
C O N N E C T I N G M AT H E M AT I C A L M O D E L S F O R
I M A G E P R O C E S S I N G A N D N E U R A L N E T W O R K S

A Dissertation Submitted Towards
the Degree Doctor of Natural Sciences (Dr. rer. nat.)

of the Faculty of Mathematics and Computer Science
of Saarland University

submitted by
tobias alt-veit

Saarbrücken, 2022

day of colloquium:
15.12.2022

dean of faculty:
Prof. Dr. Jürgen Steimle

chair of the committee:
Prof. Dr. Eddy Ilg

reviewers:
Prof. Dr. Joachim Weickert
Prof. Dr. Lars Ruthotto

academic assistant:
Dr. Pascal Peter

to Anna

S H O RT A B S T R A C T

This thesis deals with the connections between mathematical models
for image processing and deep learning. While data-driven deep learn-
ing models such as neural networks are flexible and well performing,
they are often used as a black box. This makes it hard to provide
theoretical model guarantees and scientific insights. On the other
hand, more traditional, model-driven approaches such as diffusion,
wavelet shrinkage, and variational models offer a rich set of mathem-
atical foundations. Our goal is to transfer these foundations to neural
networks. To this end, we pursue three strategies. First, we design
trainable variants of traditional models and reduce their parameter set
after training to obtain transparent and adaptive models. Moreover,
we investigate the architectural design of numerical solvers for par-
tial differential equations and translate them into building blocks of
popular neural network architectures. This yields criteria for stable
networks and inspires novel design concepts. Lastly, we present novel
hybrid models for inpainting that rely on our theoretical findings.
These strategies provide three ways for combining the best of the two
worlds of model- and data-driven approaches. Our work contributes
to the overarching goal of closing the gap between these worlds that
still exists in performance and understanding.

v

K U R Z Z U S A M M E N FA S S U N G

Gegenstand dieser Arbeit sind die Zusammenhänge zwischen mathe-
matischen Modellen zur Bildverarbeitung und Deep Learning. Wäh-
rend datengetriebene Modelle des Deep Learning wie z.B. neuronale
Netze flexibel sind und gute Ergebnisse liefern, werden sie oft als
Black Box eingesetzt. Das macht es schwierig, theoretische Modellga-
rantien zu liefern und wissenschaftliche Erkenntnisse zu gewinnen.
Im Gegensatz dazu bieten traditionellere, modellgetriebene Ansätze
wie Diffusion, Wavelet Shrinkage und Variationsansätze eine Fülle
von mathematischen Grundlagen. Unser Ziel ist es, diese auf neu-
ronale Netze zu übertragen. Zu diesem Zweck verfolgen wir drei
Strategien. Zunächst entwerfen wir trainierbare Varianten von traditio-
nellen Modellen und reduzieren ihren Parametersatz, um transparente
und adaptive Modelle zu erhalten. Außerdem untersuchen wir die
Architekturen von numerischen Lösern für partielle Differentialglei-
chungen und übersetzen sie in Bausteine von populären neuronalen
Netzwerken. Daraus ergeben sich Kriterien für stabile Netzwerke und
neue Designkonzepte. Schließlich präsentieren wir neuartige hybride
Modelle für Inpainting, die auf unseren theoretischen Erkenntnissen
beruhen. Diese Strategien bieten drei Möglichkeiten, das Beste aus
den beiden Welten der modell- und datengetriebenen Ansätzen zu
vereinen. Diese Arbeit liefert einen Beitrag zum übergeordneten Ziel,
die Lücke zwischen den zwei Welten zu schließen, die noch in Bezug
auf Leistung und Modellverständnis besteht.

vi

A B S T R A C T

The goal of this thesis is to identify connections between models
relying on partial differential equations (PDEs) and convolutional
neural networks (CNNs) for image and signal processing.

The rise of deep learning and CNNs has drastically reshaped many
areas of computer science. The availability of large amounts of data
and powerful computing hardware has made modern neural networks
highly flexible, performant, and thus ubiquitous. However, this comes
at the cost of intransparent models which often do not provide any
mathematical guarantees. On the other hand, traditional mathematical
models for image processing such as diffusion, wavelet shrinkage, and
variational models benefit from a long history of research on their
theoretical properties and thus offer valuable concepts such as stability,
well-posedness, and rotation invariance. Yet, they are outperformed
by CNNs. Our goal is to identify fundamental links between the
two worlds to come up with improved models that combine the
performance of learning-based approaches with the transparency and
mathematical foundations of model-based ones. To this end, we pursue
three directions.

In a first step, we equip traditional models with few trainable com-
ponents, making them more adaptive than their predecessors. After
training the novel models, we reduce the resulting parameter set by
re-modelling it through compact and physically plausible dynamics.
This illustrates how mathematical models can be enhanced through
concepts from machine learning without sacrificing theoretical guar-
antees.

In a second step, we extensively investigate the links between nu-
merical algorithms for PDEs and neural network architectures by
translating the essential numerical operations into neural building
components. This allows us to identify design concepts for neural
networks that inherit properties such as stability directly from their
PDE-based counterparts. We find that many popular CNNs share
an architectural similarity with well-known numerical algorithms for
solving PDE-related problems. This second part provides a foundation
for understanding the power of neural networks from the viewpoint
of numerics for PDEs.

Finally, we show that our considerations are also relevant from a
practical point of view by presenting two models for use in inpainting-
based image compression. Both approaches take inspiration from our
previous theoretical findings and practical experiences, allowing us to
combine speed and adaptivity in hybrid models for image inpainting.

vii

The three parts offer three ways for combining the best of both
model- and data-driven worlds from different viewpoints: mathem-
atical modelling, numerical analysis, and practical image processing
applications. This allows us to come up with models that follow
transparent and insightful modelling decisions, fulfil desirable math-
ematical properties such as stability and invariances, or use deep
learning in a tightly controlled framework with interpretable results.
These findings are intended as a contribution to the overarching goal
of closing the gap between traditional mathematical models and deep
learning that exists in both understanding and performance.

viii

Z U S A M M E N FA S S U N G

Ziel dieser Arbeit ist es, Verbindungen zwischen Modellen für die
Bild- und Signalverarbeitung, die auf partiellen Differentialgleichun-
gen (PDEs, partial differential equations) beruhen, und faltenden
neuronalen Netzen (CNNs, convolutional neural networks) zu identi-
fizieren.

Der Aufstieg von Deep Learning und CNNs hat viele Bereiche
der Informatik drastisch verändert. Die Verfügbarkeit von großen
Datenmengen und leistungsfähiger Computerhardware haben dazu
geführt, dass moderne neuronale Netze sehr flexibel, leistungsfähig,
und damit allgegenwärtig sind. Dies hat jedoch den Nachteil, dass
Modelle intransparent sind und oft keine mathematischen Garantien
bieten. Demgegenüber profitieren traditionelle mathematische Mo-
delle für die Bildverarbeitung wie Diffusion, Wavelet Shrinkage und
Variationsansätze von einer langen Forschungsgeschichte zu ihren
theoretischen Eigenschaften und bieten daher wertvolle Konzepte wie
Stabilität, Gutgestelltheit und Rotationsinvarianz. Dennoch fehlt ihnen
die Leistung, die neuronale Netze bieten können. Unser Ziel ist es,
grundlegende Verbindungen zwischen den beiden Welten zu iden-
tifizieren, um verbesserte Modelle zu entwickeln, die die Leistung
lernbasierter Ansätze mit der Transparenz und den mathematischen
Grundlagen von modellbasierten Ansätzen kombinieren. Zu diesem
Zweck verfolgen wir drei verschiedene Ansätze.

In einem ersten Schritt statten wir traditionelle Modelle mit einigen
wenigen trainierbaren Komponenten aus und machen sie dadurch
adaptiver als ihre Vorgänger. Nach dem Training der neuen Modelle
reduzieren wir den resultierenden Parametersatz, indem wir sie durch
kompakte und physikalisch plausible Dynamiken neu modellieren.
Das zeigt wie mathematische Modelle durch Konzepte des Machine
Learnings verbessert werden können, ohne dabei ihre theoretischen
Garantien zu opfern.

In einem zweiten Schritt untersuchen wir ausführlich die Verbin-
dungen zwischen numerischen Algorithmen für PDEs und neuronalen
Netzwerkarchitekturen durch die Übersetzung von grundlegenden
numerischen Operationen in neuronale Bausteine. Dies erlaubt uns,
Designkonzepte für neuronale Netze zu identifizieren, die Eigenschaf-
ten wie z.B. Stabilität direkt von ihren PDE-basierten Gegenstücken
übernehmen. Wir stellen fest, dass viele populäre CNNs eine archi-
tektonische Ähnlichkeit mit bekannten numerischen Algorithmen zur
Lösung von PDE-Problemen aufweisen. Der zweite Teil bietet eine
Grundlage für das Verständnis der Leistungsfähigkeit neuronaler Net-
ze unter dem Gesichtspunkt der Numerik für PDEs.

ix

Abschließend zeigen wir, dass unsere Überlegungen auch aus prak-
tischer Sicht relevant sind, indem wir zwei Modelle vorstellen, welche
nützlich für Inpainting-basierte Bildkompression sind. Beide Ansätze
sind inspiriert von unseren vorherigen theoretischen Einsichten und
praktischen Erfahrungen und erlauben uns, Geschwindigkeit und
Adaptivität in hybriden Modellen für das Inpainting von Bildern zu
kombinieren.

Die drei Teile bieten drei Möglichkeiten aus verschiedenen Blickwin-
keln, das Beste aus beiden modell- und datengetriebenen Welten zu
kombinieren: mathematische Modellierung, Numerik und praktische
Anwendungen. Dies ermöglicht uns, Modelle zu entwickeln, die trans-
parenten und erkenntnisreichen Modellierungsentscheidungen folgen,
wünschenswerte mathematische Eigenschaften wie Stabilität und In-
varianz erfüllen, oder Deep Learning in einem streng kontrollierten
Rahmen mit interpretierbaren Ergebnissen nutzen. Diese Erkenntnisse
sollen einen Beitrag zu dem übergreifenden Ziel liefern, die Lücke
zwischen traditionellen mathematischen Modellen und Deep Learning
zu schließen, die sowohl im Modellverständnis als auch der Leistung
existiert.

x

A C K N O W L E D G E M E N T S

I would like to express my deep gratitude to my advisor Prof. Joachim
Weickert. Not only was he always available when asked for help, but
his guidance and support were also indispensable for this research. I
appreciated that he provided a clear vision for our projects, while still
giving me the freedom on how to approach the goals.

Moreover, I thank Prof. Lars Ruthotto for fruitful discussions and
serving as a second reviewer for this thesis.

This work would not have been possible without the financial
support of the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant
agreement no. 741215, ERC Advanced Grant INCOVID). This is grate-
fully acknowledged.

I would also like to thank my collaborators: Dr. Pascal Peter for his
expertise in inpainting-based image compression, valuable feedback
on various manuscripts, and his encouragement; Karl Schrader for his
extensive knowledge and practical experience on deep learning, which
led to several productive collaborations; Dr. Matthias Augustin for
checking intricate mathematical problems with thorough detail; and
finally, Sarah Andris and Rahul Mohideen Kaja Mohideen for allowing
me to broaden my knowledge by supporting them in their projects.

I thank Sarah Andris, Johannes Bund, Karl Schrader, Dr. Pascal Peter,
and Prof. Joachim Weickert for proofreading this thesis and offering
valuable feedback.

My thanks are extended to further current and former members of
the mathematical image analysis (MIA) chair for creating a comfortable
and inspiring working environment: Dr. Leif Bergerhoff, Dr. Kireeti
Bodduna, Pinak Bheed, Dr. Marcelo Cárdenas, Vassillen Chizhov, Michael
Ertel, Peter Franke, Ferdinand-Dennis Jost, Niklas Kämper, Hyoseung Kang,
Dr. Sabine Müller, Kristina Schaefer, Jón Arnar Tómasson, Aaron Wewior,
and Ellen Wintringer.

Last but not least, I would like to thank Christiane and Kurt Alt as
well as Regine and Georg Veit for their past and present aid, and my
wife Anna Veit for her unconditional love and support.

xi

C O N T E N T S

1 Introduction 1
1.1 Contributions . 3
1.2 Organisation of the Thesis 4

2 Mathematical Preliminaries 5
2.1 Derivative Operators . 5
2.2 Convolution . 6
2.3 Taylor Expansion . 7
2.4 Norms . 8
2.5 Signals and Images . 11
2.6 Error Measures . 12

3 Related Work 15
3.1 Diffusion . 16
3.2 Variational Methods . 36
3.3 Wavelet Shrinkage . 38
3.4 Deep Learning and Neural Networks 41
3.5 Mathematical Foundations of Deep Learning 62
3.6 Applications . 64

I Improving Mathematical Models through Learning
4 Trainable Adaptive Wavelet Shrinkage 73

4.1 Review: Shift-Invariant Wavelet Shrinkage 75
4.2 Adaptive Wavelet Shrinkage 79
4.3 Experiments . 82
4.4 Conclusions . 88

5 Trainable Integrodifferential Diffusion 91
5.1 Useful Reformulation of EED 93
5.2 Integrodifferential Diffusion 94
5.3 Finding Scale-adaptive Parameter Functions 96
5.4 Extension to Inpainting 104
5.5 Conclusions . 108

II Mathematically Founded Neural Networks
6 Mathematical Models and Residual Networks 113

6.1 Review: Basic Approaches 115
6.2 Translation into Residual Networks 116
6.3 Dictionary of Activation Functions 122
6.4 Conclusions . 123

7 Numerical Algorithms and Neural Architectures 129
7.1 Review: Generalised One-dimensional Diffusion 131
7.2 From Diffusion to Symmetric Residual Networks . . . 132
7.3 The Value of Skip Connections 137
7.4 Review: Multigrid Solvers and U-nets 142

xiii

xiv contents

7.5 From Multigrid to U-nets 144
7.6 Experimental Evaluations 147
7.7 Conclusions . 158

8 Rotationally Invariant Neural Networks 161
8.1 Two Views on Rotational Invariance 163
8.2 Towards Rotationally Invariant Networks 164
8.3 Discussion . 175
8.4 Experiments . 176
8.5 Conclusions . 181

III Image Inpainting with Hybrid Models
9 Inpainting with Anisotropic Shepard Interpolation 185

9.1 Review: Isotropic Shepard Interpolation 187
9.2 Anisotropic Shepard Interpolation 188
9.3 Inpainting Experiments 193
9.4 Application to Compression 198
9.5 Compression Experiments 200
9.6 Conclusions . 204

10 Learning Sparse Masks for Diffusion Inpainting 207
10.1 Review: Data Optimisation for Inpainting 209
10.2 Sparse Masks with Surrogate Inpainting 210
10.3 Experiments . 213
10.4 Conclusions . 221

11 Conclusions and Outlook 223
11.1 Conclusions . 223
11.2 Outlook . 225

a Rotationally Invariant Wavelet Shrinkage 227
b Stability of Du Fort–Frankel Schemes 231
c Stability of Multiscale Architectures 237
d Contributions and Publications 239

d.1 Further Contributions 239
d.2 List of Publications . 240

e Bibliography 243
f Glossary 283
g List of Symbols 285
h List of Figures 291
i List of Tables 293

1
I N T R O D U C T I O N

The rapid progress in artificial intelligence over the last decade has
drastically reshaped many areas of computer science. The advances in
neural networks, combined with the availability of performant parallel
computing hardware have transformed deep learning from a niche
research field to a universally applicable methodology for a large class
of tasks [152, 223, 225, 330].

Neural networks are highly flexible tools: Given large amounts
of data consisting of inputs and desired outputs, so-called ground
truth, supervised networks learn to solve a task by comparing their
predictions against the ground truth and adapting their parameters
such the two are close. This allows to adapt models to various tasks
without the need for researchers to craft models by hand.

While this brings enormous flexibility, this approach is not without
any downsides. One can identify two common flaws which serve as a
motivation of this thesis. First, most neural networks suffer from an
unintuitive behaviour in the sense that they do not mimic the mam-
malian brain structure, unlike their original biological motivation [132,
192, 253] would suggest. It is possible that an image recognition system
based on a neural network identifies e.g. cat images correctly in the
majority of cases. However, some images which a human would un-
deniably recognise, are unexpectedly classified e.g. as a piano. While
the cause of these adversarial examples [154] is known, designing models
which are robust against this phenomenon is non-trivial and subject
to ongoing research [167, 229, 304, 404].

Why should one care whether a cat becomes a piano? In a controlled
research environment, these cases are often within the small margin
of overall classification error and do not seem to make a difference
in the grand scheme of things. However, when thinking of practical
applications of image recognition systems such as in automated driv-
ing environments, it is of utmost importance that these systems work
correctly in all cases, or at least provide a measure of uncertainty to
be able to refer the decision to a human operator. Moreover, these
weak points can even be abused with malicious intent by purposefully
designing misleading fringe cases [120]. This shows that enforcing
mathematical guarantees in such models may seem restrictive in the
first place, but must not be disregarded in safety-critical applications.

Whereas this unintuitive behaviour is of practical concern, the
second flaw is of more philosophical nature. As neural networks
usually contain huge amounts of parameters in the order of several
millions, they often work as a black box. A loss function incentivises

1

2 introduction

that the network outputs come close to the desired ground truth, and
the network finds the way towards a good parameter set automatic-
ally. How individual parameters interact with each other, and why
it is exactly this combination that works well, is often infeasible to
investigate. This prohibits researchers from gaining insights into these
models, which in turn makes scientific progress difficult.

In fact, the benefits of overparameterisation [40] in neural networks
suggest that they even seem to violate the principle of Occam’s razor,
which states that simple models are usually to be preferred over
complicated ones. We argue that even though it may be convenient
to solve a problem with the help of deep learning, it should be done
in such a way that the model is suitable to the problem and can be
understood well.

The aforementioned problems have prompted researchers to provide
mathematical foundations for deep learning. Since around 2015, many
works have used various mathematical frameworks to analyse neural
networks in terms of their stability [167], expressibility [303], general-
isation potential [408], robustness against adversarial examples [140],
and their connections to partial and ordinary differential equations (PDEs
and ODEs) [73, 75, 238, 319].

We contribute to the mathematical foundations of deep learning
by considering classical, well-connected image processing models.
Approaches that rely on concepts such as diffusion [195, 279, 369],
wavelets [108, 165, 248], and variational methods [27, 354, 391] have a
long history of research and are mathematically well-founded. While
many of these models cannot match the performance of deep neural
networks, they provide advantages in terms of strict mathematical
guarantees, transparent modelling, and interpretable outcomes.

This dichotomy is the fundamental motivation of this thesis: We
want to connect neural networks and mathematical concepts in such a
way that we preserve the best of both worlds within performant, but
mathematically well-founded models.

One can approach this task in two ways. The goal of an analytic
strategy is to assign a compact mathematical representation to a neural
network. However, this option is challenging due to many design
possibilities within neural networks and the large amount of trainable
parameters involved. Thus, we pursue a synthetic strategy that takes
well-founded mathematical concepts as a baseline and uses them to
create models that inherit the theoretical guarantees, while benefiting
from the strengths of learning. Even though this strategy does not
cover the full range of neural networks, it can provide fundamental
design criteria that allow for well-performing but mathematically
founded components.

1.1 contributions 3

1.1 contributions

To this end, we identify three visions that this research avenue en-
tails [371].

vision 1 : improving mathematical models by learning
We start by equipping diffusion- and wavelet-based models with
fundamental ideas of learning. This preserves the tight mathemat-
ical framework of the underlying approaches, but still introduces
additional flexibility by allowing parameter adaptivity. However, in
contrast to similar works, we reduce the learned parameter set by
identifying the relations of the learned parameters to a feasible, min-
imal set of parameters. For the test application of denoising, this yields
significant gains over comparable methods and shows how tightly con-
trolled learning aspects can improve traditional mathematical models.

vision 2 : mathematically founded neural networks In
a second, more theoretical step, we analyse numerical schemes for
models such as nonlinear diffusion, wavelet shrinkage, and variational
energies, and connect their essential building blocks to popular neural
network architectures. We start with a setting where all involved para-
meters are fixed, allowing us to focus on the connections between the
central nonlinear design choices of diffusivities, shrinkage functions,
variational penalisers, and neural activation functions. We extend
these considerations to models with trainable filters and identify cru-
cial design criteria for guaranteeing mathematical concepts such as
well-posedness, Euclidean stability, and rotation invariance of specific
networks. Moreover, we connect several numerical solution strategies
for PDEs to popular neural architectures and show that the resulting
networks can perform well while saving parameters.

vision 3 : developing hybrid models The previous two parts
form the foundation of the final vision where we use the established
insights to create hybrid models. We present two models that aim at
improving inpainting-based image compression by combining suc-
cessful concepts to find a balance between adaptivity and efficiency.
In once instance thereof, we actually use neural networks as black
boxes, however, we design our loss function different from typical
data-driven ones by prescribing the residual of a PDE as a loss for the
network. Thus, the network finds the way to a solution of the PDE and
acts as a surrogate solver which is fully decoupled from the model
itself.

These visions are intended as three different options for bridging the
gap between model- and data-driven approaches.

4 introduction

1.2 organisation of the thesis

Before we present our contributions, we review mathematical pre-
liminaries in Chapter 2, and provide an overview of related work in
Chapter 3.

The rest of the thesis is structured into three parts that coincide
with the aforementioned visions. Part I consists of Chapters 4 and 5,
wherein we come up with trainable models for image denoising
which rely on wavelet shrinkage and anisotropic diffusion, respectively.
Both chapters follow a similar methodology: The classical models are
equipped with trainable parameters which are optimised for the task
at hand. Afterwards, we manually inspect the parameter evolutions
and substitute them with analytical models that reduce the parameter
set to a minimum.

Part II presents the theoretical connections between neural networks
and numerical solution strategies for diffusion, wavelet shrinkage,
and variational models. In Chapter 6 we consider the four afore-
mentioned approaches in the one-dimensional setting and provide
an overview of their connections, with a focus on nonlinear design
functions. Chapter 7 extends these considerations by focusing on gen-
eralised diffusion and neural networks. Lastly, Chapter 8 investigates
the two-dimensional case and the associated problem of guaranteeing
rotation invariance for the proposed neural architectures.

Finally, Part III of the thesis containing Chapters 9 and 10 is devoted
to image inpainting with hybrid models. Chapter 9 constitutes an
exception as it does not involve any learning, still it is concerned
with a hybrid model combining efficiency and performance for image
inpainting and compression. In Chapter 10 we harness the full power
of deep learning in a model which learns masks for image inpainting
and solves the inpainting problem simultaneously.

In Chapter 11 we present our conclusions as well as an outlook
on open questions and future research directions. The Appendices A,
B, and C present various proofs for rotation invariance and stability
guarantees referring to Chapters 4, 7, and 8, respectively. At the end of
the thesis, we list further information such as a list of own publications,
the bibliography, a glossary, as well as lists of figures, tables, and
symbols.

2
M AT H E M AT I C A L P R E L I M I N A R I E S

In this chapter, we introduce basic mathematical definitions that ap-
pear throughout the thesis.

2.1 derivative operators

Since this thesis is concerned with partial differential equations (PDEs),
the first concept we define are partial derivatives. Let f : Rn → R be a
function. We define the partial derivative w.r.t. the i-th argument at a
position x ∈ Rn as

∂ f
∂xi

(x) = lim
h→0

f (x1, . . . , xi + h, . . . , xn)− f (x1, . . . , xi, . . . , xn)

h
. (2.1)

If this limit exists, the function is partially differentiable. A general
assumption which we make in this thesis is that all functions are
sufficiently often differentiable for our purposes. We additionally use
the expressions ∂xi f and fxi as shorthand notations for the partial
derivative.

gradient and divergence Two fundamental derivative operat-
ors that use partial derivatives are the gradient and the divergence. For
a scalar function f : Rn → R, the gradient is defined as

∇ f (x) = (∂x1 f (x) , . . . , ∂xn f (x))⊤ . (2.2)

The gradient is a vector containing all partial derivatives of the func-
tion f and points in the direction of its steepest ascent.

Its counterpart is the divergence operator, which for a vector-valued
function f : Rn → Rn with f(x) = (f1(x), . . . , fn(x))

⊤ is given by

div(f(x)) = ∇⊤(f(x)) =
n

∑
i=1

∂xi fi(x) . (2.3)

The divergence sums up partial derivatives of the components of f
w.r.t. the respective dimension of the component. We predominantly
use the alternative notation ∇⊤ for the divergence operator.

laplace operator The last derivative operator we need to define
is the Laplace operator, also called the Laplacian. The Laplacian of a
function f : Rn → R is defined as

∆ f = div(∇ f (x)) =
n

∑
i=1

∂xixi f (x) . (2.4)

5

6 mathematical preliminaries

The Laplacian sums up the second derivatives of f in all respective
directions. Intuitively, it denotes whether a point is a source or a sink
when interpreting the function as a spatial distribution of concentra-
tions.

