between f  
∗ 

resentation becomes 
and fb∗j  . The final 2D+1D+h(·) rep-                      46 

 
44

h (w) = [h1 (w) , · · · , hz  (w)] ∈ Rm×z .          (12) 
 

To  illustrate  the  prediction  step,  Fig.  2a  depicts  a  cross-                      
40 

correlation  matrix  of  w  and  e.  It  contains  the  pairwise 
correlations (in terms of the squared correlation coefficient                     38

r2 ) of each pair (w , e∗j 0 ) formed by one component from  
36 
0.4     0.5     0.6     0.7     0.8     0.9     1.0     1.1

the 2D+1D inpainting solution w  and one component from 
the  error image e.  Furthermore, Fig. 2b  shows the  cross- 
correlation matrix of h(w)  and e0 after applying the prediction 
model (Eq.11). The reconstruction has been achieved by using 
10% of pixels from a typical hyperspectral image with 224 
spectral bands. As can be seen, the proposed regression model 
efficiently exploits the correlation and significantly reduces 
the reconstruction error. 

Bitrate 
(bpppc) 

 
Fig. 3: Different distributions of the known data for AVIRIS 
Yellowstone sc 00 Radiance (224 components). 
 
 
 

IV.  EXPERIMENTAL RESULTS 

In this section we evaluate our diffusion-based coder for a 
set of hyperspectral images from AVIRIS, CASI and AIRS
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(b) Correlation: e0  vs. h(w). 
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sensors. For comparison purposes, we provide results for a re- 
cent extension of prediction-based standard CCSDS-123.0 [4] 
and for the JPEG 2000 Part 2 standard applying different 
spectral  transforms, including  the  PCA  transform  and  the 
spectral DWT 9/7 (8 levels) before the 2D spatial DWT 9/7 
with 5 levels. The Kakadu software implementation of JPEG 
2000 has been used. For all the experiments, we used the 
parameters p=q=0.1 for probabilistic sparsification. For non- 
local pixel exchange, we used the parameters m = 10, n = 1, 
and 1000 iterations as a stopping criterion. The known data

n        i                                      n        i

Fig. 2: Cross-correlation matrices for AVIRIS Yellowstone 
sc 10 Radiance (224 components). 

 

 
 
E. Known data distribution 

As said, the idea of PDE-based image compression relies 
on storing a small fraction (a density d)  of image pixels, 

has been decorrelated losslessly by the RWA transform [5], 
and compressed by the PAQ software [16] . 

Figure 4 provides the rate-distortion performance for the 
transform-based methods applied to the Hawaii uncalibrated 
image. Table I reports the results of our algorithm as com- 
pared to [4]. The rate-distortion performance is assessed 
through the relation between the target bitrate, measured in 
bits per pixel per component (bpppc), and the reconstruction
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quality, measured as the signal-to-noise ratio (SNR), com- The  scheme  propagates  the  known  information  separately
puted as 10 log10 
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i,j ,k in the spatial and in the spectral dimensions, then reduces 

the reconstruction error by applying a prediction model to 
the final inpainting solution. The prediction step shows that 
the quality of the inpainting solution relies not only on the 
extent of the reconstruction error, but also on the capabil- 
ity of this solution to estimate the original image using a 
suitable prediction model. The proposed 2D+1D+h(·) scheme

34                                                    

32 

30 

28 
0.0     0.2     0.4     0.6     0.8     1.0     1.2             
1.4 

provides competitive results to the most prominent state-of- 
the-art standard JPEG 2000 Part 2 and to an extension of the 
prevailing standard CCSDS-123.0.

Bitrate  
(bpp) 

 

Fig. 4: Rate-Distortion performance for Hawaii uncalibrated 
(512 rows, 614 columns and 224 bands). 

 
 
 
TABLE  I:  Comparison between  our  2D+1D+h(·)  and  the 
recently proposed extension to CCSDS-123.0 [4] 

 
Image 2D+1D+h(·) Ext. CCSDS-123.0 [4] 

rate  (bpppc) SNR (dB) rate  (bpppc) SNR (dB) 

YST 00 uncal 
512 rows 

680 columns 
224 bands 

0.36 
0.48 
1.07 
2.00 

34.38 
37.57 
48.04 
53.66 

0.35 
0.53 
1.01 
2.00 

32.34 
36.20 
46.42 
55.96 

AIRS-GRAN9 
135 rows 

90 columns 
1501 bands 

0.28 
0.50 
1.00 
2.02 

56.06 
57.03 
58.10 
61.58 

0.28 
0.50 
1.00 
2.02 

36.38 
46.82 
53.91 
63.21 

CASI-T0477F 
1225 rows 

406 columns 
72 bands 

0.36 
0.53 
1.03 
2.03 

25.73 
28.57 
38.62 
47.14 

0.37 
0.52 
1.01 
2.03 

19.90 
23.79 
40.53 
50.61 

 
In general, our inpainting-based approach performs better 

than JPEG 2000 Part 2 with the DWT 9/7 in the spectral 
dimension and it is competitive to PCA spectral transform, 
which is the optimal decorrelation transform for Gaussian 
sources. When compared to a prediction-based approach, our 
inpainting  scheme  is  superior  to  [4]  at  high  compression 
ratios, usually even up to  a  bit-rate of  1  bpppc, while at 
moderate to low compression ratios, our approach lags behind, 
a prevalent behaviour when comparing transform-based and 
prediction-based approaches [17], [18]. 

With regard to the impact of the prediction model h(·), 
Fig. 5 provides the rate-distortion performance for our in- 
painting scheme with and  without the  prediction step. As 
can be seen, the prediction model significantly improves the 
performance, in some cases by more than 10 dB. 
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Fig. 5: Prediction impact for uncalibrated AVIRIS images 
 
 

V.  CONCLUSION 

Diffusion-based  inpainting  has  shown  to  be  useful  for 
image compression. In this paper we proposed a diffusion- 
based inpainting algorithm for coding hyperspectral images. 
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