Sometimes, one also refers to the Laplace operator as the harmonic
operator. Consequently, its second power ∆2 is called the biharmonic
operator.

Partial derivatives, gradient, divergence, and Laplacian play an
essential role within this thesis to compute derivatives of signals and
images. Derivative information can encode useful image properties
such as edges and corners.

Note that we have defined all these derivative operators as spatial
operators. Often times, we deal with functions with both spatial com-
ponents and a temporal one, e.g. f (x, t). In these cases, the derivative
operators always refer only to the spatial arguments, i.e. x in this case.

directional derivatives To describe boundary conditions of
PDEs we make use of directional derivatives. For a function f : Rn → R,
we define the directional derivative in the direction v ∈ Rn by

∂v f = lim
h→0

f (x+ hv)− f (x)
h

. (2.5)

Thus, the directional derivative measures the change of the function f
at the position x in the direction of v.

gâteaux derivatives Minimisers of variational energies are
found by means of Gâteaux derivatives which generalise derivatives to
the calculus of variations [27, 137]. For a functional F(u) which maps a
function u : Rn → R to a real value, we define the Gâteaux derivative
as

∂uF(u; r) = lim
ε→0

F(u + εr)− F(u)
ε

. (2.6)

Here, r : Rn → R is an arbitrary perturbation function. If this limit
exists for all r, the functional F is Gâteaux differentiable. In a similar
way as for function derivatives, we abbreviate Gâteaux derivatives
as Fu.

2.2 convolution

One of the most important operations we encounter in this thesis is
the convolution. It is essential for continuous image operations as well
as for image processing with discrete filters. It is also the fundamental
mathematical operation within CNNs.

For two functions f , g : Rn → R, the convolution of the two is given
by

(f ∗ g) (x) =
∫

Rn
f (x− y) g(y) dy . (2.7)

2.3 taylor expansion 7

Intuitively, one of the functions — the so-called convolution kernel — is
mirrored and continuously moved over the other function. At each
point, the value of the convolution is determined by the area under
the product of the two functions.

The discrete convolution of two signals f = (fi)i∈Z, g = (gi)i∈Z is
consequently defined as

(f ∗ g)i = ∑
k∈Z

fi−k gk . (2.8)

This one-dimensional definition is sufficient for our purposes since we
can reformulate digital images in terms of vectors, as we will see in
Section 2.5.

The convolution possesses several useful properties. In particular,
it is linear and shift-invariant: Shifting the convolution kernel does
not change the result of the convolution. This is the core idea in the
design of CNNs.

2.3 taylor expansion

The Taylor expansion can be used to approximate a sufficiently smooth
function at a position by means of a power series. It is an important
tool for deriving finite difference approximations and analysing their
quality.

For a one-dimensional function f : R → R which is n + 1 times
continuously differentiable with bounded derivatives, the Taylor series
in a position x + h is defined as

f (x + h) =
n

∑
k=0

hk

k!
f (k)(x) +O

(
hn+1

)
. (2.9)

Here, f (k)(x) is the k-th derivative of f at x, and O is the Landau
notation. Intuitively, it expresses the fact that there is a remainder
which does not grow faster than the function hn+1.

More rigorously, for two real-valued functions f , g : R → R we
have f (x) ∈ O(g(x)) if there exist constants c > 0 and x0 such that

| f (x)| ≤ C |g(x)| ∀x ≥ x0 . (2.10)

Thus, the Taylor expansion (2.9) describes the function f in a vicinity
around x by means of its derivatives in x. The larger the distance h
becomes, the less accurate the approximation becomes.

For a two-dimensional function f : R2 → R, we analogously define
the Taylor expansion in x+ h by

f (x+ h) =
n

∑
k=0

1
k!
⟨h,∇⟩k f (x) +O

(
|h|n+1

)
. (2.11)

Instead of one-dimensional derivatives, one uses the scalar product of
h =

(
hx, hy

)⊤ and the gradient operator ∇, and powers thereof.

8 mathematical preliminaries

2.4 norms

Norms are an important mathematical concept within this thesis. They
play a role in loss function design as well as several stability analyses.
In the following, we define both vector norms and matrix norms.

vector norms A vector norm ∥ · ∥ : V → R+
0 maps elements from

a vector space V to a nonnegative number which can be interpreted
as the size of that element. For ease of definition, we only consider
vector spaces over the real numbers.

A norm has to fulfil three axioms:

• Definiteness: If the norm of an element v is zero, then the
element itself is the zero element:

∥v∥ = 0 ⇔ v = 0 ∀v ∈ V. (2.12)

• Absolute homogeneity: Multiplying an element v with a scalar α

within the norm is equivalent to multiplying the norm of the
element with the absolute value of the scalar:

∥αv∥ = |α| ∥v∥ ∀v ∈ V, α ∈ R . (2.13)

• Subadditivity: The norm of the sum of two elements v,w is
smaller than the sum of their individual norms:

∥v+w∥ ≤ ∥v∥+ ∥w∥ ∀v,w ∈ V. (2.14)

This property is also referred to as the triangle inequality, as it
implies that the sum of the lengths of two sides of a triangle is
always larger than the remaining one.

The axioms of absolute homogeneity and subadditivity imply that a
norm is also nonnegative, i.e. ∥v∥ ≥ 0 ∀v ∈ V.

In particular, we are interested in p-norms in Euclidean vector spaces.
For a vector v ∈ Rn, the p-norm for a real-valued p with 1 ≤ p < ∞ is
defined as

∥v∥p =

(
n

∑
i=1

|vi|p
) 1

p

. (2.15)

The most important norm for us is the Euclidean or L2-norm which
arises for p = 2:

∥v∥2 =

√
n

∑
i=1

|vi|2. (2.16)

Moreover, we encounter some models that make use of the L1-norm
which is obtained for p = 1:

∥v∥1 =
n

∑
i=1

|vi| . (2.17)

2.4 norms 9

x

y

-1 1

-1

1
∥·∥2

∥·∥∞

∥·∥1

Figure 2.1: Unit balls for the L1-, L2-, and maximum-norms. Coloured lines
denote those two-dimensional vectors where the respective norm
has a value of one. The maximum norm is coloured in blue, the
L2-norm in red, and the L1-norm in green.

Both norms play an important role in the design of loss functions.
While the L2-norm is sensitive to outliers, the L1-norm is robust and
promotes sparsity. This, however, comes at the price of nondifferenti-
ability of the L1-norm in the zero position.

A last norm which is important for our stability analysis is the
maximum or infinity norm which is the limit of the p-norm for p → ∞:

∥v∥∞ = max
i

vi . (2.18)

In Part II, we analyse PDE and CNN models in terms of their effect
on the norm of the signal as it evolves through the steps of the model.
We show that the norm of the signal is always nonincreasing. To this
end it is important to note that the maximum norm is stricter than the
Euclidean norm, which again is stricter than the L1-norm, since

∥v∥1 ≤ ∥v∥2 ≤ ∥v∥∞ ∀v ∈ V. (2.19)

This behaviour can be visualised with the help of unit balls. Fig-
ure 2.1 depicts vectors in a two-dimensional plane for which the L1-,
L2-, and maximum norms attain a value of one. The level lines of the
maximum norm are squares containing the circular level lines of the
Euclidean norm. These in turn contain the diamond shaped level lines
of the L1-norm.

matrix norms Matrix norms extend the notion of norms from
vectors to matrices. They map matrices to nonnegative real values and
follow the same axioms as vector norms.

Of special interest is the spectral norm, which is the matrix norm
induced by the Euclidean vector norm. For a matrix A ∈ Rm×n, the
spectral norm is defined as

∥A∥2 = max
∥x∥2=1

∥Ax∥2 , (2.20)

10 mathematical preliminaries

i.e. it denotes the strongest elongation that an application of A to any
normalised vector x ∈ Rn with ∥x∥2 = 1 can have.

An equivalent definition in terms of the eigenvalues of A is given
by

∥A∥2 = max
{√

|λ|
∣∣∣∣ λ is an eigenvalue of A⊤A

}
. (2.21)

This definition is useful for showing stability of numerical algorithms
for diffusion and their neural network counterparts in Chapter 7.

Certain diffusion models also consider the Frobenius norm, which is
defined as the root of the sum of squared matrix entries aij of A:

∥A∥F =

√√√√
m

∑
i=1

n

∑
j=1

a2
ij . (2.22)

It arises from the trace operator. The trace of a square matrix A ∈ Rn×n

is the sum of its diagonal elements:

tr (A) =
n

∑
i=1

aii . (2.23)

Thus, one obtains
∥A∥F = tr

(
A⊤A

)
. (2.24)

We require the notion of matrix norms for our stability analysis of dif-
fusion operators in Chapter 7 and discussions on rotational invariance
in Chapter 8.

spectral radius and gershgorin’s circle theorem For
stability analysis, another important concept which is closely related
to the spectral norm is the spectral radius. The spectral radius of a
square matrix A ∈ Rn×n is given by the largest absolute eigenvalue,
i.e.

ρ(A) = max {|λ| | λ is an Eigenvalue of A} . (2.25)

Throughout this thesis, we only consider real matrices. In that case,
we have equality between the spectral norm and the spectral radius
if A is symmetric. In these cases, we can use the two concepts inter-
changeably.

Gershgorin’s circle theorem [143] helps us to easily estimate the spec-
tral radius of many matrices which we encounter. It states that the
eigenvalues of a square matrix A ∈ Rn×n lie in a union of circles. Each
circle is placed in the complex plane with the diagonal entry aii as the
centre, and a radius

ri =
n

∑
j=1
j ̸=i

∣∣aij
∣∣ , (2.26)

which corresponds to the sum of the absolute off-diagonal values.
This theorem allows us to elegantly estimate the spectral radius of

matrices in our stability analysis in Chapter 7.

2.5 signals and images 11

stability and well-posedness Several of our main results
are concerned with stability and well-posedness guarantees of neural
networks which are inherited from diffusion filters.

We define a sequence of vectors u0,u1, . . . ,uK to be stable in a p-norm,
if

∥uk+1∥p ≤ ∥uk∥p (k = 0, . . . , K − 1) . (2.27)

In particular, we are interested in maximum-minimum stability and
Euclidean stability, which represent the choices of p → ∞ and p = 2,
respectively.

Moreover, a problem is well-posed in the sense of Hadamard [169]
if three conditions are fulfilled: A solution to the problem exists, this
solution is unique, and it depends continuously on the input data to
the problem. A problem which is not well-posed is ill-posed.

For example, removing noise from an image is an ill-posed prob-
lem: Without additional assumptions, the original value of corrupted
image pixels cannot be recovered. Diffusion filters inherently rely on
smoothness assumptions with a regularizing effect [326], transforming
an ill-posed denoising problem into well-posed one. This is one of the
central motivation for using denoising applications as a test bed in
this thesis.

2.5 signals and images

We deal with both one-dimensional signals and two-dimensional
images. While modelling often takes place in the continuous setting, a
practical implementation requires us to define digital counterparts of
the continuous data.

continuous definitions We define a continuous signal as a
mapping f : [a, b] → R from a one-dimensional domain [a, b] ⊂ R

with a < b to the real values. In the same manner we define grey value
images f : Ω → R as a mapping from a rectangular image domain
Ω = [a, b]× [c, d] ⊂ R2 with a < b, c < d.

In some cases, we deal with colour images and signals with mul-
tiple channels. In that case, the co-domain is multi-dimensional. For
example, an image in the red-green-blue (RGB) colour space is defined
as f : Ω → R3 where each component of the co-domain refers to the
respective colour.

discrete definitions In practice, we discretise the continuous
signals and images by means of uniform sampling. Given a grid size
h, a discrete signal f ∈ Rn with n positions is obtained by sampling
the continuous function f at equidistant positions

fi = f
(

a + ih − h
2

)
. (2.28)

12 mathematical preliminaries

f : Ω → R

x

y a
c

b

d

∂Ω
x

y a
c

b

d

f1,1 f2,1 f3,1

f1,2 f2,2 f3,2

hx

hy

Figure 2.2: Examples for a continuous (left) and discrete (right) rectangular
image. The sampling has been performed such that one obtains a
discrete image with 2 × 3 pixels.

Similarly, discrete images arise by sampling the two-dimensional
image domain Ω with grid sizes hx, hy in the respective directions to
obtain a discrete image f ∈ Rnxny as

fi,j = f
(

a + ihx −
hx

2
, c + jhy −

hy

2

)
, (2.29)

where the pixel numbers in x- and y-direction are defined by

nx =
b − a

hx
, (2.30)

ny =
d − c

hy
. (2.31)

Figure 2.2 displays a continuous rectangular image and its discret-
ised counterpart. The coloured area denotes the image domain, with
the x-axis pointing towards the right and the y-axis pointing down-
ward. The discrete image is sampled into six pixels with equal grid
size in both directions.

vectorisation In the above definition, the naive representation of
the image would be a matrix in Rnx×ny . Yet, we represent it as a vector
in Rnxny . This is due to a simple reordering where we write the pixels
of the image row-wise into a column vector. For example, the 2 × 3
image of Figure 2.2 results in a vector f ∈ R6 with six components
f = (f1,1, f2,1, f3,1, f1,2, f2,2, f3,2)

⊤.
This has the advantage that we can express many operations on the

image in terms of matrix-vector multiplications instead of having to
deal with more cumbersome tensor operations; see e.g. Section 3.1.2.
Multi-channel images are vectorised channel-wise. For example, a
discrete RGB image is denoted by f = (fR fG fB)

⊤ where each channel
is represented by a vector of pixels.

2.6 error measures

Measuring the quality of processed images is an important task to be
able to rank different methods in an experimental setting. Throughout

2.6 error measures 13

this thesis, we assume that ground truth data is always available. In
this setting we can use so-called full-reference metrics. The two error
measures which we consider are the mean square error (MSE) and the
peak signal-to-noise ratio (PSNR).

mean square error The mean square error between two images
u, v ∈ Rnxny is defined as

MSE(u, v) =
1

nxny
∥u− v∥2

2 =
1

nxny

nx

∑
i=1

ny

∑
j=1

(
ui,j − vi,j

)2 . (2.32)

Thus, the MSE averages the squared deviation between each pixel of u
and its counterpart in v. As a consequence, it is also prone to outliers:
Very few extreme deviations increase the MSE more than numerous
small deviations. Low MSE values correlate with better quality, and
an MSE of zero means that the two images are the same.

peak signal-to-noise ratio The peak signal-to-noise ratio is
closely related to the MSE. Let cmax be the maximal possible grey value
of two images u, v with the same range. Then the PSNR is defined as

PSNR(u, v) = 10 log10

(
c2

max
MSE(u, v)

)
. (2.33)

The PSNR is measured in decibels (dB), and higher values indicate
better quality. Moreover, its behaviour is logarithmic: A quality in-
crease from 10 dB to 20 dB is less drastic than an increase from 20 dB
to 30 dB. For two equal images it is undefined.

The advantage of the PSNR over the MSE is that it is independent of
the grey value range, whereas an MSE always needs to be interpreted
together with the range at hand.

In some cases, MSE and PSNR can act counterintuitively to the qual-
ity perceived by the human eye [366]. This has triggered researchers
to come up with so-called perceptual metrics, either with purely math-
ematical [366] or neural [413] design; see e.g. [407] for an overview
and evaluation of several metrics. A large number of metrics has been
proposed, each with their own advantages and flaws, and so far no
metric is universally agreed on. In this thesis, we exclusively use MSE
and PSNR as quality metrics as they are easy to compute and widely
accepted.

This concludes our review of mathematical preliminaries. In the
following chapter, we introduce the fundamental concepts that this
thesis is concerned with, and present related work.

3
R E L AT E D W O R K

In this chapter we discuss prior work related to this thesis. First, we
review four basic approaches that frequently appear throughout the
thesis: diffusion in Section 3.1, variational methods in Section 3.2,
wavelet shrinkage in Section 3.3, and neural networks in Section 3.4.

Diffusion is a fundamental tool for image processing [195, 279,
369]. We will see in Part II that its numerical realisation shares core
connections to popular neural network architectures. Moreover, it
allows us to come up with new models for denoising which are
built on integrodifferential diffusion in Chapter 4. Lastly, it helps us to
advance inpainting-based image compression by combining successful
concepts from diffusion with efficient interpolation strategies. This is
discussed in Chapter 9.

Variational methods [27, 354, 391] and wavelet shrinkage [108, 165,
248] are well-connected to diffusion models and help us to paint a
more complete picture of neural network design in Chapters 6 and 8.
Moreover, our first successes for model reduction strategies are built
on wavelet shrinkage, as presented in Chapter 4.

Deep learning and neural networks [152, 223, 225, 330] are the
remaining essential concepts in this thesis. As they have revolutionised
the field of image processing, a plethora of modern image processing
models rely on them. To understand their success, we briefly discuss
neural network history and give a basic introduction into the most
popular modern architectures and their practical implementations.

After having reviewed diffusion, wavelets, variational methods, and
neural networks, we then focus on the connections between them in
Section 3.5. Such considerations have recently gained a lot of traction.
We discuss a subset of relevant works and consequently motivate our
contributions to this field.

Lastly, in Section 3.6 we introduce the basic goals of denoising
and inpainting as applications which we deal with throughout the
thesis. Removing noise from a corrupted image with diffusion filters
is the prototype of a well-posed process and thus often serves as a
simple test problem for the proposed concepts. Inpainting is a more
challenging problem which has the goal of restoring images from only
a limited amount of data [46, 251, 378]. This problem goes hand in
hand with image compression, as inpainting strategies have emerged
as a serious competitor to transform-based ideas [135, 327, 329].

15

16 related work

3.1 diffusion

Diffusion is the physical process of equilibration of concentration
differences in a closed system. If particles of a certain type are more
concentrated in some part of the system, Brownian motion induces a
transport process to areas with lower concentrations. Intuitively, the
probability that particles move from regions with high concentration
to regions with low concentration is higher than vice versa. Thus, at
some point in time, the particles will be evenly distributed.

This transport process can be modelled by Fick’s law [125]:

j = −D∇u on Ω × [0, ∞). (3.1)

Here, the function u : Ω × [0, ∞) → R maps spatial positions from
a domain Ω ⊂ Rn at a time t ∈ [0, ∞) to concentration values. The
gradient ∇u denotes the steepest ascent of u, i.e. it points from low
concentrations towards high ones. Therefore, Fick’s law states that the
flux j is oriented opposite to the concentration gradient, inducing an
equilibration.

This process can additionally be influenced by the medium. In an
isotropic medium, a particle is equally likely to move in any direction.
In anisotropic media, movement along certain directions is more likely
than others. This is modelled by the diffusion tensor D which is a
symmetric positive semi-definite 2 × 2 matrix

D =

(
a b

b c

)
(3.2)

with scalar entries a, b, c ∈ R. If a = c and b = 0, the process is
isotropic, otherwise it is anisotropic. It is also possible that the entries
depend on the evolving image u.

A second important property of diffusion processes is that mass is
preserved: In a closed system, no particles are destroyed or created.
This can be modelled by the continuity equation

∂tu = −∇⊤j on Ω × [0, ∞) (3.3)

together with the boundary conditions

∂nj = 0 on ∂Ω × [0, ∞). (3.4)

The continuity equation states that the temporal change of the concen-
tration is equal to the negated divergence of the flux. Thus, at a steady
state when t → ∞ and ∂tu → 0, the divergence must also attain zero.
This means that the flux vector field does not exhibit any sources or
sinks.

The boundary conditions imply reflecting or homogeneous Neumann
boundary conditions on the flux. The flux in the direction of the outer

3.1 diffusion 17

normal vector n on the domain boundary ∂Ω must be zero, indicating
that no mass enters or leaves the domain Ω.

In conjunction, this implies that the diffusion process preserves the
mass that is initially present in the system over time.

Substituting the flux in the continuity equation (3.3) with the result
from Fick’s law (3.1) yields the diffusion equation

∂tu = ∇⊤(D∇u) on Ω × [0, ∞) (3.5)

with boundary conditions

∂n(D∇u) = 0 on ∂Ω × [0, ∞). (3.6)

The diffusion equation is one of the fundamental PDEs in physics.
In the following, we show how it can be used as a tool for image
processing.

diffusion for image processing For image processing we
consider diffusion in the two-dimensional setting. For a family of
continuous grey value images u : Ω × [0, ∞) → R, one obtains the
initial boundary value problem

∂tu = ∇⊤(D∇u) on Ω × [0, ∞), (3.7)

∂n(D∇u) = 0 on ∂Ω × [0, ∞), (3.8)

u(x, 0) = f (x) on Ω. (3.9)

Equation (3.7) is the aforementioned general diffusion equation. The
reflecting or homogeneous Neumann boundary conditions are ex-
pressed by Equation (3.8). Lastly, Equation (3.9) states that the evolving
image u at time t = 0 is initialised with an input image f .

For image processing, we interpret the concentrations as grey values
of an image. This in turn means that the continuity equation implies
that the average grey value of u remains constant over the evolution.
In fact, one can show that the steady state of diffusion problems of
this form is a flat image with the average grey value of the input
image f [369].

terminology Before we present a selection of historically import-
ant diffusion models, it is helpful to introduce some terminology to
describe different aspects of these models. One distinguishes linearity,
homogeneity, and isotropy of a diffusion model.

In a linear model, the diffusion tensor D does not depend on
the evolving image u. Consequently, a nonlinear model adapts D(u)
during the evolution. In a physical interpretation, a nonlinear diffusion
process changes the conditions within the medium over time.

Homogeneity describes the spatial configuration of the diffusion
tensor D. If it varies throughout the domain, the diffusion process is

18 related work

inhomogeneous, otherwise it is homogeneous. Mathematically speak-
ing, in the inhomogeneous case one uses D = D(x, y), whereas in the
homogeneous case D is constant over Ω.

Isotropy denotes whether some directions of movement for a particle
are more likely than others. If all directions are equally probable,
the diffusion process is isotropic. Otherwise, it is anisotropic. In the
isotropic case, D can be replaced by a scalar diffusivity value.

Not all combinations of these terminologies are equally promin-
ent. Most nonlinear models are also inhomogeneous, and anisotropic
models are usually also nonlinear.

3.1.1 Popular Diffusion Models

In the following, we review several popular diffusion models for
image processing. If not specified further, all models employ reflecting
boundary conditions and are initialised with an input image f .

homogeneous linear diffusion The simplest diffusion model
is homogeneous linear diffusion. While often associated with Witkin’s
scale space concept [394], Weickert et al. [375] showed that it was first
proposed for image processing by Iijima [194–196]. It follows the linear
PDE

∂tu = ∆u . (3.10)

It arises from the more general diffusion PDE (3.7) by setting the
diffusion tensor D = I to the identity. As this model is homogeneous
and isotropic, it performs equal smoothing in all directions at all
positions of the image.

While homogeneous diffusion benefits from the fact that it is simple
and parameter-free, it does not adapt to the image at hand. It cannot
preserve important structural details such as edges, e.g. in a denoising
framework.

nonlinear isotropic diffusion To adapt the diffusion process
to the local image structure, Perona and Malik [279] presented a
nonlinear isotropic diffusion model which creates evolving images
according to the PDE

∂tu = ∇⊤
(

g
(
|∇u|2

)
∇u
)

. (3.11)

The introduction of a nonlinear diffusivity function allows to inhibit
diffusion around important image structures. In this model, image
structures are measured with the gradient magnitude |∇u|2 as a fuzzy
edge detector.

Note that the Perona–Malik model has been introduced as ‘aniso-
tropic’. However, in our terminology, it is isotropic as it uses a scalar

3.1 diffusion 19

diffusivity function. Thus diffusion may be inhibited at certain posi-
tions, but transport at a specific position is still performed equally in
all directions.

Typically, one employs nonincreasing, nonnegative, and bounded
diffusivities g(s2). For example, the Charbonnier [70] diffusivity

g(s2) =
1√

1 + s2

λ2

(3.12)

with a contrast parameter λ dampens diffusion around image edges.
The rational Perona–Malik diffusivity [279]

g
(
s2) = 1

1 + s2

λ2

(3.13)

even allows enhancement of image edges due to implicit backward
diffusion.

While both the Charbonnier and the Perona–Malik diffusivities
seem quite similar at first glance, they have drastically different effects.
This becomes apparent when investigating the flux function which is
associated with the diffusivity via

Φ(s) = g
(
s2) s . (3.14)

Figure 3.1 visualises three diffusivities and their associated flux
functions. We see that the Charbonnier flux is monotone, while the
Perona–Malik flux is nonmonotone. Consequently, the derivative of
the latter is negative for s > λ. As the flux denotes the direction of
transport, this means that information is transported towards dominant
image structures, rather than away from them. A diffusivity which
decays even quicker, leading to more implicit backward diffusion is
e.g. the exponential Perona–Malik diffusivity [279]

g
(
s2) = exp

(
− s2

2 λ2

)
. (3.15)

The well-known total variation (TV) [16, 313] diffusivity

g
(
s2) = 1

|s| (3.16)

constitutes the boundary between forward and backward diffusion.
The associated flux is the sign function, resulting in a constant amount
of flux independent of the image structure. However, the TV diffusivity
is unbounded, requiring sophisticated solution strategies [36, 66] or
regularisations [2].

Implicit backward diffusion should not be confused with explicit
backward diffusion, where the flux and the diffusivity function become
negative. This reverses the diffusion process, thus becoming highly

20 related work

diffusivity flux

λ

1

s

g
(
s2
)

λ

λ√
2

s

Φ(s)

Charbonnier

λ

1

s

g
(
s2
)

λ

λ
2

s

Φ(s)

Perona–Malik

1

1

s

g
(
s2
)

1

1

−1

s

Φ(s)

Total Variation

Figure 3.1: Visualisation of Charbonnier, Perona–Malik, and total variation
(TV) diffusivities and the associated flux functions. The Char-
bonnier diffusivity results in a monotone flux function, while
the Perona–Malik flux is nonmonotone. The latter allows impli-
cit backward diffusion and leads to edge enhancement. The TV
diffusivity is at the boundary between forward and backward
diffusion, however, the diffusivity is unbounded.

3.1 diffusion 21

ill-posed and requiring to come up with sophisticated strategies to
circumvent arising stability problems; see e.g. [44, 147, 386].

Diffusivities are one of the central design choices for nonlinear
diffusion models. Throughout the years, various diffusivities with
individual properties have been proposed. We analyse a popular
subset of them in Chapter 6 and connect them to neural network
activation functions (see Section 3.4).

regularised nonlinear isotropic diffusion As the con-
tinuous Perona–Malik model is not well-posed (see e.g. [119, 211, 410]),
several regularisations have been proposed. Catté et al. [65] suggest
to replace the gradient operator within the diffusivity argument by a
Gaussian-smoothed gradient

∂tu = ∇⊤
(

g
(
|∇σu|2

)
∇u
)

, (3.17)

where ∇σu = ∇(Kσ ∗ u) denotes the gradient of an image which is
presmoothed by a convolution with a Gaussian Kσ with standard
deviation σ.

This presmoothing yields an infinitely often differentiable result
and thus avoids unbounded gradients in the diffusivity argument.
However, this comes at the cost of not being able to represent the
PDE as the gradient descent of a variational energy [384] (see also
Section 3.2).

An alternative regularisation is provided by Niessen et al. [269] who
propose to regularise all associated derivatives by

∂tu = ∇⊤
σ

(
g
(
|∇σu|2

)
∇σu

)
. (3.18)

While this model has a variational formulation [326], it does not
preserve any image features which live on a scale smaller than σ as
they are smoothed out.

linear inhomogeneous diffusion An exotic representative
for a linear inhomogeneous model was proposed by Fritsch [130]
in the context of medical image analysis. Instead of measuring im-
age structures based on the gradient of the evolving image, Fritsch
suggests to use the gradient of the initial image f which leads to

∂tu = ∇⊤
(

g
(
|∇ f |2

)
∇u
)

. (3.19)

As the diffusivity varies throughout the image domain, this model
is inhomogeneous. However, the diffusivity is not changing over the
complete evolution, resulting in a linear model. Similar ideas using
structural information for colour propagation have been presented by
Peter et al. [282] in a linear inhomogeneous anisotropic colourisation
model.

22 related work

higher order diffusion So far, all models rely on PDEs of
second order, i.e. the highest involved derivative order is two. Models
of higher order benefit from better smoothness conditions, but come
at the cost of computational expense.

A simple extension of the linear homogeneous diffusion model
of Iijima is obtained when replacing the Laplace operator by the
biharmonic operator:

∂tu = ∆2u =
(
∂xxxx + 2 ∂xxyy + ∂yyyy

)
u . (3.20)

The biharmonic diffusion model is linear, homogeneous, and isotropic,
but of order four.

To introduce nonlinearity in the biharmonic diffusion model, You
and Kaveh [401] design a Perona–Malik-like process as follows:

∂tu = −∆
(

g
(
(∆u)2

)
∆u
)

. (3.21)

They replace the gradient and divergence by the Laplace operator,
and image structure is measured by the squared Laplacian of the
image (∆u)2. Note that the squared Laplacian is different from the
biharmonic operator: The biharmonic operator contains fourth-order
derivatives, while the squared Laplacian only considers products of
second-order derivatives.

As this model does not consider mixed derivatives of second order,
Lysaker et al. [242] suggest to use the Frobenius norm of the Hessian:

∂tu = −D⊤(g
(
∥H(u)∥2

F
)
Du
)

(3.22)

where the differential operator D induced by the Frobenius norm
reads

D =
(
∂xx, ∂xy, ∂yx, ∂yy

)⊤ . (3.23)

This avoids speckle artefacts that can arise in the model of You and
Kaveh. Both models are nonlinear, inhomogeneous, isotropic, and of
fourth order.

However, PDEs of fourth and higher order are rarely found in the
literature; exceptions include [33, 67, 205, 282]. As condition numbers
of discrete higher order operators are usually much larger, convergence
of numerical solvers is drastically slowed down.

The different options of measuring structure within the diffusivity
are discussed more in detail in Chapter 8 where we discuss rotationally
invariant design of diffusion models and their connections to CNNs.

nonlinear anisotropic diffusion Up to this point, all presen-
ted diffusion models were isotropic. However, anisotropic models can
have tremendous advantages as they can transport information along
certain directions.

The edge-enhancing diffusion (EED) model of Weickert [368] is de-
signed to smooth images along dominant structures, while preventing

3.1 diffusion 23

diffusion across them. It is the first among the presented models which
makes full use of the diffusion tensor by creating evolving images
according to the PDE

∂tu = ∇⊤(D(∇σu)∇u) . (3.24)

The diffusion tensor is constructed from its eigenvalues ν1, ν2 and its
normalised eigenvectors v1, v2 as follows: The dominant eigenvector
v1 ∥ ∇σu is parallel to the regularised gradient of the evolving im-
age, i.e. it points across dominant image structures. Consequently,
the second eigenvector v2⊥∇σu is orthogonal to it, pointing along
structures.

To inhibit the diffusion across image structures, the eigenvalue ν1 to
the dominant eigenvector v1 is computed with the help of a diffusivity
ν1 = g(|∇σu|2). The choice of diffusivity strongly depends on the
application. For denoising, Weickert [369] proposes a diffusivity which
decays even faster than the exponential Perona–Malik diffusivity [279].
For inpainting, the Charbonnier diffusivity is more suited as it does
not perform implicit backward diffusion [135].

As diffusion along dominant structures should not be inhibited, the
second eigenvalue is set to ν2 = 1. Thus, the diffusion tensor is fully
defined by

D = g
(
|∇σu|2

)
v1v

⊤
1 + 1 v2v

⊤
2 . (3.25)

As in the model of Catté et al. [65], a smoothing scale σ is involved
in the gradient computation. This is a crucial component for creating
anisotropy. If the diffusion tensor is constructed without this smooth-
ing, one of its eigenvectors is the image gradient ∇u itself. Then the
divergence term collapses:

∇⊤(D(∇u)∇u)

= ∇⊤
((

g
(
|∇u|2

)
v1v

⊤
1 + 1 v2v

⊤
2

)
∇u
)

= ∇⊤
((

g
(
|∇u|2

) ∇u
|∇u|

(∇u)⊤

|∇u| + 1
∇⊥u
|∇⊥u|

(
∇⊥u

)⊤

|∇⊥u|

)
∇u

)

= ∇⊤
(

g
(
|∇u|2

) ∇u
|∇u|

|∇u|2
|∇u|

)

= ∇⊤
(

g
(
|∇u|2

)
∇u
)

.
(3.26)

One half of the diffusion tensor does not contribute since the eigen-
vector v2 is orthogonal to the gradient ∇u and the scalar product of
the two vanishes. The first eigenvector coincides with the gradient and
the scalar product yields the gradient magnitude, which cancels out
with the normalisation of the eigenvectors.

The resulting model is the isotropic Perona–Malik model. This
elegantly demonstrates how critical the smoothing scale is for the

24 related work

Table 3.1: Overview over the properties of popular diffusion models.

model Eq. linear homogeneous isotropic order

Iijima (3.10) ✓ ✓ ✓ 2

Perona–Malik (3.11) ✗ ✗ ✓ 2

Catté et al. (3.17) ✗ ✗ ✓ 2

Niessen et al. (3.18) ✗ ✗ ✓ 2

Fritsch (3.19) ✓ ✗ ✓ 2

Biharmonic (3.20) ✓ ✓ ✓ 4

You and Kaveh (3.21) ✗ ✗ ✓ 4

Lysaker et al. (3.22) ✗ ✗ ✓ 4

EED, Weickert (3.24) ✗ ✗ ✗ 2

creation of anisotropy. However, as for the model of Catté et al., this
comes at the cost of losing a conventional energy formulation for the
EED model [384].

The EED model appears throughout the thesis: It serves as a baseline
for our multiscale anisotropic diffusion model in Chapter 5, and we ad-
apt its core ideas to Shepard interpolation for inpainting in Chapter 9.
Finally, we learn a mask generation model for EED inpainting [378] in
Chapter 10.

This concludes our review of popular diffusion models. While there
are several other anisotropic models such as coherence-enhancing diffu-
sion [370], Bi-EED [282], and others [205, 311, 325, 358, 373], they are
out of the scope of this review.

Table 3.1 provides an overview of the properties and orders of the
presented diffusion models. Not all combinations of linearity, homo-
geneity, and isotropy appear, as certain combinations are less useful
in practice. For example, an anisotropic but linear and homogeneous
process may be able to transport mass along certain directions, but
these directions are neither changing during the evolution, nor are
they adaptive to the image structure.

Figure 3.2 visualises the effects of the diffusion models from Table 3.1
on the test image peppers [342]. For all models, we have chosen a
diffusion time of T = 15. The contrast parameter λ, and smoothing
scale σ have been manually set to highlight the different effects of each
model.

The linear isotropic models of homogeneous and biharmonic dif-
fusion introduce a blurring effect that is independent of the image
content. The nonlinear isotropic models preserve edges within the
image to a different degree, and smooth homogeneous regions.

While the model of Catté does not suffer from staircasing effects
as the Perona–Malik model does, it blurs edges in regions with low
contrast due to the regularisation. As the model of Niessen regularises

3.1 diffusion 25

all involved derivatives, it additionally suffers from halo artefacts at
edges.

The higher-order models of You and Kaveh as well as Lysaker et
al. show a higher amount of smoothness in homogeneous regions.
Finally, the EED model is able to enhance edges by smoothing along
them, while simultaneously smoothing homogeneous regions.

3.1.2 Solving Diffusion Problems

In practice one requires numerical algorithms to solve the diffusion
PDEs. To this end, we use finite differences (see e.g. [228]). The core
idea is to approximate derivatives by means of differences of sampled
image positions. In the following, we give a short introduction to finite
differences, more advanced discretisations for anisotropic models, and
finally several basic numerical algorithms.

finite differences We first show how finite differences can be
used to approximate derivatives in the one-dimensional setting. To this
end, we obtain a discrete signal f ∈ Rn by sampling the continuous
signal f with grid size h as described in Section 2.5. To approximate
the first order derivative of f at a position i using only fi and its direct
neighbours fi+1, fi−1, one has three options:

f ′i ≈
fi+1 − fi

h
(forward difference), (3.27)

f ′i ≈
fi − fi−1

h
(backward difference), (3.28)

f ′i ≈
fi+1 − fi−1

2h
(central difference). (3.29)

The forward and backward differences approximate the derivative by
means of fi and its neighbour in the respective direction. The central
difference, on the other hand, takes the difference of both neighbours.
To compensate the larger distance between the two, the difference is
divided by 2h instead of h.

How can we judge the quality of these approximations? To this end,
we make use of the Taylor expansion (see Section 2.3) at the example
of the forward difference. First, we evolve fi+1 in the position i:

fi+1 = fi + h f ′i +
h2

2
f ′′i +O

(
h3) . (3.30)

Plugging this expression into the forward difference yields

fi+1 − fi

h
= f ′i +

h
2

f ′′i +O
(
h2) . (3.31)

This shows that the forward difference indeed approximates f ′i . For
h → 0, all remaining terms vanish and the expression converges to the
continuous derivative. Thus, this approximation is consistent.

26 related work

original

Iijima Perona–Malik Catté et al.

Niessen et al. Fritsch Biharmonic

You and Kaveh Lysaker et al. EED, Weickert

Figure 3.2: Visualising the effect of the diffusion models from Table 3.1 on
the peppers image. All models use a diffusion time of T = 15 and
the exponential Perona–Malik diffusivity. If required, all models
except EED use the parameters λ = 10 and σ = 1. For EED, we
set λ = 1 and σ = 1.

3.1 diffusion 27

Moreover, we find that the first term of the remainder is given
by h

2 f ′′i . This leading error term shows the consistency order of the ap-
proximation. As the grid size appears with a power of one in this term,
the consistency order of the forward difference is one. Higher consist-
ency orders denote better quality approximations. Analogously, the
backward difference also has a consistency order of one. The central
difference, however, has a consistency order of two.

There exists a general strategy to derive finite difference expressions
for arbitrary derivative operators with any selection of signal positions.
We exercise this strategy at the example of the second derivative f ′′i
using the points fi−1, fi, and fi+1.

Our goal is to obtain weights α−1, α0, α1 for the respective positions
such that

α−1 fi−1 + α0 fi + α1 fi+1 = 0 fi + 0 f ′i + 1 f ′′i . (3.32)

To obtain a system of equations in the coefficients α, we express all
signal positions in terms of fi by means of the Taylor expansion:

fi−1 = fi − h f ′i +
h2

2
f ′′i +O

(
h3) (3.33)

fi = fi (3.34)

fi+1 = fi + h f ′i +
h2

2
f ′′i +O

(
h3) (3.35)

Plugging the expressions into (3.32) yields

(α−1 + α0 + α1) fi

+h (−α−1 + α1) f ′i

+
h2

2
(α−1 + α1) f ′′i +O

(
h3) = 0 fi + 0 f ′i + 1 f ′′i .

(3.36)

Dividing by h2

2 and comparing the coefficients in front of the derivat-
ives in fi yields the linear system




1 1 1

−1 0 1

1 0 1







α−1

α0

α1


 =




0

0
2
h2


 . (3.37)

Solving this system results in the derivative approximation

f ′′i ≈ fi−1 − 2 fi + fi+1

h2 . (3.38)

A consistency analysis shows that this approximation has consistency
order two:

fi−1 − 2 fi + fi+1

h2 = f ′′i +
h2

12
f ′′′′i +O

(
h4
)

. (3.39)

28 related work

Larger consistency orders can be achieved by involving more signal
positions. A consistent approximation of a derivative of order n re-
quires always at least n + 1 points. Central differences, i.e. those that
involve neighbouring points in a symmetrical manner usually have a
higher consistency order as terms with different signs in the Taylor
expansion cancel out.

What if one wants to compute a derivative not only in a single
position, but in all of them? Here the concept of stencils comes in
handy. A stencil is a compact representation of the weights arranged
by their relative positioning. For example, we introduce the stencil
representation of the second order approximation (3.38) as

fi−1 − 2 fi + fi+1

h2 =
1
h2 fi−1 −

2
h2 fi +

1
h2 fi+1

↓ ↓ ↓
1
h2 − 2

h2
1
h2 .

(3.40)

Applying this stencil to a full signal f ∈ Rn yields the following
matrix-vector multiplication:

f ′′ ≈ 1
h2




−1 1

1 −2 1
.

1 −2 1

1 −1




f = Af . (3.41)

The matrix A ∈ Rn×n contains the shifted stencil entries in each
row. All other entries are zero. This computation can be expressed
efficiently by a discrete convolution with the stencil as a convolution
kernel.

At the boundaries of the signal, the matrix entries depend on the
choice of boundary conditions. Here, we have chosen to mirror the
signal such that f0 = f1 and fn+1 = fn. This corresponds to reflecting
boundary conditions. Consequently, the neighbour weights in the
respective boundary direction coincide with the central entry.

Extending the above approaches to the two-dimensional setting is
analogous. All we need is the two-dimensional Taylor expansion. For
example, approximating the Laplacian ∆ f of an image f : Ω → R on
a domain Ω ⊂ R2 in the position i, j involving its direct neighbours
yields

∆ f ≈ fi+1,j − 2 fi,j + fi−1,j

h2
x

+
fi,j+1 − 2 fi,j + fi,j−1

h2
y

. (3.42)

3.1 diffusion 29

The corresponding stencil is given by

0 1
h2

y
0

1
h2

x
− 2

h2
x
− 2

h2
y

1
h2

x

0 1
h2

y
0

. (3.43)

As the continuous setting would suggest, the approximation is
simply the sum of the one-dimensional derivatives in x and y-direction.
Even though the consistency order of this approximation is two, it is
unsatisfactory as the leading error term has a directional bias:

fi−1,j − 2 fi,j + fi+1,j

h2
x

+
fi,j+1 − 2 fi,j + fi,j−1

h2
y

= ∆ fi,j −
h2

12
(
∂xxxx fi,j + ∂yyyy fi,j

)
+O

(
h4
)

. (3.44)

The benefit of investing more effort into sophisticated discretisations
is often underestimated. However, in many tasks a good discretisation
can make the difference between a good and a bad result. To this end,
we investigate a general-purpose discretisation for diffusion processes
in the following.

discretising anisotropic diffusion Transferring mathemat-
ical guarantees such as rotation invariance from a continuous model
to a discrete implementation is not trivial. Standard discretisations
rarely present the best choice when it comes to this task. Especially in
anisotropic diffusion models, a good discretisation of the divergence
term is critical.

To this end, Weickert et al. [379] present a discretisation for the
divergence term in anisotropic diffusion processes of the form

∂tu = ∇⊤(D∇u) (3.45)

with a diffusion tensor

D =

(
a(x, y) b(x, y)

b(x, y) c(x, y)

)
(3.46)

based on nonstandard finite differences [255]. In the following, we
briefly review the essential components of this discretisation.

Following Weickert et al. [379], we also introduce shorthand nota-
tions

=
ui+1,j − ui,j

h
,

=
ui+1,j+1 − ui,j+1

h
,

=
ui,j+1 − ui,j

h
,

=
ui+1,j+1 − ui+1,j

h
,

(3.47)

30 related work

for finite differences around an off-grid position i + 1
2 , j + 1

2 .
Weickert et al. [379] derive their discretisation from a gradient

descent of an energy. The components of the energy are discretised as
follows:

(
u2

x
)

i+ 1
2 ,j+ 1

2
≈
(

1 − αi+ 1
2 ,j+ 1

2

) 1
2

(2
+

2)

+ αi+ 1
2 ,j+ 1

2
· ,

(3.48)

(
u2

y

)
i+ 1

2 ,j+ 1
2

≈
(

1 − αi+ 1
2 ,j+ 1

2

) 1
2

(2
+

2)

+ αi+ 1
2 ,j+ 1

2
· ,

(3.49)

(
uxuy

)
i+ 1

2 ,j+ 1
2
≈

1 − βi+ 1
2 ,j+ 1

2

2
1
2

(
· + ·

)

+
1 + βi+ 1

2 ,j+ 1
2

2
1
2

(
· + ·

)
.

(3.50)

A space-varying parameter αi+ 1
2 ,j+ 1

2
controls the balance between arith-

metic and geometric mean in the first two equations. Similarly, a
space-varying parameter βi+ 1

2 ,j+ 1
2

steers the contribution of the differ-
ent options for discretising

(
uxuy

)
i+ 1

2 ,j+ 1
2
.

Computing the discrete divergence term as the gradient of the
discrete energy, they arrive at the stencil

1
2h2

[(β − 1)b + α(a + c)]−+
[(1 − α)c − αa − βb]++

+ [(1 − α)c − αa − βb]−+

[(β + 1)b + α(a + c)]++

[(1 − α)a − αc − βb]−+

+ [(1 − α)a − αc − βb]−−

[(1 − α)(a + c)− (β − 1)b]++

− [(1 − α)(a + c)− (β − 1)b]+−
− [(1 − α)(a + c)− (β − 1)b]−+

− [(1 − α)(a + c)− (β − 1)b]−−

[(1 − α)a − αc − βb]++

+ [(1 − α)a − αc − βb]+−

[(β + 1)b + α(a + c)]−−
[(1 − α)c − αa − βb]+−

+ [(1 − α)c − αa − βb]−−
[(β − 1)b + α(a + c)]+−

(3.51)

where h = hx = hy. Here we have used the abbreviation ++ to denote
the index i + 1

2 , j + 1
2 and analogously for the other abbreviations. As

this stencil is not symmetric w.r.t. the central entry, it is important to
note that the upper row corresponds to entries in row j + 1, and the
right column is concerned with entries in column i + 1.

To obtain a discrete diffusion process which is stable in the L2-norm,
the parameters have to obey 0 ≤ α ≤ 0.5 and |β| ≤ 1 − 2α. Weickert et
al. suggest to replace

β = γ (1 − 2α) sgn(b) (3.52)

with a parameter γ ∈ [−1, 1]. This can help to reduce over- and
undershoots of anisotropic processes. Note that for isotropic processes,
the choice of β is irrelevant as the diffusion tensor entry b is zero.

Weickert et al. show that for a demosaicking task, varying choices
of α and γ can make up a difference of up to 10 dB in PSNR. How-
ever, finding good parameters is still dependent on the task at hand,

3.1 diffusion 31

and sometimes involves trading quality for rotation invariance as we
highlight in Chapter 8. As this discretisation is flexible and subsumes
various others, it will be our standard choice whenever we deal with
diffusion processes in this thesis.

explicit schemes We are now in the position to present the first
numerical algorithm for diffusion problems. To this end, we consider
a general diffusion problem of the form

∂tu = ∇⊤(D∇u) (3.53)

with a positive diffusion tensor D, initial condition u(·, 0) = f and
reflecting boundary conditions.

The explicit Euler scheme for this PDE is obtained as follows. One
discretises the temporal derivative by a forward difference with a time
step size τ. Moreover, let A(uk)uk implement the divergence term for
a discrete signal uk at a time step k. Then a discrete version of (3.53) is
given by

uk+1 − uk

τ
= A(uk)uk. (3.54)

Solving this equation for the image uk+1 at the new time step yields
the explicit scheme

uk+1 =
(
I + τA(uk)

)
uk. (3.55)

Starting with u0 = f , this iterative solution strategy computes the
temporally evolving signals uk at discrete points t = kτ in time.
However, these time steps cannot be chosen arbitrarily large. In the
following, we present two views on the stability of the explicit scheme.

Weickert [369] presents an elaborate theory for the theoretical guar-
antees of diffusion problems in the continuous, semi-discrete, and the
discrete setting. In the latter, he considers a discrete evolution of the
form

uk+1 = Q(uk)uk (3.56)

where u0 = f . This evolution can be identified with the explicit
scheme (3.55) by setting Q(uk) =

(
I + τA(uk)

)
.

He proves that if the matrix Q(uk) is continuous in uk, symmetric,
nonnegative with a positive diagonal, irreducible, and has unit column
sums, several mathematical guarantees can be established: The diffu-
sion process is well-posed and converges towards the average grey
value of the input data f . Moreover, the process obeys a maximum-
minimum principle, i.e. the evolving signal values never exceed the
range of the initial signal.

One can show that reasonable discretisations fulfil the require-
ments of smoothness, symmetry, unit column sums, and irreducibility
by design [369]. However, both nonnegativity and positive diagonal
entries require a closer look.

32 related work

In the case of the discretisation (3.51) the central stencil entry lies
in the range

[
− 4

h2 , 0
]

for any choice of α, β, and bounded diffusion
tensor entries a, b, c ≤ 1. Thus, the matrix Q(uk) has diagonal entries
in
[
1 − 4τ

h2 , 1
]
. Enforcing nonnegativity of the lower bound leads to

1 − 4τ

h2 ≥ 0 ⇔ τ ≤ h2

4
. (3.57)

This is a drawback of the explicit scheme: The time step size is drastic-
ally limited. Thus, to reach a diffusion time T, a minimum number of

steps k ≥
⌈

4T
h2

⌉
is required. This limits the effectiveness of the explicit

scheme in practice.
Moreover, nonnegativity is not fulfilled by standard discretisations

of anisotropic models, since the diffusion tensor entry b can be come
negative [379]. While there exists the so-called nonnegativity discretisa-
tion [369], it limits the condition number of the diffusion tensor. As
the condition number of a matrix is the ratio between its largest and
smallest eigenvalues, this constrains the potential anisotropy of the
model.

As a consequence, Weickert et al. [379] replace the stability in the
maximum norm by stability in the Euclidean norm. A discrete filter is
stable in the Euclidean norm, if

∥uk+1∥2 ≤ ∥uk∥2 ∀k ≥ 0 . (3.58)

Due to how uk+1 is obtained from uk, this is guaranteed for

ρ
(
Q(uk)

)
= ρ

(
I + τA(uk)

)
≤ 1 (3.59)

where ρ is the spectral radius as defined in (2.25). This means that the
mapping from uk to uk+1 is a contraction mapping.

If A(uk) is negative semi-definite, as is the case for the discretisa-
tion (3.51), this leads to the time step size restriction

τ ≤ 2
ρ(A(uk))

≤ h2

2
. (3.60)

We see that this limit is half as restrictive as (3.57) which guarantees
stability in the maximum norm. This, however, is tied to a less strict
notion of stability.

In analogy we transfer these results from numerical algorithms
for PDEs to neural networks. We found that a maximum-minimum-
principle, while stricter, does not allow much freedom when it actually
comes to learning the differential operators of a model. A Euclidean
stability constraint is much more suitable in this framework. This will
be an important motivation for our considerations in Chapter 7.

3.1 diffusion 33

acceleration strategies for explicit schemes The severe
time step size restrictions of the explicit scheme have produced vari-
ous acceleration strategies. In the following, we review two methods
designed for accelerating discrete diffusion filters: fast explicit diffusion
(FED) schemes [374], and fast semi-iterative (FSI) schemes [170].

FED schemes were first proposed by Grewenig et al. [160]. They rely
on the fact that the solution to a linear diffusion process is given by a
Gaussian convolution, which in turn can be approximated by a series
of convolutions with a box filter. Thus, a box filter of length 2L + 1
approximates the result of a linear diffusion filter with time T ∈ O

(
L2).

In contrast, a series of L explicit steps yields only a diffusion time
T ∈ O(L) which is linear in the number of steps. Moreover, this box
filter can be factorised by L explicit diffusion stencils with varying
time step sizes τℓ for ℓ = 0, . . . , L − 1.

This reasoning can be transferred to arbitrary diffusion filters. One
simply replaces the fixed time step size τ by a series of time step sizes

τℓ =
τ

2 cos2
(

π 2ℓ+1
4L+2

) (ℓ = 0, . . . , L − 1) (3.61)

and performs a cycle of L fractional steps

uk+ ℓ+1
L =

(
I + τℓA(uk)

)
uk+ ℓ

L (ℓ = 0, . . . , L − 1) . (3.62)

The cycle time is given by the sum of the individual time step sizes in
the cycle:

θL =
L−1

∑
ℓ=0

τℓ = τ
L2 + L

3
. (3.63)

As a single cycle approximates a box filter, one should employ multiple
cycles to obtain a satisfactory approximation quality.

Interestingly, not all time step sizes obey the stability limit τ ≤ h2

4 .
Still, it is shown that the resulting scheme is stable in the Euclidean
norm [374]. This however requires to keep the nonlinearity A(uk)

constant within a cycle. Moreover, due to accumulation of numerical
errors for very large time step sizes, it is advised to use a reordering
strategy to alternate between small and large step sizes.

A remedy to these issues is given in the form of fast semi-iterative
(FSI) solvers. Introduced by Hafner et al. [170], FSI extrapolates the dif-
fusion result at a fractional time step k+ ℓ

L with the previous fractional
time step k + ℓ−1

L and a weight αℓ. With a similar motivation as for
FED, the weights are computed by means of box filter factorisations as

αℓ :=
4ℓ+ 2
2ℓ+ 3

(ℓ = 0, . . . , L − 1) . (3.64)

An FSI acceleration with cycle length L reads

uk+ ℓ+1
L = αℓ

(
I + τA

(
uk+ ℓ

L

))
uk+ ℓ

L

+ (1 − αℓ)u
k+ ℓ−1

L (ℓ = 0, . . . , L − 1) .
(3.65)

34 related work

One formally initialises with uk− 1
L := uk.

The crucial difference to FED is that FSI uses a time-varying ex-
trapolation instead of time-varying step sizes. This allows to update
the nonlinearity A

(
uk+ ℓ

L

)
at fractional time steps within a cycle. Con-

sequently, FED and FSI yield equivalent results after each cycle [170].
Moreover, FSI schemes are more resilient to numerical errors.

We find that the extrapolation in FSI is a prime example of a larger
class of acceleration strategies which we can efficiently translate into a
neural network architecture in Chapter 7.

semi-implicit schemes Another way to circumvent the time
step size restrictions of explicit schemes is the semi-implicit scheme. To
this end, one modifies the right-hand side of the explicit scheme to
obtain

uk+1 − uk

τ
= A(uk)uk+1. (3.66)

The only difference to the explicit scheme is the use of uk+1 instead
of uk on the right-hand side. This leads to a linear system of equations:

(
I − τA(uk)

)
uk+1 = uk (3.67)

If A(uk) is negative semidefinite, the matrix
(
I − τA(uk)

)
is invertible

as its eigenvalues are not smaller than one. This yields the semi-
implicit scheme

uk+1 =
(
I − τA(uk)

)−1
uk. (3.68)

By identifying Q(uk) =
(
I − τA(uk)

)−1, this scheme also fits the
framework of Weickert [369]. The discussions of all requirements ex-
cept for positive diagonal entries work analogously. However, the
semi-implicit scheme always fulfils the requirement of positive diag-
onal entries [369].

Thus, the semi-implicit scheme does not suffer from a time step
size restriction. On the other hand, it requires to solve a large sys-
tem of equations. This can still be highly efficient as the matrix(
I − τA(uk)

)
is often sparse. Iterative methods such as the Jacobi

or Gauss–Seidel solvers [320] are popular in practice. We employ semi-
implicit schemes together with a conjugate gradient (CG) solver for
solving edge-enhancing diffusion inpainting problems in our experi-
mental comparisons.

For nonlinear problems, multiple semi-implicit steps should be
employed. As the nonlinearity of A(uk) is fixed within one step,
regular updates are crucial for the correctness of the result. This
naturally leads to the idea of fully implicit schemes.

fully implicit schemes To avoid having to update the nonlin-
earity, a fully implicit scheme computes the nonlinearity A(uk+1) at

3.1 diffusion 35

the new time step. This can be interpreted as a backward difference
for the temporal discretisation in the time step k + 1:

uk+1 − uk

τ
= A(uk+1)uk+1. (3.69)

This in turn leads to the nonlinear system of equations
(
I − τA(uk+1)

)
uk+1 = uk. (3.70)

Solving this system is cumbersome, which is why in practice these
schemes are rarely encountered. We however find that a fixed point
iteration for this problem shows architectural similarities to a specific
neural network architecture in Chapter 7.

multigrid solvers Multigrid solvers [53, 54, 168] are among the
most sophisticated numerical algorithms for PDEs. They are designed
to accelerate the convergence speed of standard linear solvers by a
large margin.

The core idea is that such solvers attenuate high-frequent error
components quickly, while low-frequent ones remain for a long time,
creating a bottleneck for convergence speed. Multigrid solvers tackle
the problem on multiple, differently fine grid levels. Once a reasonable
approximation quality on a fine grid is achieved, the problem is
sampled to the next coarser level. As the grid size becomes larger, this
transforms low-frequent error components into high-frequent ones,
allowing to attenuate them efficiently on the coarse grid. Afterwards,
the coarse grid solution is brought to the fine grid again and resulting
new errors are quickly attenuated, thus yielding an efficient solution
strategy.

This two-grid cycle can be extended to arbitrarily many grid resol-
utions. If the grids are visited in a strict fine-to-coarse-to-fine order,
one speaks of a V-cycle. Interleaving this cycle with additional steps
between grids, one obtains a W-cycle. The order in which grids are
visited is subject to many optimisation strategies, leading to full multi-
grid schemes. A full multigrid scheme can accelerate standard iterative
problem solvers by orders of magnitude.

Similar concepts as for multigrid solvers can be observed in spe-
cific neural network architectures. This motivates us to investigate
the connections between multigrid solvers and neural networks in
Chapter 7. Therein, we also provide a review of multigrid solvers with
a mathematical description.

This concludes our introduction to diffusion models and their nu-
merical implementation. In the following, we review wavelet shrinkage
and variational methods along with their relations to diffusion. This
helps to paint a more complete picture of the connections between
PDEs and CNNs.

36 related work

3.2 variational methods

An important concept which is closely related to diffusion is that of
variational models [27, 137]. Based on the calculus of variations, these
methods have first been used for regularisation of ill-posed problems
independently by Whittaker [391] and Tikhonov [354].

The general idea of variational calculus is to obtain a function as
a minimiser of an energy functional. The intuition is that just like a
function can have a minimum at a position, an energy functional can
have a minimum at a function. Similarly, like a minimum of a function
is described by its first derivative, the minimiser of a functional is
characterised by a set of PDEs which are the so-called Euler–Lagrange
equations.

Designing an energy functional for a task at hand is systematic:
In the energy, several measures concerning certain properties of the
solution are accumulated. These measures should be large whenever
the solution shows undesirable properties, and small for solutions
with desirable characteristics. Often times, they model conflicting
assumptions, which leads to a trade-off.

While there are many options to design a functional, we mostly deal
with energies of the form

E(u) =
∫

Ω
(D(u, f) + αR(u)) dx (3.71)

which map a function u : Ω → R on a domain Ω ⊂ Rn to a real value
E(u) ∈ R.

The goal is to find a function u such that the energy attains a
minimum. A data term D(u, f) steers the solution u to be close to an
input image f , while a regularisation term R(u) enforces smoothness
conditions on u. Typically, these conditions are modelled by penalising
derivative information of u. The balance between the two terms is
controlled by a positive regularisation parameter α ∈ R+.

As an example, we consider the two-dimensional energy functional

E(u) =
∫

Ω

(
(u − f)2 + α Ψ

(
|∇u|2

))
dx, (3.72)

where Ψ : R → R is an increasing regulariser. In this case we have
a quadratic data term. Thus, if the regulariser is strictly convex, the
energy is strictly convex such that it has a unique minimiser. As the
energy is of the form

E(u) =
∫

Ω
F
(
x, y, u, ux, uy

)
dx, (3.73)

the Euler–Lagrange equation is given by

Eu = Fu − ∂xFux − ∂yFuy = 0, (3.74)

3.2 variational methods 37

Here, Eu is the Gâteaux derivative of the Energy E w.r.t. to the func-
tion u (see Section 2.1). This involves several Gâteaux derivatives of
the integrand in terms of Fu, Fux , and Fuy .

Moreover, we obtain natural boundary conditions

n⊤
(

Fux

Fuy

)
= 0 (3.75)

on the image boundary ∂Ω.
In particular, for the energy (3.72) we have

Fu = 2 (u − f) , (3.76)

Fux = 2α Ψ′
(
|∇u|2

)
ux, (3.77)

Fuy = 2α Ψ′
(
|∇u|2

)
uy. (3.78)

This yields an Euler–Lagrange equation

u − f − α∇⊤
(

Ψ′
(
|∇u|2

)
∇u
)
= 0 (3.79)

with boundary conditions

n⊤


2α Ψ′

(
|∇u|2

)
ux

2α Ψ′
(
|∇u|2

)
uy


 = 0 ⇔ n⊤∇u = 0. (3.80)

In the Euler–Lagrange equation, we have summarised the terms ∂xFux

and ∂yFuy by means of a divergence term and divided the equation by
a factor two. The boundary conditions can be reduced to n⊤∇u since
Ψ is increasing, and thus Ψ′ is nonnegative.

This is just one example of an Euler–Lagrange equation. Using more
than one variable within the argument of the energy produces multiple
Euler–Lagrange equations. Moreover, higher-dimensional functions
yield more terms within the equations. For a derivation of Euler–
Lagrange equations in the general case, we refer to the monographs [27,
137].

In practice, a minimiser can be found in two different ways: One
option is discretising the energy directly and finding a minimum
by means of optimisation strategies. Another option is to discretise
the Euler–Lagrange equation and solving either the elliptic PDE by
solving the arising system of equations, or embedding the equation
into a parabolic PDE by the method of artificial time and solving it by
means of an iterative scheme.

Variational models have been used in countless applications, among
which are optical flow [26, 58, 189], denoising [70, 313], inpainting [21,
31], and segmentation [261, 265].

For us, they are particularly interesting due to their connection to dif-
fusion models. Scherzer and Weickert [326] show that Euler–Lagrange

38 related work

equations of variational regularisation models approximate diffusion
processes. For example, a reformulation of the Euler–Lagrange equa-
tion (3.79) reads

u − f
α

= ∇⊤
(

Ψ′
(
|∇u|2

)
∇u
)

, (3.81)

which can be interpreted as a fully implicit time discretisation for a
nonlinear diffusion process with stopping time T = α and diffusiv-
ity g

(
s2) = Ψ′(s2). This plays an important role when considering

the connections between activation functions, diffusivities, wavelet
shrinkage functions, and variational regularisers in Chapter 6.

Moreover, the core ideas of variational modelling are also transferred
to the design of CNN loss functions. More and more, instead of a
pure data-driven optimisation, one encounters hybrid models which
include prior information in the form of regularisers. We discuss
the existing connections between variational methods and CNNs in
Section 3.5.

3.3 wavelet shrinkage

In the following, we review the concept of wavelet shrinkage [108]
which is the third and final traditional image processing approach
which we will connect to neural networks. Moreover, Chapter 4 of this
thesis is devoted to a trainable wavelet shrinkage approach.

one-dimensional wavelet shrinkage Wavelet shrinkage rep-
resents a noisy signal f = v + n in a different basis, wherein the
additive noise n is easier to separate from the true signal v than in the
spatial domain. This is achieved by representing f in terms of differ-
ent frequency components. Thus, the wavelet transform is a frequency-
based transform. In contrast to the unlocalised Fourier and discrete
cosine transforms, the wavelet transform retains local frequency in-
formation. Scaled and shifted versions of a lowpass function Φ and a
bandpass function Ψ form the wavelet basis which represents the signal
in terms of localised frequency components.

For simplicity, assume that the input signal f ∈ R2n
has length 2n.

The forward wavelet transform for this signal can be expressed as

f = ⟨f , Φn,0⟩Φn,0 +
n

∑
j=1

2n−j−1

∑
k=0

〈
f , Ψj,k

〉
Ψj,k , (3.82)

where ⟨·, ·⟩ denotes the inner product.
The discrete vectors Φj,k and Ψj,k are obtained by sampling the

continuous functions

Ψj,k(x) = 2−
j
2 Ψ
(

2−jx − k
)

, (3.83)

Φj,k(x) = 2−
j
2 Φ
(

2−jx − k
)

. (3.84)

3.3 wavelet shrinkage 39

The function Ψ(x) is called the mother wavelet, as all other wavelets
can be derived from it. The function Φ(x) is denoted as the scaling
function. In the transform (3.82), it is only used to encode the average
grey value of f , however its scaled and shifted versions can be used
to efficiently compute the fast wavelet transform.

The coefficients of the transformed signal are given by the inner
products between the signal and the basis vectors

dj,k =
〈
f , Ψj,k

〉
, (3.85)

cn,0 = ⟨f , Φn,0⟩ . (3.86)

The values dj,k are the wavelet coefficients, and cn,0 is a scaling coefficient
which encodes the average grey value of the signal.

In the wavelet representation, the noise affects all wavelet coeffi-
cients dj,k while the signal is represented by only a few significant
ones [248]. By modifying the coefficients in an appropriate way, a
reconstructed signal u can be obtained with the following three-step
framework:

1. Analysis: The input data f is transformed into wavelet and a
scaling coefficient according to (3.85).

2. Shrinkage: A shrinkage function Sθ with a threshold parameter θ

is applied to the wavelet coefficients dj,k. The scaling coefficient
cn,0 is unaltered as to not change the average grey value of f .

3. Synthesis: The denoised version u of f is reconstructed from the
modified wavelet coefficients by means of the backward wavelet
transformation:

u = ⟨f , Φn,0⟩Φn,0 +
n

∑
j=1

2n−j−1

∑
k=0

Sθ

(〈
f , Ψj,k

〉)
Ψj,k . (3.87)

The selection of the wavelet basis is an important modelling aspect.
While there are many choices available [94, 248], we focus on the Haar
wavelet basis [165] in this thesis. It defines the wavelet and scaling
function as

Ψ(x) =





1, 0 ≤ x ≤ 1
2 ,

−1, 1
2 < x ≤ 1,

0, else,

(3.88)

Φ(x) =





1, 0 ≤ x ≤ 1,

0, else.
(3.89)

Figure 3.3 visualises these functions. It shows that a discretised
version of the mother wavelet Ψ represents a finite difference opera-
tion corresponding to a first order derivative. The scaling function Φ
implements a simple averaging.

40 related work

mother wavelet scaling function

1

−1

1

x

Ψ(x)

1

−1

1

x

Φ(x)

Figure 3.3: Mother wavelet and scaling function. The mother wavelet imple-
ments a derivative operation, while the scaling function consti-
tutes an averaging.

Moreover, the choice of the shrinkage function is important for the
behaviour of the process. For example, the soft shrinkage function [107]
eliminates all coefficients which are smaller than a threshold θ, and
shrinks all others by θ:

Sθ(x) =





0, |x| ≤ θ,

x − θ sgn(x), |x| > θ.
(3.90)

While typical shrinkage functions are easy to apply in a practical
setting, they suffer from the fact that they use the same threshold
parameter for all scales and the binary decision structure. There is
no clear boundary between noise and signal coefficients such that
eliminating too many coefficients always destroys signal details and
eliminating too few coefficients leaves too much noise in the recon-
struction. Furthermore, the first scale might require a significantly
different threshold for this decision as it represents a finer scale where
noise is much more noticeable. These downsides serve as a motivation
for our trainable wavelet shrinkage model in Chapter 4.

translation invariant wavelet shrinkage . The wavelet
transformation (3.82) is not translation invariant: Shifting the input
signal f produces a different set of wavelet coefficients. To overcome
this problem, Coifman and Donoho propose cycle spinning [85]. The
input signal is shifted, wavelet shrinkage is applied, and the results
are averaged for all possible shifts.

This strategy yields a shift-invariant transformation and additionally
removes typical block artefacts arising due to the discrete shifts of
the wavelets. A downside which is often overlooked is that this kind
of transformation destroys the assumption of independence between
wavelet coefficients, which is the assumption under which the classical
shrinkage functions have been designed [175].

As the number of possible shifts is the same as the signal size,
computing the translation-invariant result in a naive way is compu-

3.4 deep learning and neural networks 41

tationally expensive. However, an efficient implementation can be
achieved using the algorithme à trous of Holschneider et al. [187]. A
more detailed discussion of this algorithm can be found in Chapter 4.

We require the translation invariant wavelet transform to benefit
from the following connections between wavelet shrinkage and non-
linear diffusion.

relation to nonlinear diffusion An interesting connection
between wavelet shrinkage and nonlinear diffusion has been found by
Mrázek et al. [264].

They show that the application of Haar wavelet shrinkage on the
finest level of the shift-invariant wavelet decomposition is equivalent to
one step of nonlinear diffusion with time step size τ and diffusivity g,
if shrinkage function and diffusivity obey

S(x) = x
(

1 − 4τ g
(
|
√

2x|
))

. (3.91)

The connection allows us to use any established diffusivity function
from the diffusion literature and translate it into a suitable shrinkage
function. As we know the behaviour of the diffusivity, we can infer
the behaviour of the shrinkage function at least on the finest scale
of the wavelet transformation. On all coarser levels, the shrinkage
function essentially performs nonlinear diffusion on the respective
level of the Gaussian pyramid [6] of the input image. This is an
important foundation of our trainable wavelet model in Chapter 4.
Moreover, it helps us to connect wavelet shrinkage to residual networks
in Chapter 6.

3.4 deep learning and neural networks

Since more than a decade, deep learning [152, 220, 223, 225, 330] has
fundamentally changed signal and image processing. This has been
the result of the increasing availability of data, advances in parallel
computing hardware, and progress in optimisation methods. The data-
driven nature of neural networks makes them highly flexible such that
they can be adapted to a plethora of tasks.

Before the advent of deep learning, approaches were largely model-
driven. While machine learning techniques were already successful,
they relied on hand-crafted representations of the data to which a ma-
chine learning algorithm could be applied. The core success of neural
networks is their ability to learn these features from the data at hand
together with the appropriate mapping to the desired outputs [152].

terminology Before we dive in to the field of deep learning and
neural networks, we want to specify a more rigorous terminology.
To this end, we follow the hierarchy of Goodfellow et al. [152]: The
overarching term is that of artificial intelligence (AI). The goal of AI is to

42 related work

create machines which can solve tasks based on an understanding of
the problem at hand. However, an AI system can rely on hard-coded
rule sets and decision strategies, while not necessarily being able to
obtain knowledge from data.

Giving machines the ability to extract this knowledge is the goal of
machine learning. This requires information which is shaped in such a
way that simple algorithms can base their decisions on it. The shape of
the data is denoted as a representation. The representation of the data
at hand is crucial for the success of machine learning models. When
the semantic distance between the data and a suitable representation
for decisions is large, learning simple representations alone is not
appropriate. For example, finding a direct mapping between the set of
pixels of an image and a semantic understanding of what is displayed
is infeasible.

This is where deep learning models that rely on neural networks
excel. The notion of ‘deep’ is not rigorously defined: One option
is to call networks ‘deep’ whenever they are able to learn multiple
representations of the data with growing complexity. For example,
Zeiler and Fergus [406] have shown that an image classifier represents
the image data first by simple descriptors such as e.g. edges. With
growing depth, descriptors are combined into more complex ones,
before the resulting high-level representations can be used e.g. for
classification.

The topics of this thesis range from machine learning to deep learn-
ing. In particular, Part I makes use of machine learning frameworks
to improve wavelet- and diffusion-based models. Moreover, we con-
sider fundamental concepts of diffusion models and their numerical
solution strategies and connect them to neural network architectures
in Part II. Lastly, Part III presents one instance of full deep learning
models which are used in conjunction with diffusion PDEs.

3.4.1 From Single Neurons to Convolutional Neural Networks

In the following, we introduce convolutional neural networks (CNNs)
inductively by starting with their simplest component: a neuron.

A neuron takes a series of input components x ∈ Rn and com-
putes a single output as a function f : Rn → R. To this end, it uses
weights w ∈ Rn for every input, a bias b ∈ R, and an activation
function φ : R → R as follows:

f (x) = φ

(
n

∑
i=1

wixi + b

)
. (3.92)

The argument of the activation function is a linear combination of the
input components and their corresponding weights. In addition, this
combination can be shifted by a bias. The activation function then
decides whether the neuron is excited or not. While traditional neural

3.4 deep learning and neural networks 43

1

1

x

ReLU(x)

Figure 3.4: Visualisation of the rectified linear unit (ReLU) activation. Only
positive arguments are activated.

modelling [253, 307] considered only binary decisions, i.e. either the
neuron outputs one if it is excited and zero otherwise, modern neural
networks consider a wide range of activation functions.

In particular, the rectified linear unit (ReLU) [149, 266] is the most
popular activation function to date. It is a linear function which is
truncated at zero (see Figure 3.4):

ReLU(x) =





x, x ≥ 0,

0, x < 0.
(3.93)

While the weights decide the linear combination of the various
input components for the output of a neuron, the activation function
introduces nonlinearity. This is a crucial aspect for the success of deep
neural networks.

fully connected neural networks The usefulness of a single
neuron is obviously limited. Their power only unfolds when combin-
ing multiple neurons within networks. To this end, one arranges
neurons in two directions: parallel and sequential. A parallel ensemble
of neurons is called a layer, and multiple layers in sequence form a
neural network. The first layer of a network is called the input layer, and
the last one is denoted as the output layer. Layers in between are called
hidden layers.

Connecting the outputs of neurons to their successors is key to com-
bining the relatively simple outputs of single neurons into powerful
compositions of functions. When every neuron in a layer is connected
to all neurons of the subsequent layer, the network is fully connected.
An example of a fully connected network with three layers is presen-
ted in Figure 3.5. Each of the four neurons within the hidden layer
has its own set of weights. Similarly, the two neurons of the output
layer combine the results of all hidden neurons in another weighted
combination with a final activation. This composition is already com-
plex in this simple example, which shows why networks are often
described by means of graphical representations instead of rigorous
mathematical expressions.

44 related work

x1

x2

x3

input
layer

hidden
layer

output
layer

y2

y1

Figure 3.5: A fully connected network with three inputs, two outputs, and
a single hidden layer with four neurons. All outputs of a layer
are connected to all neurons of the subsequent one. This network
contains 26 weight parameters.

The exemplary network contains 26 weights. Each hidden neuron
requires a weight for each of the three inputs, and a bias. In addition,
the output neurons combine four inputs with a bias for each output.
This shows that for fully connected networks, the number of weights
grows dramatically. This has motivated several strategies for reducing
the number of weights.

convolutional neural networks The most popular solu-
tion is the use of convolutions [132, 225]. In a convolutional neural
network (CNN), each neuron within a layer performs the same oper-
ation on a sparse set of neighbouring inputs by means of a discrete
convolution (see Section 2.2). The weights of a neuron form a kernel
w ∈ Rn such that a neuron at position j within a layer computes its
output as

f j(x) = φ
(
(w ∗ x)j + b

)
. (3.94)

Typically, the kernel w is sparse: It contains only a small set of non-zero
entries. Moreover, a kernel is shared between all neurons within a layer.
This strategy assumes a spatial correlation of the input components.
While switching two inputs in a fully connected network can be
compensated by exchanging the corresponding weights, this is not
possible in a convolutional network. However, meaningful features in
images can already be computed on very small neighbourhood sizes.

Note that the convolution operation in CNNs is predominantly im-
plemented as a cross-correlation. The only difference between a cross-
correlation operation and the discrete convolution defined in (2.8) is
that the kernel is not mirrored before the product of the two functions
is computed. In practical settings with learned parameters, this tech-

3.4 deep learning and neural networks 45

x1

x2

x3

input
layer

hidden
layer

output
layer

y2

y1

Figure 3.6: A convolutional network with three inputs, two outputs, and a
single hidden layer with four neurons. Each layer takes only a
sparse set of inputs to compute its output. This network contains
only 7 weight parameters.

nical nuance is compensated by the adaptivity of the model. Through-
out the thesis, we use the convolution notion as we have introduced it
in Section 2.2.

The introduction of a convolution is beneficial in several ways. First,
the operations can be computed more efficiently as the number of
operations shrinks drastically: A fully connected layer computes the
multiplication Wx with a dense matrix W ∈ Rn×m for n neurons
with m inputs. A convolutional layer computes w ∗ x once, which
can be realised efficiently by a sparse matrix multiplication. As this
reduces the number of effective inputs to a neuron, convolutional
layers are much more efficient.

Moreover, using the same weights in each neuron of a layer severely
reduces the amount of parameters. Figure 3.6 presents a convolutional
counterpart of the fully connected network from Figure 3.5. Therein,
each neuron in the hidden layer considers only the two closest inputs,
with the same weights for each hidden neuron. The output neurons
only take the three closest hidden neuron results as inputs with the
same weights for each output. With the same number of neurons, this
network only requires 7 parameters. The hidden layer contains two
weights and a bias, and the output layer requires three weights and a
bias.

Another benefit is that CNNs are invariant to translations of the
input by design. This shift invariance implies that a translation of the
input signal implies the same translation in the output signal, and
constitutes one fundamental invariance which is desirable for image
processing applications. This is not the case for rotation invariance as
opposed to many PDE models, an issue which motivates our contribu-

46 related work

tions of Chapter 8 where we translate rotation invariance guarantees
from PDE models to specific neural networks.

pooling operations Another important concept for CNNs is
pooling [51, 388]. A pooling operation creates a summary of statistics
on a small local neighbourhood. For example, a max-pooling on a 2 × 2
neighbourhood of an image produces a lower resolution image by
replacing pixels in the neighbourhood by their maximum. An average
pooling replace the pixels by their average value.

Pooling serves multiple purposes. The dimensionality reduction
plays an important role when moving from local statistics such as
edges towards feature representations of higher complexity such as
eyes. This is intuitive, as the location of these features cannot be
pinpointed to a pixel neighbourhood of the original image, but rather
a coarse localisation. Thus, shifting the image by one pixel does not
change the result of a 2 × 2 pooling operation. Consequently, the
classifier part of an image classification network always obtains the
same feature representation, regardless of the dimension of the input
image.

The use of pooling also improves the efficiency of networks. Com-
putations within a network which never reduces the original image
size are cumbersome both for the forward pass, as well as the back-
ward pass required for training (see Section 3.4.3). The dimensional
reduction alleviates both memory and computational burden.

channels and tensors The simple CNNs which we described
so far take generic input data in the form of vectors. This is not the
usual case in practice. To this end, we introduce the notion of network
channels and the convenient concept of tensors.

When a convolutional layer is applied within a network for image
data, it typically does not map a single image to another representation
of it. Instead it takes multiple versions of the image and maps it to
multiple modifications thereof. The different input and output versions
are interpreted as a multi-channel image. For each output channel,
the layer has a different set of weights to combine all input channels.
For example, if a layer maps from four to eight channels with a kernel
size of 3 × 3, it uses 4 · 8 · (3 · 3) = 288 parameters. To this end, one
denotes each layer by its kernel size and its output dimension. In the
above example, the layer is a 3 × 3 × 8 convolutional layer.

During training, networks perform their inference on batches of
images (see Section 3.4.3). The additional batch dimension and the
notion of channels quickly inflate the representations within the net-
work. Thus, for convenience one switches to the notion of tensors. A
practical way to think of tensors is as arrays with multiple axes. For
example, a batch of 16 images of size 256 × 256 with eight channels
is a tensor of dimension 16 × 256 × 256 × 8. This convention makes it

3.4 deep learning and neural networks 47

12
8

12
8

3

12
8

12
8

16

64

64

16

64

64

32

32

32

32
32

32

64

16

16

64

16

16

128
11

1024

Figure 3.7: Visualisation of a two-dimensional convolutional neural network
reducing an input colour image of dimensions 128 × 128 × 3 to a
vector of 1024 features. Width and height of the feature represent-
ations are denoted by top left and left aligned numbers, and the
channel dimension is written above the cuboids. Convolutional
layers are coloured in blue, pooling layers are coloured in red,
and the input layer is coloured in grey.

easy to quickly grasp the structure of networks. In theory we could
apply the same vectorisation approach as for images (see Section 2.5),
however the tensor notation is often more convenient.

Due to the sheer complexity of modern networks, representing
them in mathematical terms is cumbersome. In contrast, graphical
representations are more intuitive. A typical approach for image-based
CNNs is to represent layers in terms of their output dimensionality by
means of a cuboid. Their width and height denote the image resolution,
and their depth shows the number of channels. Often, one explicitly
adds the tensor dimensions except for the batch size to the layer.
Activation functions, on the other hand, are often implicit. Figure 3.7
presents an example of a network which takes colour images with
input dimension 128 × 128 × 3 and transforms them through eight
layers into a feature vector of size 1 × 1 × 1024.

3.4.2 Network Types and Popular Architectures

In the following, we briefly review the fundamental design choices
within neural networks. Moreover, we introduce the two most central
network architectures for this thesis.

feed-forward versus recurrent neural networks One
design aspect of a network is whether it contains loops within its
information flow. If layers are only connected to subsequent ones, the
network is a feed-forward network. For example, the network from the
graphical example in Figure 3.7 is such a network.

If layers are connected to themselves or to earlier layers, one obtains
a recurrent neural network (RNN) [142, 182, 188, 316]. RNNs are suitable

48 related work

for processing sequential data in tasks such as speech recognition [322]
and machine translation [396].

The two types of architectures are not completely unrelated. By
means of unrolling [75, 217, 260, 345], one can transform the loops
into a sequence of feed-forward layers with sequential inputs and
potentially shared parameters.

In this thesis, we encounter both network structures. In particu-
lar, Part II connects both variants to numerical algorithms for PDEs.
Moreover, the model proposed in Chapter 5 can be interpreted as an
unrolled network, and in Chapter 10 we make use of a feed-forward
network.

classification versus image-to-image networks Another
important aspect is the output dimension of the network. This is de-
pendent on the application. A classification network (see e.g. [220, 348,
406]) reduces the input images to a vector of features, just like the
network example in Figure 3.7. As the features themselves are no clas-
sification on their own, a fully connected layer takes the feature vector
as an input and produces a vector of scores for classification. Each
score denotes the confidence of the network for an image belonging
to a certain class, where the classes are defined a priori.

Classification is one example of a task where the input data is
transformed to a different output dimension. In contrast, a range of
tasks require to obtain an output with a similar dimensionality as
the original image. These include segmentation [78], medical image
analysis [106, 306], and optical flow [198]. Corresponding networks are
fundamentally different in their architecture: While they also create
high-dimensional intermediate representations of the input data, their
output is transformed back to the original input dimensionality or e.g.
a downsampled version thereof.

residual networks The most important network architecture for
this thesis, and arguably the most popular one to date is the residual
network (ResNet) [173]. Its main contribution is the introduction of so-
called skip connections which facilitate training of very deep networks.

A residual network consists of residual blocks. A single block com-
putes an output signal u from an input f as

u = φ2(f +W2 φ1(W1f + b1) + b2) . (3.95)

One first applies an inner convolution parametrised by weights W1

and a bias vector b1 to the input signal and passes the result into an
inner activation function φ1.

Afterwards an outer convolution W2 with a bias vector b2 is applied
to the output of the activation. One adds its result to the original
signal f , and finally applies an outer activation function φ2 to obtain
the output signal u.

3.4 deep learning and neural networks 49

Adding the original signal before the final activation forms a skip
connection, which is the crucial novelty of ResNets over standard feed-
forward networks. Intuitively, the original signal information ‘skips’
the inner activation and both convolutions. It is the key to training
deep networks with large amounts of layers efficiently and without
suffering from the vanishing gradient problem. This phenomenon
appears when backpropagation gradients approach zero for very deep
networks, bringing the training process to a halt [42, 181, 347]; see also
Section 3.4.3.

From the perspective of differential equations, ResNets are partic-
ularly attractive due to their skip connection. This allows to connect
them to explicit schemes [10, 11, 15, 167, 319, 412] which in turn yields
provable stability guarantees. This plays the central role in Part II of
this thesis.

Moreover, a continuous-time extension of ResNets called neural
ordinary equations (NODEs) [73] sparked great interest. Instead of
providing the layers explicitly, the output is given by a black-box
ordinary differential equation (ODE) solver of a parametrised dynamic.
Instead of backpropagating through the solver, the parameter updates
are computed by an adjoint sensitivity analysis. Even though this idea
has had great success, recent research suggests that NODEs suffer from
a strong interdependence between model and solver [164, 274], and
arguments from weight scaling imply that they might in fact not be the
continuous-time extension of ResNets [82]. Our philosophy is different
from that of NODEs. We argue that a neural architecture realises
capabilities of a numerical solver, and that training this architecture
corresponds to finding a suitable model.

u-nets The second popular network architecture which we deal
with is the U-net which was introduced by Ronneberger et al. [306].
As the name suggests, information passes through the network in a
U-shape. In the downward pass, the image dimensions are reduced on
each level of the network and the channel number is increased. After
reaching a coarsest level, the acquired information is subsequently
upsampled and combined with information on the next finer level.
This allows to efficiently create multiscale representations of the data,
which has proven useful throughout various tasks such as segment-
ation [106, 306], pose estimation [268], inpainting [9, 91], and many
more.

Figure 3.8 visualises a U-net with three levels and two convolutional
layers on each level. After bringing the input 128 × 128 colour image
to a feature representation with 16 channels, a pooling layer reduces
the image size by a factor of two in each direction. Popular choices
are max- and average pooling, however pooling operators can also be
learned [202, 209].

50 related work

12
8

12
8

3

12
8

12
8

16

12
8

12
8

16

64

64

16

64

64

32

64

64

32

32

32

32
32

32

64
32

32

64

64

64

32

64
64

32

64
64

32

12
8

12
8

16

12
8

12
8

16

12
8

12
8

16

12
8

12
8

1

Figure 3.8: Visualisation of a U-net with three levels and two convolutional
layers per level. On each level, the image dimensions are halved
and the number of channels is doubled. The input and output
layers are coloured in grey, convolutional layers in blue. Red layers
are pooling layers, and magenta layers combine an upsampled
version of the lower level output with the information on the
same level.

3.4 deep learning and neural networks 51

This strategy is continued until the finest level. After the convo-
lutional layers on that level, information is upsampled by means of
interpolation. A simple nearest neighbour interpolation is often suf-
ficient, however also for the upsampling operator, trainable choices
are available. We implicitly denote the upsampling within the convo-
lutional layer on the higher level. Moreover, the upsampling reduces
the channel dimension again.

The layer additionally receives information which was acquired
on the downsampling pass from the same level. While the original
U-net [306] combines this information and the upsampled one by
concatenating the channels, other works such as [268] use addition.
For our theoretical considerations in Part II, we focus on the model
which uses addition. In the practical setting of Chapter 10, we use the
original variant.

Information is successively upsampled, combined, and convolved
until reaching the finest layer again. Then the last convolutional layer
reduces the information to the desired output dimension. In this case,
we chose a 128 × 128 grey value image. For example, this result could
describe a foreground-background segmentation map.

In contrast to the example of classification networks, features be-
come more complex and abstract on lower levels, while on higher
levels information is organised in a similar way as the input. This
allows to produce outputs which correlate with the original image,
such as segmentations thereof.

We benefit both theoretically and practically from the U-net. In
Chapter 7 we show that U-nets realise a sophisticated multigrid
strategy, and in Chapter 10 we use it to generate sparse masks for
diffusion-based inpainting.

3.4.3 Training a Neural Network

The most complex network architectures are of no use without training
them. In the following, we explain the basic concept behind a training
process, and review popular optimisation methods for realising the
training.

learning by backpropagation The central concept for training
a neural network is backpropagation, which has been popularised by
Rumelhart et al. [316]. It is a strategy to compute the way in which
parameters have to be updated to better fit the optimisation objective.
Starting with the objective, one sequentially passes backwards through
the layers, accumulating partial derivatives along the way.

Assume that the neural network is a parametrised function Nθ

which maps an input f to an output uK after K layers, based on some
parameter set θ =

(
θ0, θ1, . . . , θK−1). Moreover, let an intermediate

52 related work

output uk+1(uk, θk) only depend on the parameters θk of the layer k
and the previous output uk, with u0 = f .

One seeks to optimise an objective, a so-called loss function L
(
uK, v

)
,

which maps pairs of prediction uK and ground truth v to a loss value.
The loss is supposed to minimal when uK = v, and grows with larger
distance between the two. To adapt the parameters in such a way
that the loss is steered towards its minimum, we need to move them
opposite to the gradient of the loss w.r.t. the parameter vector θ. Thus,
the parameters θk of the k-th layer should be updated by means of the
gradient

∂L
(
uK, v

)

∂θk =
∂uK

∂θk

∂L
(
uK, v

)

∂uK . (3.96)

Here, we used the chain rule to split the gradient into two derivatives.
Note that the derivative ∂L

(
uK, v

)/
∂uK of the scalar loss w.r.t. the

prediction vector is a column vector, as we use denominator-layout
notation. This helps to better visualise the steps of the backpropagation.
The derivative ∂uK/∂θk of the prediction vector w.r.t. the parameter
vector of layer k is a matrix, where position i, j contains ∂uK

j
/

∂θk
i .

Further expanding the first term with the chain rule, we obtain

∂L
(
uK, v

)

∂θk =
∂uk+1

∂θk
∂uk+2

∂uk+1 · · · ∂uK

∂uK−1

∂L
(
uK, v

)

∂uK . (3.97)

The denominator notation elegantly shows the backpropagation effect:
Starting with the loss derivative vector, one subsequently multiplies it
with layer derivatives. After each step, one obtains the update for the
respective parameter set.

The specific derivative shapes depend on the layer structure. For
convolutional layers

uk+1 = φk
(
W kuk + bk

)
(3.98)

with individually parametrised multi-channel convolutions W k, biases
bk, and activations φk, we have

∂uk+1

∂uk =
(
W k

)⊤
diag

((
φk
)′(

W kuk + bk
))

, (3.99)

∂uk+1

∂wk
ij

= uk
j ei diag

((
φk
)′(

W kuk + bk
))

, (3.100)

∂uk+1

∂bk = diag
((

φk
)′(

W kuk + bk
))

. (3.101)

The derivative w.r.t. the weight matrix W k is given in terms of the
individual components wi,j for notational convenience. The vector ei
is the i-th basis vector.

3.4 deep learning and neural networks 53

activation function derivative

1

1

x

φ(x)

1

1
4

x

φ′(x)

sigmoid

1

1

x

φ(x)

1

1

x

φ′(x)

ReLU

Figure 3.9: ReLU and sigmoid activations with their derivatives. The sigmoid
function suffers from vanishing gradients for large absolute values
of the input. The ReLU function does not, but is nondifferentiable
at zero.

vanishing gradient phenomenon We observe that in the
above derivations, the derivative of the activation function

(
φk)′ is

involved. This is a major cause of the vanishing gradient phenomenon [42,
181, 347], where derivatives become too small during backpropagation
such that the training process comes to a halt. For example, the sigmoid
activation

φ(x) =
1

1 + e−x (3.102)

approaches zero and one in the limit for x → −∞ and x → ∞,
respectively. Thus, its derivative

φ′(x) =
e−x

(1 + e−x)2 (3.103)

becomes very small for large inputs. Multiplying a large number of
these derivatives in the backpropagation (3.97) leads to vanishing
gradients as ∂L

(
uK, v

)/
∂θk approaches zero and the training process

stops. This made it, for a long time, infeasible to train deep neural
networks.

One remedy is given in the form of the ReLU activation, which
has only two possible derivative values: zero for negative inputs, and

54 related work

one for nonnegative inputs. Still, it can happen that the other com-
ponents of the derivatives become small, and the vanishing gradient
phenomenon can persist. Moreover, the ReLU suffers from a nondif-
ferentiability at zero. While this is often ignored in practice as it does
rarely affect optimisation methods, some researchers argue that an
artificial derivative at zero can even act as a hyperparameter [47].

Another option is to use batch normalisation [199] layers. These layers
normalise their input to have a mean of zero and a standard deviation
of one. If an input f has mean µ and standard deviation σ, then the
batch normalisation computes

u =
f − µ√
σ2 + ε

. (3.104)

Here, µ is a vector of the same size as f with all entries equal to µ,
and ε is a numerical constant avoiding division by zero. Batch norm-
alisation helps, among other things, to normalise the data to a range
where the activation function provides useful derivatives.

Lastly, residual networks solve the vanishing gradient problem by
design. The skip connection allows the gradient information to bypass
the derivative of the convolutions and the inner activation function,
thus avoiding small derivatives completely.

optimisation methods Thankfully, in practice there is no need
to compute network derivatives by hand. Deep learning frameworks
such as Tensorflow [1] make use of automatic differentiation [35] to
provide the gradients, which greatly speeds up implementation.

To apply the derivative information to the parameters, most popular
algorithms rely on gradient descent. For an overview of the plethora
of optimisation methods, we refer to the monograph of Nocedal and
Wright [270]. Another overview with a focus on modern machine
learning is given by Kochenderfer and Wheeler [218]. Finally, the
condensed review of Ruder [312] provides a quick reference from a
practical viewpoint. In the following, we present a selection of the
most popular optimisation algorithms which are important for this
thesis.

pure gradient descent The original gradient descent as known
from convex optimisation is also the baseline of many algorithms used
to train neural networks. Intuitively, the gradient of the loss function
w.r.t. the parameters describes the steepest ascent direction of the loss.
Thus, subtracting the gradient from the current parameter set with a
reasonably small step size should yield a parameter combination with
a smaller loss. Repeatedly applying this process steers the parameters
into a local minimum of the loss.

3.4 deep learning and neural networks 55

For a single prediction u with ground truth v at a descent step n,
one updates

θn+1 = θn − α
∂L
(
uK, v

)

∂θn
(3.105)

As the gradient denotes the steepest ascent direction in the loss func-
tion, one performs a step in the opposite direction. The step size,
which is called the learning rate in the context of deep learning, is
denoted by α > 0.

Usually one trains a neural network on large sets of data. In this
case, a naive strategy performs parameter updates based on single
data samples. As the gradient computation in this case depends on
the samples, this strategy is called stochastic gradient descent [301]. Due
to the randomness of gradients, this process is able to escape bad local
minima and saddle points of the energy surface. However, as one uses
single samples from the large data set, the gradient information is
noisy. On the other hand, computing all gradients on the full data set
is computationally burdensome.

To combine the best of both worlds, researchers have proposed to
use mini-batch gradient descent. Therein, each optimisation step averages
gradient information on a small subset of the data, a so-called batch.
Optimising the batch size is crucial for finding a good balance between
randomness in the gradient and reliable gradient information.

momentum methods Methods that rely on pure gradient descent
exhibit bad convergence around minima where gradients become
small. Moreover, in settings where the energy has elongated level lines,
gradient descent tends to oscillate orthogonally to the optimal descent
direction.

To this end, Polyak’s heavy ball method [287] introduces momentum to
the descent trajectory. Intuitively, this strategy models a ball which
moves on the energy surface. Instead of only letting the ball move
down slopes due to gravity, one additionally considers the velocity of
the ball that is accumulated while moving downhill.

One introduces a velocity vector ϑ and changes the update rule to

ϑn = γϑn−1 − α
∂L(u, v)

∂θn
, (3.106)

θn+1 = θn + ϑn. (3.107)

Here, the parameter γ ∈ [0, 1] is the velocity parameter. It controls
the balance between accumulated previous gradients in the form of ϑ
and new updates. A velocity of γ = 0 yields the original gradient
descent formulation, and γ = 1 allows arbitrarily large accumulation
of gradients, i.e. the ball does not reach a terminal velocity.

A more efficient option is the use of Nesterov accelerated gradient
descent [267], which considers the new gradients already at the updated

56 related work

position, and thus performs a correction if the momentum leads to an
overshoot.

Both momentum methods help to escape saddle points and bad
local minima and to improve convergence around minima. For a
rigorous analysis in terms of convergence rates, we refer e.g. to [270].

adaptive learning methods While momentum methods were
designed for classical optimisation problems, their use in neural net-
works has triggered many adaptations. A core challenge is that the
multitude of parameters describes various features which do not live
on the same scale. Moreover, some features provide useful gradients
sparsely throughout several batches. This requires to adaptively tune
the learning rate for each feature. As this is infeasible to do by hand, a
multitude of adaptive learning methods has emerged.

The most popular one is adaptive moment estimation (Adam) [212]. It
combines the advantages of two previous adaptive learning methods,
namely RMSprop [177] and AdaGrad [111]. Adam tracks decaying
averages of the mean µ and the variance σ of past gradients, each
with their own momentum parameter β1, β2:

µn = β1µn−1 + (1 − β1)
∂L(u, v)

∂θn
, (3.108)

σn = β2σn−1 + (1 − β2)

(
∂L(u, v)

∂θn

)2

. (3.109)

To counteract the initialisation bias, one computes bias-corrected es-
timates

µ̂n =
µn

1 − βn
1

, (3.110)

σ̂n =
σn

1 − βn
2

. (3.111)

Then the update rule is given by

θn+1 = θn −
α√

σ̂n + ε
µ̂n . (3.112)

We see that the learning rate α is normalised by the standard deviation
estimate

√
σ̂n, where a small numerical constant ε avoids division by

zero. This brings all gradients to the same scale. In addition, both
estimates incorporate momentum.

There exist several other adaptive learning methods [218, 312], how-
ever, Adam is arguably the most popular one. In this thesis, we pre-
dominantly use the Adam optimiser with the suggested standard
parameters α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8 [212] if not spe-
cified otherwise. Chapter 4 poses an exception to this rule. Therein, we
use the quasi-second order method of L-BFGS [236] as the proposed
model is shallow enough for this purpose.

3.4 deep learning and neural networks 57

3.4.4 A Short History of Deep Learning

The present success of deep learning builds on a long history of
research. To understand the current state of deep learning, and to ap-
preciate the advances in its mathematical foundations, it is important
to keep this history in mind.

While deep learning today is omnipresent, it started as a subfield
within the broad research area of artificial intelligence. This section is
a humble attempt at summarising the main milestones in deep learn-
ing. It closely follows the excellent and extremely detailed overview
of Schmidhuber [330], with additional references from the book of
Goodfellow et al. [152]. Figure 3.10 accompanies this section with a
visual timeline.

surges in artificial intelligence Much like any other re-
search field, artificial intelligence experienced fruitful phases, and
so-called AI winters, where research almost came to a halt due to
various circumstances. In their book, Goodfellow et al. [152] identify
three surges in research: cybernetics, connectionism, and deep learning.

The phase of cybernetics ranged from the 1940s to the 1960s and
was mainly inspired by biological learning processes in the brain. The
phase of connectionism dated from the 1980s to the 1990s, with its
central concept being the idea that many neurons performing simple
computations can solve complex tasks when arranged in a network.
Lastly, deep learning emerged under its current name in 2006, with
no AI winter in sight.

cybernetics Already in 1943, McCulloch and Pitts [253] presented
a linear model for the behaviour of neurons in the brain. However,
this neuron was not able to learn, an idea which was brought forth by
Hebb in 1949 [174].

The first trainable model was presented in 1958 in the form of
the Perceptron by Rosenblatt [307]. It is considered the foundation of
modern neural networks. A Perceptron is a single linear neuron with
binary inputs and a single binary output. Based on weights and a bias,
the neuron can learn its output. However, Minsky and Papert [256]
showed that the Perceptron is not able to solve the XOR-problem:
It cannot learn the logical exclusive or (XOR) function which is one
when only one of two inputs is one, and zero otherwise. This was the
beginning of the first AI winter.

Nevertheless, at the end of the cybernetics phase, Ivakhnenko
provided one more foundation of deep learning with the group method
of data handling [200]. These models arrange Perceptron-like neurons in
a network, with polynomial activation functions. However, the number
of neurons per layer and the number of layers are learned dynamically.

58
r

ela
ted

w
o

r
k

1940

Cybernetics

1970 1980

Connectionism

1997

1943

neuron model
of McCulloch
and Pitts [253]

1949

trainable neuron
of Hebb [174]

1958

Rosenblatt’s
Perceptron [307]

1968

Ivakhnenko’s group
method of data
handling [200]

1969

Perceptron
fails XOR-
problem [256]

1980

Fukushima’s
Neocognitron [132]

1982

RNNs [188]

1986

backpropagation
popularised [316]

1989

backpropagation
for document
recognition [224]

1991

vanishing
gradient
problem [181]

1997

LSTMs [182]

2006

Deep Learning

2015 2022

with mathematical foundations

2006

‘deep learning’
is coined [180]

2006
CNNs with
backpropagation
set new records
on MNIST [296]

2010

new MNIST records
by networks without
convolutions [79]

2010
introduction of
ReLU activation [266]

2011

first superhuman
pattern recognition
performance [80]

2012
AlexNet
breaktrough [220]

2014

generative
adversarial
networks [153]

2014

Adam
optimiser [212]

2015
U-nets [306]

2016
residual
networks [173]

2017

densely
connected
networks [191]

2017

attention in
networks [363]

2017

AlphaGo solves
Go [338]

2018
Turing award for
Bengio, Hinton,
and LeCun [24]

2021

AlphaFold solves
protein folding [206]

Figure 3.10: Historic timeline of the surges in artificial intelligence and selected milestones.

3.4 deep learning and neural networks 59

connectionism In 1980, Fukushima [132, 133] presented the
Neocognitron. Based on biological inspiration from experiments on the
visual cortex of cats [192], the Neocognitron introduced convolutions
as well as average-pooling. Thus, the Neocognitron was effectively the
first deep convolutional network, even though not trained by means
of backpropagation.

The phase of connectionism was also the birth of recurrent neural
networks (RNNs), first proposed by Hopfield in 1982 [188]. The distinc-
tion between RNN-like networks and feed-forward networks exists
still to this day.

The development of backpropagation happened in parallel, and
was only later joined with neural networks. Backpropagation was
first explicitly described by Linnainmaa in 1970 [234, 235], however
without a reference to neural networks. For neural networks, it was
first proposed by Werbos in 1982 [389, 390], with follow-up works
of LeCun [222]. Finally, the 1986 paper of Rumelhart et al. [316]
popularised the concept of backpropagation significantly.

In 1989, backpropagation was successfully applied to a Neocog-
nitron model by LeCun et al. [224, 225], thus learning to classify
handwritten digits. This constituted a milestone: The combination
of convolutional layers, pooling, and GPU implementations is still
present in contemporary deep learning architectures.

In 1991, Hochreiter [181] was the first to identify the phenomenon
of vanishing and exploding gradients as the central reason why deep
networks were hard to train with backpropagation. Several solutions
to this problem were developed, the most popular invention being
long short term memories (LSTMs) [142, 182], a specific form of RNNs.
A long time before residual networks solved the problem with skip
connections, similar ideas in the design of LSTMs introduced constant
derivatives such that backpropagated errors could not vanish.

In the middle of the 1990s, deep learning research entered a second
AI winter. Goodfellow et al. [152] attribute this to both neural networks
failing to fulfil expectations, as well as advances in other areas of
machine learning.

deep learning The term deep learning as we know it today was
coined by Hinton in 2006 [179, 180]. Its march to success was mainly
catalysed by two factors: the growing availability of data, and the
advances in parallel computing hardware such as graphics processing
units (GPUs).

Shortly after, CNNs trained with backpropagation [296] set new
records for classification on the MNIST handwritten digit dataset, and
GPU implementations [71, 273] became increasingly popular.

Another MNIST record was set in 2010 through standard neural net-
works without convolutions by Ciresan et al. [79]. These networks were
trained by means of GPU-based backpropagation, and, for the first

60 related work

time, without any pre-training strategies. In 2011, Ciresan et al. [80]
transferred this strategy to CNNs with max-pooling and ensembles
thereof [81], constituting the first instance of superhuman performance
for pattern recognition. Around this time, the introduction of ReLUs
also solved the problem of vanishing gradients to a large extent [149,
266].

This finally led to the breakthrough year of 2012. Krizhevsky et
al. [220] presented AlexNet, a GPU-based max-pooling CNN which
improved the error on the ImageNet classification benchmark [318]
by over 75% from 26.1% to 15.3% [152]. This tremendous advance
popularised CNNs throughout various research communities and led
to an explosion of performance. New benchmarks were quickly set,
primarily for classification [340, 348, 406], but also for various other
tasks [330].

Since then, deep learning has taken a hold of all research fields
involving any form of signal processing. The introduction of new
concepts and architectures [22, 153, 173, 191, 213, 306, 363] along
with better optimisation methods [212], further progress in paral-
lel computing hardware, the availability of large datasets [318], and
the introduction of integrated development environments such as
Tensorflow [1] led to an hitherto unseen explosion of interest in deep
learning.

According to the Google Scholar statistics at the end of 2021, deep
learning is omnipresent [155]. In Nature, the most influential journal
in the last five years according to the h5-index, three out of the ten top
publications make use of deep learning. Out of the top ten conferences
and journals, three are purely devoted to learning. Note that these
statistics cover all areas of research tracked by Google Scholar.

When focusing on computer vision and pattern recognition, there
is almost no alternative to deep learning: At the IEEE Conference
of Computer Vision and Pattern Recognition, the top computer science
conference, the first non-deep learning paper out of the most cited
ones over the last five years appears at position 43. The second non-
deep learning paper is found at rank 96, not considering evaluations
and papers which introduce datasets.

It is not surprising that in the year 2018, the ACM A. M. Turing Award,
which is also referred to as the Nobel prize of computer science, was
awarded to Yoshua Bengio, Geoffrey Hinton, and Yann LeCun for
their contributions to neural networks and deep learning [24].

The advances in deep learning research have surprisingly rapid
practical implications. In 2017, an artificial intelligence system by
DeepMind relying on deep learning was able to beat one of the best
Go players in the world [338]. Go is a competitive board game of Asian
origin with a particular relevance for artificial intelligence due to its
vast search space. The same company presented AlphaFold, which

3.4 deep learning and neural networks 61

is the first program to produce practically sufficient accuracy for the
fundamental problem of protein folding in biology [206].

While this is certainly not the end of the road, a growing com-
munity of researchers believes that the progress in deep learning is
slowed down by a fundamental lack of understanding of the inner
mechanisms of neural networks.

3.4.5 From Deep Learning to Deep Understanding

The evolution of deep learning from 2012 on was largely data-driven:
Deep neural networks were used as black-box models that could solve
tasks when given large amounts of data. The excessive speed at which
these models evolved left the understanding of them trailing behind.
This led to several undesirable side effects.

One example is the concept of adversarial examples [154, 404]. In
their seminal paper, Goodfellow et al. [154] show that a classification
network can easily be fooled: Adding a small perturbation to an image
which is imperceptible to a human leads the classifier to deviate from
a very confident and correct classification to a wildly different one.
This discovery has initiated a new field of research, where attackers
try to fool networks, and defenders improve their architectures and
optimisation algorithms to be robust to such adversarial attacks. At
their core, this phenomenon relies on a nonsmoothness in the energy
landscape of CNNs: While clean and corrupted images are close to
each other in the input space, their corresponding outputs are far
away from each other. From the viewpoint of PDEs, this indicates that
CNNs suffer from a lack of well-posedness: A small change of the
input data can lead to large deviations in the output.

Another example of a side effect is the double descent phenomenon [40].
A guiding principle for classical machine learning models is the bias-
variance trade-off. Complex models have a small bias, but a large vari-
ance and vice versa. This implies that a model should be designed
in such a way to hit the sweet spot between over- and under-fitting.
This, however, does not seem to hold for modern neural architec-
tures as shown by Belkin et al. [40]: If models are over-parameterised,
they exhibit a double descent phenomenon during training where
the test error decreases, increases, and decreases again. While the
explanation is more intricate, this example stresses that CNNs seem
to fundamentally change established paradigms, warranting the need
for mathematical foundations.

The goal of this thesis is to improve the transparency of models.
On one hand, we equip already transparent image processing models
with trainable components, without obfuscating the behaviour of the
model. On the other hand, we connect the elementary building blocks
of specific neural network architectures to concepts for PDEs, thus
shedding light on their inner workings. We are not alone in this

62 related work

endeavour: In the meantime, many researchers have contributed to the
mathematical foundations of deep learning. The following section presents
a selection of related work from these fields.

3.5 mathematical foundations of deep learning

Establishing mathematical foundations of deep learning has become
a prominent research avenue. Researchers from various communities
across PDEs, variational methods, wavelets, inverse problems, and
many more have started to use their expertise to connect neural net-
works to their fields; see e.g. [365] for an early overview. This section is
intended as a broad introduction into these connections. More detailed
discussions can be found in the individual parts and chapters of the
thesis.

differential equations and neural networks For us, the
most important connections are those between differential equations
and neural networks. They form a basis for our considerations in
Part II of the thesis.

One of our core ideas is to translate numerical algorithms for PDEs
into neural building blocks. This strategy is not shared by many others.
For example, one can use inspiration from acceleration strategies for
explicit schemes [240], implicit schemes [229], higher order numerics
based on Runge–Kutta methods [241], semi-implicit schemes [166],
and even discretisations of integrodifferential equations [49] to come
up with improved neural architectures. However, such examples are
rare.

Often times, the connections are used to derive stability and ro-
bustness guarantees for neural networks. For example, Ruthotto and
Haber [319] interpret residual networks as explicit Euler schemes for
PDEs and derive conditions for Euclidean stability and robustness of
the network evolution. In a similar spirit, Haber and Ruthotto [167]
come up with similar conditions from an ODE viewpoint. In both
cases, however, they assume monotone activation functions. We on the
other hand derive stability conditions while also allowing nonmono-
tone activation functions.

Mathematical guarantees are also important considerations for
NODEs (see Section 3.4.2) as the continuous-time extension of re-
sidual networks [73]. Recent works study their approximation capabil-
ities [315, 409], stability properties [359], and robustness [399]. While
the concept of NODEs attracts lots of positive attention, several recent
works [82, 164, 274] argue that some of the original claims of NODEs
do not hold true.

Researchers have also started to use the flexibility of deep learning
to learn PDE dynamics from data [72, 75, 238, 314, 324] or to solve
them [86, 114, 145, 291, 293]. These ideas have also been extended

3.5 mathematical foundations of deep learning 63

to PDEs on manifolds [231] and special forms of networks such as
graph [118] and quantised neural networks [41].

variational methods and neural networks Energy-based
models have a long tradition in learning [109, 226, 350]. Recently, deep
learning has been used to design variational models in a data-driven
way; see e.g. [121, 285, 290].

Kobler et al. [217] present variational networks, where the gradient
descent steps of a variational energy are parametrised and learned.
This is a form of unrolling [260, 345], which constitutes one funda-
mental way to train such models [75, 216].

Another option is to use contrastive learning [178], where the energy
is maximised on training pairs that do not fulfil the model assump-
tions, and minimised on pairs which do so. The adversarial train-
ing process of Wasserstein GANs [22] is an instance of this training
strategy.

Similar as for PDEs, learning can not only be used to model vari-
ational energies, but also to solve them. This is the idea of deep en-
ergies [150], where a neural network is tasked to produce solutions
which minimise a given energy functional. We extend this idea to
PDEs by prescribing the squared residual of a PDE as an optimisa-
tion objective. This is especially useful when no energy for a PDE is
available, or when it is hard to implement numerically.

As variational methods are a common tool for solving inverse prob-
lems, these connections manifest in several learned iterative schemes
for inverse problems and trainable regularisers. Extensive overviews
are given in [23, 252].

An increasingly popular interpretation is also that neural network
architectures possess a regularising effect [104, 360]. This is known
under the notion of deep priors [360]. Other authors suggest to use
networks that were trained for denoising as regularisers for other
tasks [305]. Our view on neural network architectures is different: We
argue that the network design expresses capabilities of a numerical
solver, while its training corresponds to finding a suitable model.

wavelets and cnns The seminal work of Bruna and Mallat [60]
employs wavelet operations to come up with scattering networks that
perform well on classification problems. This has been the starting
point for a number of wavelet-inspired CNNs; see e.g. [131, 302, 392,
393] and the references therein. Usually they exploit the spectral in-
formation or the multiscale nature of wavelets. In particular, Ramzi
et al. [295] introduce trainable wavelets as learnlets and connect their
model to U-nets. For our goals, wavelets often serve as a practical
test bed due to their efficiency, and as a suitable framework to con-
nect them to CNNs based on their inherent connection to diffusion
PDEs [262–264, 344, 377].

64 related work

robustness , approximation, and invariances Apart from
their connections to PDEs, robustness and stability of CNNs can be
achieved for example by controlling the Lipschitz constant of the
mapping that individual layers or full networks represent, either by
design [28, 227, 351] or on the fly during training [62, 157]. Genzel et
al. [140] empirically observe that CNNs for inverse problems naturally
exhibit certain robustness properties.

The approximation capabilities of CNNs are important to measure
the expressiveness of different models. Already in 1989, Cybenko [89]
as well as Hornik et al. [190] showed that feedforward networks
with sigmoid activation functions can approximate functions with
arbitrary precision given enough hidden units within a single hidden
layer. In modern times, the question of the influence of depth on
the expressiveness of networks has become increasingly popular; see
e.g. [95, 116, 233, 276, 286].

Lastly, bringing invariances beyond shift-invariance to neural net-
works is an important part of their mathematical foundations. In
particular, we are interested in rotation invariance. While learning-
inspired approaches such as [74, 123, 221, 339] only approximate
rotation invariance, other works guarantee it by design [84, 102, 112,
139, 249, 337, 382, 395]. However, these methods are often complex in
their design, inflate the network architecture heavily, or suffer from
a too coarse discretisation of sampled orientations. In Chapter 8, we
propose a strategy inspired by diffusion models which solves some of
the aforementioned problems.

This concludes our overview on the mathematical foundations of
deep learning. In the following, we conclude this chapter by reviewing
the practical problems that we tackle in this thesis.

3.6 applications

In the following, we briefly discuss the central experimental applic-
ations which we encounter in this thesis: denoising and inpainting.
Denoising serves as a good test bed for our models, while the motiv-
ation of our inpainting experiments is to improve inpainting-based
compression models.

3.6.1 Denoising

Denoising is a fundamental problem in image processing. As one of the
oldest problems, it often constitutes the first step in longer processing
pipelines, and subsequent methods build upon good denoising results.

We can describe additive noise by

f = v+n, (3.113)

3.6 applications 65

where the corrupted image f arises from a clean version v by adding
noise n. In this thesis, we only consider additive white Gaussian noise,
i.e. n follows a Gaussian distribution with mean zero and standard
deviation σ. The goal of denoising is to recover v from f without
knowledge of the noise realisation n as best as possible.

There exists a plethora of successful denoising strategies. A non-
exhaustive lists includes diffusion models [16, 279, 369], total vari-
ation regularisation [313], bilateral filters [355], nonlocal means [61],
patch-based methods [90], wavelet shrinkage [85, 107, 248], dictionary
learning [8, 75, 308, 331], and of course deep learning [411]. For an
overview of traditional and deep learning models for denoising, we
refer to the overviews [161] and [353], respectively.

For us it is not about achieving state-of-the-art denoising perform-
ance. Nowadays, this is not possible without highly sophisticated
models. In Part I, we use denoising as a simple test bed to improve
classical methods by means of learning. In Part II, we choose de-
noising since diffusion-based denoising is the prototypical setting of
a well-posed process. This helps us to establish our mathematical
guarantees.

Figure 3.11 visualises how the diffusion models from Table 3.1
perform in a denoising setting. To this end, we corrupt the peppers
image with Gaussian noise of standard deviation σn = 40. We have
optimised all involved parameters such as diffusion time, contrast and
presmoothing parameters to obtain optimal results w.r.t. MSE. As this
only reflects the denoising quality on a single image and with the
same diffusivity function for all nonlinear models, this comparison is
not supposed to give a strict ranking of models.

Nevertheless, we can make out the systematic strengths and weak-
nesses of the models. The linear isotropic homogeneous and bihar-
monic diffusion models blur the image to a certain extent to remove
the high-frequent noise components. The Perona–Malik model suf-
fers from noise outliers which are preserved as they produce large
gradients. Similar effects can be found in the higher-order nonlinear
models and that of Niessen as the smoothing parameter is small. This
justifies the motivation of the regularised model of Catté et al.: By
presmoothing the noisy image, more reliable gradient information is
obtained and the denoising quality improves. As a resulting downside,
it cannot remove noise around prominent edges. As the nonlinear
model of Fritsch considers the gradient information of the noisy im-
age, it cannot extract useful structural information and essentially
collapses to homogeneous diffusion. Overall, the EED model performs
best as it additionally employs directional smoothing around edges.
With small gaps in performance each, the Catté and Perona–Malik
models follow, with the remaining models trailing behind.

66 related work

original noisy, σ = 40

homogeneous
T = 0.8

Perona–Malik
T = 1.2, λ = 66

Catté et al.
T = 2.7, λ = 18, σ = 0.75

Niessen et al.
T = 2.4, λ = 45, σ = 0.1

Fritsch
T = 0.9, λ = 148

Biharmonic
T = 1.1

You and Kaveh
T = 1.3, λ = 150

Lysaker et al.
T = 2.2, λ = 50

EED
T = 4.5, λ = 10, σ = 0.85

Figure 3.11: Denoising effect of the diffusion models from Table 3.1 for the
peppers image. All models use optimised diffusion times and
parameters and the exponential Perona–Malik diffusivity in the
nonlinear case.

3.6 applications 67

3.6.2 Inpainting

Inpainting is the task of reconstructing missing data in images from a
subset of the original image data. Originally, this technique was used
for manual art restoration, where damaged paintings were in-painted
by hand. For digital images, the technique was popularised by Masnou
and Morel [251] as well as Bertalmío et al. [46].

As for denoising, many strategies have been developed for solv-
ing the inpainting problem founded on diffusion [52, 135, 334, 378],
Euler’s elastica [56, 251, 335], Shepard interpolation [4, 258, 280, 336],
exemplar-based strategies for textures [87, 122, 208], deep learning [176,
197, 237, 277, 298, 321, 400, 403], and many others; see e.g. [45, 162]
for overviews.

Applications include upsampling [34, 38, 247], denoising [5], col-
ourisation [282], object removal [87], image compression [76, 134, 280,
327], and video compression [17, 18, 219, 328].

The success of PDE-based image compression is our main motiva-
tion for considering inpainting problems within this thesis. Already
in 1988, Carlsson [64] showed that images can be compressed us-
ing a sparse set of pixels and recovered by means of inpainting. In
2005, Galić et al. [134, 135] introduced diffusion-based image compression.
Therein, one stores only a very sparse subset of pixels in the form
of a triangular tree (cf. also [103]), and the image is reconstructed
from these data by diffusion processes. A series of improvements
followed: Schmaltz et al. [329] managed to beat the transform-based
codec of JPEG2000 [349] with their R-EED codec relying on anisotropic
diffusion inpainting of rectangular tree-based data points, and the
R-EED-LP codec of Schmaltz et al. [327] extended this strategy to
colour images. This constitutes the current state-of-the-art codec for
general purpose image compression, albeit several improvements of
individual pipeline components [77, 207] and adaptations to specific
image data [186, 203, 204, 245] have been proposed.

diffusion-based inpainting We are mainly concerned with
the inpainting problem itself, and less with the compression aspect.
For a continuous image f : Ω → R which is only available on the
inpainting mask as a subset K ⊂ Ω of the image domain, we want to
obtain a reconstruction u as the solution of the inpainting equation

(1 − c) Lu − c (u − f) = 0 (3.114)

with reflecting boundary conditions and a general differential oper-
ator L. Here, c : Ω → R is a confidence function which determines
whether a data point is known or not. In case of a binary confidence

68 related work

which is one for known data points and zero for unknown points, a
reformulation of the inpainting equation is more intuitive:

Lu = 0 on Ω\K, (3.115)

u = f on K. (3.116)

Thus, the known data are kept, and the missing parts are interpolated
by the process specified by the differential operator L.

Diffusion processes have proven particularly useful for this task
due to their implicit smoothness assumptions and long-range interac-
tions. For example, choosing L = ∆ leads to homogeneous diffusion
inpainting. The choice of L = −∆2 gives biharmonic inpainting, and
L = ∇⊤(D∇u) allows anisotropic diffusion inpainting.

A fundamental problem in inpainting-based compression is to op-
timise a discrete inpainting mask such that the data is suitable for re-
constructing the image, and also easy to store. A multitude of data op-
timisation strategies has been proposed, relying on analytic results [39],
continuous nonsmooth optimisation [50, 76, 183, 184, 271], sparsific-
ation [97, 246, 250] and densification [77, 93, 208] strategies, and on
feature-based information such as gradient data [55], corners [19], and
point features [3, 64, 92, 383]. A detailed review is given in Chapter 10.

For our work, the spatial optimisation strategies of Mainberger et
al. [246] are essential. They consist of probabilistic sparsification (PS) and
nonlocal pixel exchange (NLPE).

Probabilistic sparsification starts with a full mask and successively
removes a fraction p of candidate pixels, computes the inpainting,
and reintroduces a fraction q of the candidates with the largest local
inpainting error. One repeats this step until reaching a desired mask
density d which describes the percentage of remaining pixels.

Since sparsification is a greedy local approach, it can get trapped
in bad local minima. NLPE provides a remedy for this: Therein, pixel
candidates in a sparsified mask are exchanged for an equally large
set of non-mask pixels. If the new inpainting result improves, the
exchange is kept, otherwise it is discarded. In theory, NLPE can only
improve the mask, but in practice convergence is slow.

Figure 3.12 depicts the inpainting performance of homogeneous,
biharmonic, and edge-enhancing diffusion in the case of random
masks and stochastically optimised ones. We choose the peppers image
and prescribe a density of 5%. For the optimised masks, we take the
best out of five sparsification runs and optimise the result further
with ten cycles of NLPE. In each cycle, a mask point is visited once
on average. The sparsification uses the standard candidate fractions
p = 0.1 and q = 0.05.

Without mask optimisation, the ranking is as expected: The more
complex the inpainting operator, the better the inpainting result gets.
A characteristic of the homogeneous diffusion inpainting is that mask
points form singularities. While the biharmonic model does not suffer

3.6 applications 69

original 5% random mask

homogeneous
MSE 404.5

biharmonic
MSE 320.5

EED
MSE 246.6

(a) random mask on peppers with 5% density

original
homogeneous

MSE 96.8
biharmonic
MSE 111.86

EED
MSE 53.35

(b) probabilistic sparsification with additional nonlocal pixel exchange on
peppers with 5% density

Figure 3.12: Visual comparison of inpainting operators on peppers without
and with spatial mask optimisation. Mask points are shown in
black, and mask images are framed for better visibility. Optimal
masks for different inpainting operators can differ strongly.

70 related work

from these artefacts, it still lacks anisotropy and thus creates ragged
edges. Given that mask points are chosen randomly, the inpainting
quality of EED is already impressive.

However, the spatial optimisation strategies boost all methods to
completely different quality levels. Interestingly, the homogeneous dif-
fusion model supersedes the biharmonic one in this example. Its mask
points cluster around edges, while those for biharmonic inpainting
are more evenly distributed. Yet both are not competitive with EED.
As already few mask points along edges are sufficient to reconstruct
them, more points can be placed in other image areas.

This concludes our review of related work. The following chapter
commences Part I where we equip classical mathematical image pro-
cessing models with trainable components, starting with an adaptive
wavelet shrinkage model.

Part I

I M P R O V I N G M AT H E M AT I C A L M O D E L S
T H R O U G H L E A R N I N G

4
T R A I N A B L E A D A P T I V E WAV E L E T S H R I N K A G E

This chapter contains our first novel contributions and is an instance
of the first vision outlined therein: improving mathematical models
by means of learning. While yielding highly tailored solutions, deep
learning models are often too complex for a rigorous analysis. In con-
trast, classical model-driven approaches provide a sound theoretical
foundation but often cannot compete with their learning-based coun-
terparts. To this end, we present an approach for equipping wavelet
shrinkage with trainable components to learn adaptive dynamics of
the process. As a crucial difference to other model-based learning
ideas, we reduce the learned parameters to obtain a condensed model
with only a handful of control parameters.

We exploit the flexibility of a learning-based approach to train a
smooth shrinkage function that adapts both to the wavelet scales
and to the noise level. The proposed shrinkage function can even
amplify wavelet coefficients and thus enhance important image struc-
tures, a property that most established shrinkage functions do not
share. A low number of trainable parameters allows us to manually
inspect the learned results and infer smooth connections between
them. From these, we design a generic compact shrinkage function
that incorporates the learned adaptivity, while only using two para-
meters. Experiments show that our shrinkage function outperforms
classical ones by a significant margin. To the best of our knowledge,
this is the first work to present a learning-based shrinkage function
with this level of compactness.

The choice of wavelet-based denoising as a framework for our ideas
is well-motivated: First, wavelet shrinkage exhibits a long history of
research as well as established connections to diffusion, ideas which
we can use within our model design. Moreover, wavelet shrinkage
poses only two modelling challenges: finding a suitable wavelet basis,
and designing an appropriate shrinkage function. This allows us to
focus on finding good trainable model components. Lastly, wavelet
shrinkage can be very efficient. Results are usually obtained with just
one shrinkage step consisting of a forward and a backward transform-
ation with a nonlinear function application in between. Thus, we can
perform highly efficient backpropagation. In fact, this chapter is the
only instance where the parameter gradients are computed by hand
and used within a quasi-second order optimisation method.

related work We have already covered the basic idea of wavelet
shrinkage in Section 3.3. Classical wavelet shrinkage [108] functions

73

74 trainable adaptive wavelet shrinkage

use a single threshold parameter for all scales of the wavelet trans-
formation inducing a binary decision: If the wavelet coefficient is too
small, it likely is a result of noise and is eliminated. If it is large, it
probably represents important signal structure and is thus kept and
possibly modified. Prominent representatives of such functions are
hard [248], soft [107] and garrote [136] shrinkage.

However, individual scales might require distinct thresholds as they
are differently affected by noise. To this end, adaptive shrinkage meth-
ods have been proposed. Early works of Zhang et al. [414, 415] already
study a smooth adaptive shrinkage function with trainable thresholds.
Other authors train arbitrarily shaped shrinkage functions [7, 175,
346], some also train the wavelets [158] or even general adaptive fil-
ters for shrinkage operations [331]. Non-trainable adaptive statistical
models include [69, 230, 288]. Most learning-based methods produce
large amounts of trained parameters while relations between them are
rarely investigated. In contrast to this, we directly employ a tightly
parametrised model from which it is easy to infer smooth underlying
parameter relations.

An important connection between two-dimensional wavelet shrink-
age and nonlinear diffusion filtering has been established by Mrázek
and Weickert [263]. It allows us to directly translate a diffusivity into a
trainable shrinkage function. We use a so-called forward-and-backward
(FAB) diffusivity, resulting in a shrinkage function that can amplify
coefficients. Only few works employ this property directly [343], but
also results for learned shrinkage functions suggest its usefulness [175].
The corresponding concept of backward diffusion has also shown to
be successful [44, 75, 147, 386].

publication information This chapter is based on the con-
ference paper of Alt and Weickert [13] presented at the 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing.
It is extended with detailed descriptions of the shift-invariant wavelet
shrinkage algorithm, a detailed derivation of the parameter gradi-
ents, and additional figures and graphs. Moreover, Appendix A links
rotation-invariant wavelet shrinkage to diffusion discretisations.

organisation of the chapter The remainder of the chapter is
structured as follows: In Section 4.1 we review shift-invariant wavelet
shrinkage in the two-dimensional setting and its relation to nonlinear
diffusion. We propose our model in Section 4.2, which is experiment-
ally evaluated in Section 4.3. Finally, Section 4.4 summarises our
conclusions.

4.1 review : shift-invariant wavelet shrinkage 75

4.1 review : shift-invariant wavelet shrinkage

In Section 3, we have already introduced one-dimensional wavelet
shrinkage. In the following, we review the two-dimensional shift-
invariant extension which provides the basis of this chapter.

Let us consider a noisy image f which originates as f = v+n from
a clean image v corrupted by additive white Gaussian noise n. The
two-dimensional shift-invariant wavelet shrinkage follows the same
three-step structure as its one-dimensional counterpart.

analysis In the analysis step, the input image f is transformed
into wavelet and scaling coefficients. In contrast to the one-dimensional
setting, one now obtains three sets of wavelet coefficients: two axial
sets, and one diagonal set. We assume that the image is of size 2L × 2L

such that we obtain L wavelet scales. We denote the scaling coeffi-
cients on scale ℓ = 1, . . . , L by w(ℓ), and the corresponding wavelet
coefficients by w

(ℓ)
x ,w(ℓ)

y , and w
(ℓ)
xy . They are computed from the noisy

image f as

w(ℓ) = Q(ℓ)f , (4.1)

w
(ℓ)
x = Q

(ℓ)
x f , (4.2)

w
(ℓ)
y = Q

(ℓ)
y f , (4.3)

w
(ℓ)
xy = Q

(ℓ)
xy f . (4.4)

In the case of the Haar wavelet basis, the matrices Q(ℓ),Q(ℓ)
x ,Q(ℓ)

y ,Q(ℓ)
xy

implement convolutions with the following stencils:

Q(ℓ) ≡ 1
2ℓh 1

2ℓ

2ℓ , Q
(ℓ)
x ≡ 1

2ℓh 1 −1

2ℓ−1 2ℓ−1

2ℓ ,

Q
(ℓ)
y ≡ 1

2ℓh
1

−1

2ℓ

2ℓ−1

2ℓ−1

, Q
(ℓ)
xy ≡ 1

2ℓh

−1 1

1 −1

2ℓ−1 2ℓ−1

2ℓ−1

2ℓ−1

.

Here we observe two things. First, we notice that the two-dimensional
wavelet basis can be constructed as the tensor product of its one-
dimensional counterpart. For example, the wavelet coefficients in
x-direction can be computed by first employing a lowpass filter in
y-direction, followed by the highpass filter in x-direction, or vice versa.

Secondly, we note that the output coefficients are of the same size
as the input image, as the filter matrices are square. This is the effect

76 trainable adaptive wavelet shrinkage

of the shift-invariant wavelet transform [85]. In the original wavelet
transformation, one would need to equip the convolutions with strides
of the filter size, i.e. a stencil at scale ℓ is only applied to every 2ℓ-th
pixel.

As a consequence, the naive implementation of the shift-invariant
transformation is inefficient as stencils on coarse scales become as
large as the original image. The algorithme à trous of Holschneider et
al. [187] presents a remedy to this problem. Instead of computing the
coefficients independently of each other, one computes coefficients on
coarser scales from the results on finer scales by

w(ℓ+1) = W (ℓ)w(ℓ), (4.5)

w
(ℓ+1)
x = W

(ℓ)
x w(ℓ), (4.6)

w
(ℓ+1)
y = W

(ℓ)
y w(ℓ), (4.7)

w
(ℓ+1)
xy = W

(ℓ)
xy w(ℓ) (4.8)

for all ℓ = 0, . . . , L − 1. One formally initialises with w(0) = f . The
modified filter matrices W (ℓ),W (ℓ)

x ,W (ℓ)
y ,W (ℓ)

xy implement the convo-
lutions with the stencils

W (ℓ) ≡ 1
2ℓh

1 1

1 1

0

2ℓ−1 − 1

2ℓ−1 − 1 , W
(ℓ)
x ≡ 1

2ℓh

1 −1

1 −1

0

2ℓ−1 − 1

2ℓ−1 − 1 ,

W
(ℓ)
y ≡ 1

2ℓh

−1 −1

1 1

0

2ℓ−1 − 1

2ℓ−1 − 1 , W (ℓ)
xy ≡ 1

2ℓh

−1 1

1 −1

0

2ℓ−1 − 1

2ℓ−1 − 1 .

We observe that these stencils represent dilated versions of the filters
at the finest scale. The introduction of holes — trous in French — in
the form of zeros into the stencils gives the algorithm its name.

As a consequence, the pixels involved in the computation of one
set of coefficients at scale ℓ drops from 22ℓ down to four, making the
algorithm highly efficient.

The final analysis step is thus given by stacking all matrices into a
single one W such that

Wf =
(
w

(1)
x ,w(1)

y ,w(1)
xy ,w(2)

x , . . . ,w(L)
x ,w(L)

y ,w(L)
xy ,w(L)

)⊤
. (4.9)

The intermediate scaling coefficients w(ℓ) for ℓ < L do not need to be
stored as this information is redundant.

4.1 review : shift-invariant wavelet shrinkage 77

shrinkage A shrinkage function Sθ with a threshold parameter θ

is applied individually to the wavelet coefficients. The scaling coeffi-
cients remain unchanged.

Many shrinkage functions have been proposed. We will consider
the most prominent ones of hard [248], soft [107], and garrote [136]
shrinkage for comparison. Figure 4.1 displays them along with their
mathematical formulation. Hard wavelet shrinkage treats coefficients
as either completely stemming from noise, or from clean image struc-
tures. Thus, it eliminates all coefficients which lie in [−θ, θ], and leaves
the rest of them unchanged. Soft shrinkage considers coefficients out-
side of this interval to be partly corrupted, and additionally shrinks
them by θ. Garotte shrinkage combines both ideas by shrinking larger
coefficients gradually less.

While these functions are easy to use in a practical setting, they suf-
fer from applying the same threshold parameter to all scales and their
binary decision structure. Finer scales might require a different thresh-
old than coarser scales as they are more affected by noise. Furthermore,
there is no clear separation between noise and signal coefficients such
that eliminating too many coefficients always destroys signal details
and eliminating too few leaves noise in the reconstruction.

The shrinkage function is typically applied pointwise to the indi-
vidual wavelet coefficients, such that

Sθ(Wf) =

(
Sθ

(
w

(1)
x

)
, Sθ

(
w

(1)
y

)
, Sθ

(
w

(1)
xy

)
, Sθ

(
w

(2)
x

)
, . . . ,

Sθ

(
w

(L)
x

)
, Sθ

(
w

(L)
y

)
, Sθ

(
w

(L)
xy

)
,w(L)

)⊤
.

(4.10)

However, in the following we will see that a more sophisticated shrink-
age operation connects wavelet shrinkage to nonlinear diffusion and
yields a more rotationally invariant result.

synthesis Finally, the backtransformation of the shrunken coeffi-
cients is computed iteratively starting from scale L as

wℓ−1 =
1
4

((
W (ℓ)

)⊤
w(ℓ) +

(
W

(ℓ)
x

)⊤
Sθ

(
w

(ℓ)
x

)

+
(
W

(ℓ)
y

)⊤
Sθ

(
w

(ℓ)
y

)
+
(
W

(ℓ)
xy

)⊤
Sθ

(
w

(ℓ)
xy

)) (4.11)

for all ℓ = L, . . . , 1, producing the reconstruction u = w(0). The addi-
tional factor stems from the shift-invariant transformation; the original
wavelet transform is orthonormal. If we stack the iterative application
of the scaled and transposed matrices into a single backtransforma-
tion W̃ , the reconstruction is computed as

u = W̃ Sθ(Wf) . (4.12)

78 trainable adaptive wavelet shrinkage

function plot mathematical expression

θ

θ

x

Sθ(x)

Sθ(x) =





0, |x| ≤ θ

x, |x| > θ

hard shrinkage

θ x

Sθ(x)

Sθ(x) =





0, |x| ≤ θ

x − θ sgn(x), |x| > θ

soft shrinkage

θ x

Sθ(x)

Sθ(x) =





0, |x| ≤ θ

x − θ2

x , |x| > θ

garrote shrinkage

Figure 4.1: Hard, soft, and garrote shrinkage functions. The thresholding
parameter θ determines the deadzone where wavelet coefficients
are completely eliminated. The dashed grey line denotes the
identity function.

4.2 adaptive wavelet shrinkage 79

relation to nonlinear diffusion For the two-dimensional
wavelet transform, wavelet coefficient channels for x-, y-, and diagonal
direction are obtained. To design rotationally invariant shrinkage rules,
special care is required. Mrázek and Weickert [263] achieve this by a
channel coupling that is inspired by nonlinear diffusion filtering. Their
Haar wavelet shrinkage rule for three individual coefficients wx, wy,
and wxy at the same position is given by

Sθ







wx

wy

wxy





 =

(
1 − g

(
w2

x + w2
y + 2 w2

xy

))



wx

wy

wxy


. (4.13)

The argument w2
x + w2

y + 2 w2
xy is a consistent approximation to the

rotationally invariant gradient magnitude |∇u|2. The function g is a
diffusivity function from a nonlinear diffusion filter; see Section 3.1.1.

Note that in their original paper, Mrázek and Weickert [263] intro-
duce two parameters for rotational invariance. A parameter q steers
the contribution of diagonal and axial discretisations outside the diffus-
ivity, and a weight c controls the contribution of w2

xy to the diffusivity
argument. Our choices here correspond to q = 1 and c = 2. However,
we found that one can link these two parameters by means of the
diffusion discretisation of Weickert et al. [379]. For more information
this alternative parameterisation, we refer to Appendix A.

Mrázek and Weickert [263] have shown that one explicit time step
of nonlinear diffusion with diffusivity g is equivalent to coupled
Haar wavelet shrinkage (4.13). Thus, we can directly translate existing
diffusivities into shrinkage functions.

4.2 adaptive wavelet shrinkage

In our model, we equip the two-dimensional coupled Haar wavelet
shrinkage approach from [263] with a trainable adaptive shrinkage
function.

To this end, we make use of the connection between nonlinear
diffusion and Haar wavelet shrinkage to translate a diffusivity into a
shrinkage function. The resulting function differs from the traditional
choices in several aspects. Instead of enforcing a binary decision, the
shrinkage function is smooth, which allows to work within a smooth
optimisation framework. Moreover, the function uses a separate set of
parameters for each scale of the wavelet transformation, providing an
individual adaptation. Finally, it is able to amplify coefficients, thus
enhancing important image structures such as edges. Nevertheless,
the shrinkage function is tightly parametrised. This lets us manually
inspect the learned parameters and infer a smooth connection between
them.

Our model builds on the shift-invariant two-dimensional Haar
wavelet shrinkage as described in Section 4.1. The crucial differ-

80 trainable adaptive wavelet shrinkage

ence is that we employ the shrinkage function Sθ with parameters
θ = (θ(1), . . . , θ(L))⊤ for each scale to the corresponding wavelet coef-
ficients. Coefficients on scale ℓ are modified component-wise by Sθ(ℓ)

according to the coupled shrinkage rule (4.13). This yields modified
wavelet coefficients which are coupled:

Sθ(Wf) =

(
Sθ(1)

(
w

(1)
x ,w(1)

y ,w(1)
xy

)
,Sθ(2)

(
w

(2)
x ,w(2)

y ,w(2)
xy

)
,

. . . ,Sθ(L)

(
w

(L)
x ,w(L)

y ,w(L)
xy

)
,w(L)

)⊤
.

(4.14)

Moreover, instead of scaling only the backward transformation by 1
4ℓ

depending on the scale, we evenly distribute it by scaling the forward
and the backward transformation by 1

2ℓ . This comes down to rescaling
the wavelet basis, which has a beneficial effect: It guarantees that the
wavelet coefficients live in the same range, regardless of the scale ℓ

that they represent. With this modification, we can easily compare the
learned shrinkage functions over the levels.

With these redefined forward and backward transformations W

and W̃ we obtain the reconstruction u by applying the backward
transformation W̃ to the modified set of wavelet coefficients and the
unaltered scaling coefficients:

u = W̃Sθ(Wf) . (4.15)

choice of shrinkage function We found the forward-and-
backward (FAB) diffusivity of Smolka [341] to be a good candidate for
modelling our shrinkage function. It uses two contrast parameters λ1

and λ2 that control the amount of forward and backward diffusion.
The diffusivity is given by

g(s2) = 2 exp
(−s2

λ2
1

)
− exp

(−s2

λ2
2

)
, λ2 ≥ λ1. (4.16)

It is translated into the shrinkage function according to the coupled
shrinkage rule (4.13).

For the extreme case of λ1 = λ2, the diffusivity simplifies to the
exponential Perona-Malik diffusivity [279], corresponding to pure
shrinkage. For larger differences between λ2 and λ1, the backward dif-
fusion becomes more pronounced and the shrinkage function damps
small coefficients and amplifies larger ones. Figure 4.2 visualises this
behaviour.

learning framework To train the shrinkage functions, we add
additive white Gaussian noise of standard deviation σ to a database of
ground truth images (vi)

n
i=1. This yields noisy images fi from which

we compute denoised results ui. The trainable parameters for the
proposed shrinkage function on scale ℓ are given by θ(ℓ) =

(
λ
(ℓ)
1 , λ

(ℓ)
2

)
.

4.2 adaptive wavelet shrinkage 81

diffusivity shrinkage function

λ2 = λ1
λ1λ1

1

s

g(s2)

λ1λ1 x

Sθ(x)

λ2 > λ1
λ1 λ2

1

s

g(s2)

λ1 λ2 x

Sθ(x)

Figure 4.2: Effect of parameter choices on the FAB diffusivity and its corres-
ponding shrinkage function. The amount of backward diffusion
is determined by the difference between λ1 and λ2. The larger
the difference, the stronger the image enhancement effect. The
corresponding shrinkage function amplifies wavelet coefficients.

As an objective function, we choose the mean square error between
the reconstruction ui and the corresponding ground truth image vi,
averaged over all image pairs and normalised by the number of pixels:

L(u, v) =
1
n

n

∑
i=1

∥ui − vi∥2
2

22L . (4.17)

The parameters are optimised with the gradient-based L-BFGS
algorithm [236]. To that end, we compute the gradients of the objective
function w.r.t. all trainable parameters.

In a first step, we obtain as a gradient of the loss function

∂L(u, v)
∂θ

=
1
n

n

∑
i=1

∂ui

∂θ

2 (ui − vi)

22L . (4.18)

The partial derivative ∂ui
∂θ describes the gradient of the shrinkage

equation (4.15) w.r.t. the parameters and can be computed as

∂u

∂θ
=

∂W̃Sθ(Wf)

∂θ
=

∂Sθ(Wf)

∂θ
W̃⊤ . (4.19)

For the sake of readability, we leave out the image index i. Note
that we use denominator notation, yielding the transposed backward
transformation on the right hand side due to the chain rule.

82 trainable adaptive wavelet shrinkage

Both Sθ(Wf) as well as θ are vectors, giving a matrix for the first
part of above expression. Taking the derivative for a specific λ

(ℓ)
j yields

one row of this matrix as

∂Sθ (Wf)

∂λ
(ℓ)
j

=
∂

∂λ
(ℓ)
j

(
Sθ(1)(·) , . . . ,

Sθ(ℓ−1)(·) ,Sθ(ℓ)(·) ,Sθ(ℓ+1)(·) ,

. . . ,Sθ(L)(·)
)⊤

=


0, . . . ,0,

∂Sθ(ℓ)(·)
∂λ

(ℓ)
j

,0, . . . ,0




⊤

.

(4.20)

Here, we abbreviated the arguments of the shrinkage functions for the
sake of readability. The specific ordering of the rows depends on the
ordering of parameters in θ, as each parameter defines a row. Thus,
what is left is to compute the derivative of the shrinkage function w.r.t.

its parameters. These derivatives for a vector w(ℓ) =
(

w(ℓ)
x , w(ℓ)

y , w(ℓ)
xy

)⊤

of wavelet coefficients at a specific position are given by

∂Sθ(ℓ)

(
w(ℓ)

)

∂λ
(ℓ)
1

= − 4 s2

(
λ
(ℓ)
1

)3 exp


− s2

(
λ
(ℓ)
1

)2


w(ℓ), (4.21)

∂Sθ(ℓ)

(
w(ℓ)

)

∂λ
(ℓ)
2

=
2 s2

(
λ
(ℓ)
2

)3 exp


− s2

(
λ
(ℓ)
2

)2


w(ℓ), (4.22)

where s2 = w2
x + w2

y + 2 w2
xy by the coupled shrinkage rule (4.13).

The resulting gradient information is fed into the L-BFGS algorithm
and determines the parameter update step. Already in this shallow
model, the computation of gradients is very cumbersome. This exem-
plary derivation shows why one should highly appreciate automatic
differentiation frameworks.

4.3 experiments

In our experimental setup, we use 400 images from the BSDS500
database [20] as a training set and the 68 images introduced in [308]
as a test set. Their grey values are in [0, 255] and the grid size is
set to h = 1. From each image we select random regions of size
256 × 256, i.e. the number of scales is L = 8. All images are corrupted
by additive white Gaussian noise of standard deviation σ. We do not
clamp the resulting pixel grey values to the original grey value range
to preserve the Gaussian statistics of the noise. We have found the
learned parameters to be robust w.r.t. any reasonable initialisation, so
no pretraining is performed.

4.3 experiments 83

evaluation of the learned shrinkage functions In a first
experiment, we train the adaptive shrinkage function for σ = 25. The
top right quadrants of the learned shrinkage functions for different
scales are presented in Figure 4.3.

On the first and finest wavelet scale, all coefficients are shrunken.
On the second scale, we observe coefficient amplification. We presume
that this compensates the loss of image details caused by shrinking
coefficients on the first scale. All further scales do not perform signi-
ficant shrinkage as the learned function approaches the identity.

When we increase the noise level to σ = 50, we observe that more
scales are involved in the shrinkage process. The trained shrinkage
functions are displayed in Figure 4.4. Both configurations are in line
with our conjecture that the diffusivity should change smoothly over
the scales and the noise levels. Shrinkage and amplification decrease
for coarser scales, i.e. λ

(ℓ)
1 and λ

(ℓ)
2 tend to zero.

With increasing noise, shrinkage and amplification become stronger
and affect more scales. This is highlighted in Figure 4.5 where we dis-
play the average PSNR of reconstructions on the test set in dependence
of how many scales are involved in the shrinkage process. Starting
with the finest scale, gradually performing shrinkage on coarser scales
improves the reconstruction quality. For higher noise levels, coarser
scales become more important. This comparison also stresses again
that an individual shrinkage on each scales is important as shrinkage
on coarse scales is undesirable.

ablation study To investigate the effectiveness of different as-
pects of our model, we perform the following ablation study. We
start with classical hard wavelet shrinkage and equip it with the non-
decimating wavelet transformation and the coupled shrinkage rule to
enable a fair comparison. For σ = 20, we obtain an average PSNR on
the test set of 27.88 dB.

In a second step, we use the proposed shrinkage function restricted
to λ2 = λ1, so no amplification can take place. Still, the shrinkage
function does not adapt to the individual scales. This yields a com-
parable PSNR of 27.83 dB, showing that smoothness of the shrinkage
function alone does not matter for reconstruction quality.

When we remove the restriction on the shrinkage function, the
PSNR increases to 28.06 dB which indicates that the amplification of
wavelet coefficients is helpful for a good reconstruction.

Finally, introducing adaptivity to the scales boosts the PSNR to
28.55 dB, demonstrating that the scale dynamic is the crucial compon-
ent for a good denoising result.

finding a generalised shrinkage function So far, the
contrast parameters are trained for each pair of scale ℓ and noise level σ

from which we will now infer a generic relation. Figure 4.6 shows the

84 trainable adaptive wavelet shrinkage

scale 1 (finest) scale 2

30 60 90

30

60

90

x

S θ
(1
)
(x
)

30 60 90

30

60

90

x

S θ
(2
)
(x
)

scale 3 scale 4

30 60 90

30

60

90

x

S θ
(3
)
(x
)

30 60 90

30

60

90

x
S θ

(4
)
(x
)

scale 5 scale 6

30 60 90

30

60

90

x

S θ
(5
)
(x
)

30 60 90

30

60

90

x

S θ
(6
)
(x
)

scale 7 scale 8 (coarsest)

30 60 90

30

60

90

x

S θ
(7
)
(x
)

30 60 90

30

60

90

x

S θ
(8
)
(x
)

Figure 4.3: Trained shrinkage functions for σ = 25. On fine scales, both
shrinkage and amplification are performed. The coarser the scale,
the less wavelet coefficients are modified.

4.3 experiments 85

scale 1 (finest) scale 2

30 60 90

30

60

90

x

S θ
(1
)
(x
)

30 60 90

30

60

90

x

S θ
(2
)
(x
)

scale 3 scale 4

30 60 90

30

60

90

x

S θ
(3
)
(x
)

30 60 90

30

60

90

x

S θ
(4
)
(x
)

scale 5 scale 6

30 60 90

30

60

90

x

S θ
(5
)
(x
)

30 60 90

30

60

90

x

S θ
(6
)
(x
)

scale 7 scale 8 (coarsest)

30 60 90

30

60

90

x

S θ
(7
)
(x
)

30 60 90

30

60

90

x

S θ
(8
)
(x
)

Figure 4.4: Trained shrinkage functions for σ = 50. With increasing noise,
shrinkage becomes more drastic and more scales are involved.

86 trainable adaptive wavelet shrinkage

2 4 6 8

22

24

26

number of modified scales L

te
st

PS
N

R

noise level σ = 25
noise level σ = 50

Figure 4.5: Contribution of shrunken scales to the reconstruction quality.
Shrinkage should be performed on fine scales, and coarse scales
should not be modified.

2 4 6 8

30

60

90

scale ℓ

λ
(ℓ)
1

α/ℓ2

2 4 6 8

70

140

210

scale ℓ

λ
(ℓ)
2

β/ℓ2

Figure 4.6: Relations between trained parameters λ
(ℓ)
1 (left), λ

(ℓ)
2 (right) and

the shrinkage scale ℓ for σ = 25. Both parameters decrease with
coarser scales with 1

ℓ2 .

evolution of both contrast parameters over the scales. A function of
type α

ℓ2 with an appropriate scalar α can provide a good description of

the scale dependence of λ
(ℓ)
1 . For λ

(ℓ)
2 , the values on fine scales do not

follow this relation. However, in these cases all relevant coefficients are
already covered by shrinkage through a large λ1, making the choice
of λ2 irrelevant.

Regarding the relationship between the shrinkage functions and the
noise standard deviation it was already noted in [175] that a simple
rescaling of shrinkage functions is sufficient for adapting to a new
noise level. For our parametrisation, rescaling the complete shrinkage
function is equivalent to rescaling both λ1 and λ2. In Figure 4.7 we
can see that indeed such a rescaling is learned.

These two insights suggest that a suitable generalisation of the
shrinkage function parameters which is smooth over the scales ℓ

and the noise standard deviation σ is given by λ1(ℓ, σ) = ασ
ℓ2 and

λ2(ℓ, σ) = βσ
ℓ2 where α and β are scalars that have yet to be determined.

To empirically show that this parametrisation indeed captures the
underlying relations in a reasonable way, we compare two models:
One model trains the proposed shrinkage function for each pair (ℓ, σ)

4.3 experiments 87

x

Sθ(x)

Sθ(2) for σ = 20
2 Sθ(2) for σ = 10

x

Sθ(x)

Sθ(3) for σ = 60
2 · Sθ(3) for σ = 30

Figure 4.7: Relations between trained parameters λ
(ℓ)
1 , λ

(ℓ)
2 and noise level

σ. Approximately, both parameters increase linearly with higher
noise levels.

individually, while the other one only optimises the factors α and β of
the generalised parameters. To ensure a fair comparison, both models
are trained on a new training and test set combining images with
noise levels between σ = 10 and σ = 60 in steps of 2.5.

Indeed, the generic model performs only 0.3 dB worse than the
model with individual parameters in terms of PSNR, while training
only 2 instead of 336 parameters. With this result we conclude that the
generic shrinkage function captures the adaptivity to scales and noise
levels well. The scalars are learned as α = 5.4 and β = 8.9, yielding a
combined generic coupled shrinkage function (4.13) with diffusivity

g(s2, ℓ, σ) = 2 exp

(
−s2

(5.4 σ
ℓ2

)2

)
− exp

(
−s2

(8.9 σ
ℓ2

)2

)
. (4.23)

comparison to classical shrinkage Lastly, we compare
our generic shrinkage function to soft, hard, and garrote shrinkage
over a range of noise levels. We optimise the threshold parameter
of the classical functions individually for each noise level, while the
generic function is used as is from (4.23). The results are displayed in
Figure 4.8. Although the classical approaches are optimised for each
noise level, they are inferior to the generic shrinkage function. Over
the range of noise levels used for training, improvements of up to
0.65 dB with an average of 0.34 dB are obtained compared to the best
classical approaches.

For two exemplary noise levels of σ = 25 and σ = 50, Figures 4.9
and 4.10 show reconstructions along with the noisy input and the
ground truth image. In both cases, soft shrinkage blurs images too
strongly since all wavelet coefficients are decreased by the same mar-
gin. Hard shrinkage suffers from remaining noise as it does not shrink
large noisy wavelet coefficients. While less pronounced, this is also the
case for garrote shrinkage. Both garrote and hard shrinkage also blur
important image structures. Our generic shrinkage function outper-
forms all classical approaches. By strongly shrinking coefficients on
fine scales, noise is efficiently removed. To compensate for lost image

88 trainable adaptive wavelet shrinkage

10 20 30 40 50 60

22

24

26

28

30

32

noise standard deviation σ

te
st

PS
N

R

soft
hard
garrote
proposed

Figure 4.8: Comparison of PSNR values on the test set (higher is better)
for individually optimised classical approaches and our generic
shrinkage function. The proposed function outperforms all clas-
sical shrinkage functions.

details, amplification of wavelet coefficients on coarser scales enhances
important structures.

4.4 conclusions

Our approach of learning a compact shrinkage function for wavelet
denoising combines the advantages of model-driven and data-driven
approaches: In contrast to other parameter learning strategies, we can
cope with as little as two parameters without substantially sacrificing
performance. This results in an interpretable shrinkage function and a
transparent, but adaptive model.

This is the first example of how learning can be used to improve
classical models. In the following chapter, we employ a similar strategy
to come up with a better denoising model by learning scale-adaptive
diffusivities.

4.4 conclusions 89

noisy,
PSNR = 20.55 dB

soft,
PSNR = 24.92 dB

hard,
PSNR = 25.17 dB

ground truth
garrote,

PSNR = 25.32 dB
proposed,

PSNR = 25.92 dB

Figure 4.9: Visual comparison of reconstructions for classical and proposed
shrinkage functions for σ = 25. The proposed function achieves a
better balance between blur of important image structures and
noise removal.

noisy,
PSNR = 14.74 dB

soft,
PSNR = 21.62 dB

hard,
PSNR = 22.19 dB

ground truth
garrote,

PSNR = 22.10 dB
proposed,

PSNR = 22.88 dB

Figure 4.10: Additional visual comparison for σ = 50. For higher noise
levels, the advantages of the proposed function become more
pronounced as the adaptive shrinkage affects more scales.

5
T R A I N A B L E I N T E G R O D I F F E R E N T I A L D I F F U S I O N

Building on the experiences from the previous chapter, we can now
transfer the model-based learning approach to diffusion models. This
endeavour is more complex in comparison to the wavelet setting in
several aspects: First and foremost, the notion of scales is not defined
as clearly as for wavelets. While for wavelet shrinkage scales are
defined as the powers of two, a continuous diffusion model can work
on any positive real-valued scale. As traditional diffusion models work
on a single — often the finest — scale, we extend these models by
means of integrodifferential equations.

Moreover, instead of the three-step procedure from wavelet shrink-
age, temporal discretisations of diffusion models require several itera-
tions to capture nonlinear behaviour. This also requires to come up
with stability guarantees for the discrete iterations of the model.

As in the previous chapter, we are aiming at the best of two worlds:
We benefit from the compactness and mathematical foundations of
PDE-inspired modelling, while we improve its performance by learn-
ing a small set of parameters. In contrast to most other approaches,
however, we compress the model further by understanding the func-
tional dependence of these parameters. In other words: We drive
learning-based modelling to the extreme by aiming at the most compact
and insightful model. In this chapter, we focus on image denoising with
edge-enhancing anisotropic diffusion (EED) [368] as an exemplary
application.

We propose a multiscale extension of EED based on a transparent
integrodifferential formulation. Our integrodifferential anisotropic
diffusion (IAD) model adapts to image structures by combining edge
information from multiple scales and steering the diffusion process
accordingly.

Given a set of images corrupted by Gaussian noise, we learn scale-
adaptive parameters of the diffusion process by optimising the de-
noising performance. Afterwards, we explore the trained parameters
and reduce them by explicitly modelling the parameter dynamics over
the scales and the noise level. We show that this is possible without
decreasing the denoising performance significantly.

The resulting IAD model outperforms both its counterpart of in-
tegrodifferential isotropic diffusion (IID), as well as EED, while only
requiring one additional parameter. In ablation studies, we show that
both multiscale information and anisotropy are crucial for its success.

91

92 trainable integrodifferential diffusion

Lastly, we investigate the potential of IAD for sparse image in-
painting and provide an outlook on possible improvements of the
model.

related work While PDEs are omnipresent in image analysis,
models that explicitly involve the more general integrodifferential
equations are surprisingly rare. They are considered occasionally for
image decompositions [25], nonlocal generalisations of PDE evolu-
tions [63, 146], and in connection with fractional calculus for linear
image processing [88]. These works are only very mildly related to the
work in this chapter.

Since our IAD model sums up contributions from multiple scales,
it has some conceptual similarities to wavelet shrinkage. Didas and
Weickert [100] relate wavelet shrinkage to nonlinear diffusion, but
only for the isotropic case. As each scale is treated independently,
anisotropy cannot be achieved. Welk et al. [387] present an anisotropic
diffusion method based on wavelet shrinkage, but only on the finest
scale. We combine the best of these two ideas into a novel model:
Our IAD model combines structural image information over multiple
scales to create an anisotropic diffusion process.

Integrodifferential models for nonlinear diffusion predominantly
involve models with Gaussian-smoothed derivatives. Most of these
models [65, 269, 326, 368] have been proposed as regularisations of the
Perona–Malik filter [279]. For enhancing coherent structures, one also
considers a smoothed structure tensor [127] that captures directional
information to steer the diffusion process accordingly [369]. However,
all of these models only consider Gaussian smoothing on a fixed scale
and do not incorporate an integration over multiple scales.

Large-scale trainable models involving PDEs have recently become
very successful. Chen and Pock [75] train flux functions and derivative
filters of a diffusion-inspired model to obtain exceptional denoising
results. Other authors only train nonlinearities of models [13, 32,
331] or learn PDEs directly with symbolic approaches [238, 291, 324].
Instead of focusing on denoising performance, we want to obtain
insights into the scale behaviour of our model. In contrast to [75], we
have stability guarantees in the Euclidean norm and require very few
parameters that allow insights into their functional dependency. This
helps us to obtain a model which is transparent and outperforms its
diffusion-based predecessors.

publication information This chapter is based on the con-
ference paper of Alt and Weickert [14] presented at the 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing.
It is extended with more information on the discrete model and its
regularisation, along with a refined discretisation and a stability ana-
lysis. Furthermore, we provide a deeper insight into the process of

5.1 useful reformulation of eed 93

reducing the learned parameters, our ablation studies, and we over-
hauled the function fittings. Moreover, we exchanged Perona–Malik
diffusion [279] for the model of Catté et al. [65] as a competitor, as it
is the natural competitor to IID. We enriched the experimental section
with a finer sampling of scales, as well as analysis of the eigenvalues
of the learned multiscale structure tensor. Lastly, we extend the IAD
model to the image inpainting setting and compare its performance
against that of EED.

organisation of the chapter In Section 5.1, we review a
reformulation of EED. This serves as a basis for our novel IAD model
that is introduced in Section 5.2. In several experiments in Section 5.3,
we reduce its parameters and compare it to other diffusion filters. We
extend our considerations to the task of sparse image inpainting in
Section 5.4. Finally, we present our conclusions and give an outlook
on future work in Section 5.5.

5.1 useful reformulation of eed

In Section 3.1.1, we have introduced the EED model of Weickert [368].
As a reminder, EED embeds a greyscale image f (x, y) : Ω → R into a
family of simplified versions {u(x, y, t) | t ≥ 0} by solving the diffusion
equation

∂tu = ∇⊤(Dλ(∇σu)∇u) . (5.1)

The process is initialised with u(x, y, 0)= f (x, y), and on the domain
boundary ∂Ω one uses reflecting boundary conditions.

The diffusion tensor is defined by its eigenvalues gλ

(
|∇σu|2

)
, 1 and

normalised eigenvectors v1, v2 as

Dλ(∇σu) = gλ

(
|∇σu|2

)
v1v

⊤
1 + 1 v2v

⊤
2 , (5.2)

allowing diffusion along edges, but inhibiting smoothing across them.
Here, we explicitly denote the contrast parameter λ in the diffusiv-
ity gλ and the diffusion tensor Dλ.

To prepare ourselves for our novel integrodifferential model, we
reformulate the EED model with the structure tensor [127]

J = ∇σu∇⊤
σ u . (5.3)

By plugging in, we see that the matrix J has eigenvectors v1 ∥ ∇σu
and v2 ⊥ ∇σu with eigenvalues ν1 = |∇σu|2 and ν2 = 0.

Expressing the diffusivity function gλ in terms of a power series, we
can generalise it to matrix-valued arguments such as J . Then gλ(J)
is a matrix as well. It has the same eigenvectors v1, v2 as J , and its
eigenvalues satisfy

λ1 = gλ(ν1) = gλ

(
|∇σu|2

)
, (5.4)

λ2 = gλ(ν2) = gλ(0) = 1 . (5.5)

94 trainable integrodifferential diffusion

Thus, we have Dλ(∇σu) = gλ(J) and can write the EED evolution as

∂tu = ∇⊤(gλ(J)∇u) . (5.6)

It closely resembles the regularised nonlinear isotropic diffusion model
of Catté et al. [65] (see also Section 3.1.1):

∂tu = ∇⊤
(

gλ

(
|∇σu|2

)
∇u
)

. (5.7)

Indeed, by replacing the matrix-valued tensor product J = ∇σu∇⊤
σ u

by the scalar-valued inner product ∇⊤
σ u∇σu = |∇σu|2, we end up

with the Catté model. Thus, there is an elegant connection between
isotropic and anisotropic models.

The choice of the scale σ is crucial for the denoising performance of
EED. A single scale may be too coarse for fine-scale details, while at
the same time not capturing large-scale structures. We will see that
by accumulating information over multiple scales within the structure
tensor, we obtain a more useful representation of image information
which again leads to improved denoising results.

5.2 integrodifferential diffusion

continuous model To account for multiscale information within
the structure tensor, we introduce the following integrodifferential aniso-
tropic diffusion (IAD) model:

∂tu =

∫ ∞

0
∇⊤

σ,γ

(
gλ(Jγ) ∇σ,γu

)
dσ , (5.8)

where the multiscale structure tensor

Jγ =

∫ ∞

0
∇σ,γu∇⊤

σ,γu dσ (5.9)

accumulates structural information over all smoothing scales σ. This
integration generates anisotropy on each scale, since the eigenvectors
of Jγ usually are not parallel to ∇σ,γu.

To adapt the contribution of each scale, we introduce an additional
weight parameter γ(σ) in the smoothed gradient, i.e.

∇σ,γu = ∇ (γ(σ)Kσ ∗ u) . (5.10)

In contrast to other models employing an outer smoothing with a
fixed weighting [310, 373], the IAD model allows to attenuate scales if
they do not offer useful information. This weighting, along with the
multiscale structure tensor, is the key to the success of the IAD model.

The diffusion tensor gλ(Jγ) inherits its eigenvectors from Jγ, and
its eigenvalues are given by gλ(ν1) and gλ(ν2) where ν1, ν2 are the
eigenvalues of Jγ. In contrast to EED, both eigenvalues may be dif-
ferent from one. This makes a difference for corner regions where

5.2 integrodifferential diffusion 95

ν1 ≥ ν2 ≫ 0. Such penalisations have been considered by Weickert
and Brox [373] and Peter et al. [284].

Moreover, we make the contrast parameter λ(σ) of the diffusivity
scale-adaptive. This individually steers the balance between smoothing
and edge enhancement on each scale.

Despite smoothing the gradient operators outside of the diffusion
tensor, the IAD model is still anisotropic as it uses a multiscale struc-
ture tensor. Due to the integration, its eigenvectors do not coincide
with the smoothed gradient operators. While related ideas have been
used in the context of multiple image channels [98, 373, 376], the idea
of creating anisotropy through multiscale information is novel.

An isotropic counterpart of the IAD model, which we call integrodif-
ferential isotropic diffusion (IID), arises directly by switching the order
of transposition within the structure tensor. In this case,

∫ ∞

0
∇⊤

σ,γu∇σ,γu dσ =

∫ ∞

0
|∇σ,γu|2 dσ (5.11)

is no structure tensor any more, but a multiscale gradient magnitude.
In our experiments, we use the IID model for comparisons.

trainable discrete model In a practical setting, we need a
discrete version of the continuous IAD model. To this end, we em-
ploy an explicit finite difference scheme: We discretise the temporal
derivative by a forward difference with time step size τ, and the in-
dividual integrands by the nonnegativity discretisation from [369].
Additionally, we select a set of L discrete scales σ1, . . . , σL according to
an exponential sampling. This yields discrete weights γℓ = γ(σℓ) and
contrast parameters λℓ = λ(σℓ), which we obtain by training.

We end up with the explicit scheme

uk+1 = uk − τ
L

∑
ℓ=1

ωℓK
⊤
ℓ

(
gλℓ

(
J k
γ

)
Kℓu

k
)

, (5.12)

where Kℓ is a discretisation of the scaled smoothed gradient ∇σ,γ. The
discrete multiscale structure tensor J k

γ is computed as

J k
γ =

L

∑
m=1

ωm

(
Kmu

k
)⊤ (

Kmu
k
)

. (5.13)

Here, we renamed the scale index to m to avoid confusion with the
outer summation.

In both of the above equations, we encounter a scale-dependent
constant ωℓ. It is a result of turning the infinitesimal integration
into a discrete summation over scales. As the scales are not sampled
uniformly, their individual distance must be accounted for in the
summation. We decide on the simple option of ωℓ = σℓ+1 − σℓ. Thus,
we see that for L → ∞ and correspondingly ωℓ → 0, the summation
consistently approximates the continuous formulation.

96 trainable integrodifferential diffusion

In our publication [14] we left out the constant ωℓ. However we
argue that both models have the same capacity, as an adaption of
the parameters γℓ can subsume ωℓ. Still, in the interest of cleanly
separating the discretisation of the model and its nonlinear dynamics,
the explicit introduction of ωℓ should be preferred.

As we discuss in Chapter 8 and prove in Appendix C, this scheme
is stable in the L2 norm if the time step size obeys

τ ≤ 2
P ∑L

ℓ=1 ωℓ∥Kℓ∥2
2

, (5.14)

where P is the Lipschitz constant of the flux function, and ∥ · ∥2 is
the spectral radius. In our case, we have P = 1. The spectral radius
of Kℓ is estimated on the fly during training with Gershgorin’s circle
theorem [143] (see Section 2.4).

Finally, we iterate the method for a small number of K explicit steps.
This yields an approximation of the continuous model for a diffusion
time of T = Kτ. Iterating the IAD model allows to capture a nonlinear
evolution.

By design, the discrete IAD model is stable in the Euclidean norm.
Moreover, since the algorithm consists of a concatenation of continuous
function evaluations, it constitutes a well-posed discrete evolution. In
particular, this implies that the output depends continuously on the
input data. This shows that we have created a rigid mathematical
framework within which we can train the desired parameters without
giving up any of the mathematical guarantees.

learning framework To train the 2L parameters γℓ and λℓ of
the discrete model, we consider a training set of 200 grey value images
of size 256×256 with grey value range [0, 255].

As in the previous chapter, we crop them from the BSDS500 data-
set [20] and corrupt them with additive Gaussian noise of standard
deviation n. The resulting grey values are not cut off if they exceed
the original grey value range to preserve the Gaussian statistics of the
noise. A disjoint test set of 100 images is generated accordingly.

We train the model with a sufficient number of explicit steps by min-
imizing the average mean square error over the training set. Moreover,
we always choose τ in such a way that it is stable and allows for
a suitable diffusion time. We found that K = 10 steps are already
sufficient for noise levels up to n = 60. Note that we rename the noise
standard deviation to n in this chapter, as σ already denotes scale.

5.3 finding scale-adaptive parameter functions

To gain insights into the behaviour of the IAD model, we develop
smooth relations for the discrete trained parameters in terms of the
scale σ and the noise standard deviation n.

5.3 finding scale-adaptive parameter functions 97

eliminating scale dependency We start by investigating the
dynamics of the parameters over the scales. To this end, we train the
full model for K = 10 explicit steps and L = 16 discrete scales for vary-
ing noise standard deviations n ∈ {10, 15, 20, . . . , 60}. To ensure that
the parameters γ = (γ1, . . . , γL) and λ = (λ1, . . . , λL) vary smoothly
over the scales, we add a small regularisation to the optimisation loss.
It penalises variations of the respective parameters over the scales in
the squared Euclidean norm as

R1(γ) = ρ1

L−1

∑
ℓ=1

(
γℓ+1 − γℓ

σℓ+1 − σℓ

)2

, (5.15)

R2(λ) = ρ2

L−1

∑
ℓ=1

(
λℓ+1 − λℓ

σℓ+1 − σℓ

)2

. (5.16)

These expressions are discretisations of the continuous quadratic reg-
ularisers (∂σγ(σ))2 and (∂σλ(σ))2 by means of forward differences.
Thus, they enforce smooth parameter evolutions over the scale. The
regularisation parameters ρ1, ρ2 steer the individual amount of smooth-
ness as the parameters cover different ranges. Empirically, we found
that ρ1 = 6.5 · 10−4 and ρ2 = 1.3 · 10−3 are good choices for providing
a degree of smoothness that allows to fit continuous dynamics.

We present the resulting parameter dynamics over the scales in
Figure 5.1 for a representative noise level of n = 40. For the weight pa-
rameters γℓ, we find that the importance of the structural information
decreases with the scale. We normalise the parameters γℓ such that
γ1 = 1, as a rescaling of γℓ can be compensated by adapting the time
step size τ and the contrast parameters λℓ accordingly.

The contribution of smoothing scales with σ > 3.0 is essentially
non-existent. This is in accordance with what we have observed for
scale-adaptive wavelet shrinkage in Chapter 4, where useful shrinkage
is only performed on the finer scales.

We see that an intermediate Gaussian fit of the form

γ(σ, n) = exp

(
− σ2

2(θ1(n))
2

)
(5.17)

appropriately captures the dynamics of the weight parameters. An
intermediate parameter θ1(n) serves as the standard deviation, which
depends on the noise level n.

Also for the contrast parameters a similar Gaussian fit of the form

λ(σ, n) = θ2(n) exp

(
− σ2

2(θ3(n))
2

)
(5.18)

is effective. Here, an intermediate parameter θ2(n) determines the
amplitude of the Gaussian, and θ3(n) models the standard deviation.
Both depend on the noise level n.

98 trainable integrodifferential diffusion

1.0 3.0 5.0 7.0

0.25

0.5

0.75

1

scale σℓ

γℓ for n = 40
Gaussian fit

1.0 3.0 5.0 7.0

10

30

50

70

scale σℓ

λℓ for n = 40
Gaussian fit

Figure 5.1: Learned weight and contrast parameters γℓ, λℓ for a noise stand-
ard deviation n = 40.

Outliers for large scales can be ignored, as γ → 0 dampens the
influence of λ. Thus, the deviations of the contrast parameter from the
fit for larger scales do not affect the performance, as we show in our
ablation study.

eliminating noise dependency Now that we have found a
function for the contrast and weight parameters over the scales, we
eliminate the noise dependency of the intermediate parameters. To this
end, we retrain the IAD model with the intermediate parametrisations
for λℓ and γℓ and learn the parameters θ1(n), θ2(n), and θ3(n) over a
discrete set of noise levels n ∈ {10, 15, 20, . . . , 60}.

Figure 5.2 presents the learned Gaussian evolutions for both parame-
ters, along with selected function fits for the intermediate parameters.

We find that the standard deviation θ1(n) of the Gaussian function
for the weight parameters γ(σ, n) can be modelled as

θ1(n) = α 4
√

n , (5.19)

where α is a constant. Thus, the variance of the Gaussian grows
with

√
n.

Larger noise levels require to put more weight on coarser scales. As
the images are corrupted more strongly, larger scales are needed to
extract useful structural information.

The Gaussian function for the contrast parameters λ(σ, n) both
requires to fit an amplitude θ2(n) as well as a standard deviation θ3(n).

When increasing the noise level, the contrast parameters scale lin-
early, a relation which we have already observed in the previous
chapter. The amplitude can thus be modelled as

θ2(n) = λ0 n , (5.20)

where the constant λ0 determines the contrast parameter at σ = 0.
Interestingly, the standard deviation does not show any dependency

over the noise and can be modelled by a constant

θ3(n) = β . (5.21)

5.3 finding scale-adaptive parameter functions 99

0.6 1.4 2.2 3.0

0.25

0.5

0.75

1

scale σℓ

γℓ for n = 20
γℓ for n = 40
γℓ for n = 60
fit with θ1(n) = α 4

√
n

0.6 1.4 2.2 3.0

20

40

60

80

scale σℓ

λℓ for n = 20
λℓ for n = 40
λℓ for n = 60
fit with θ2(n) = λ0 · n
and θ3(n) = β

Figure 5.2: Learned intermediate parameters θ1, θ2, θ3 with fits over noise
levels n. The regularised learned parameter distributions can be
modelled well by a generalised continuous function.

100 trainable integrodifferential diffusion

2 4 6 8

23

25

27

number of explicit steps K
PS

N
R

n = 30
n = 50

4 8 12 16

23

25

27

number of modified scales L

PS
N

R

n = 30
n = 50

Figure 5.3: Ablation study on how many explicit steps are needed, and which
scales are important for good denoising quality.

Thus, the nonlinear response of the diffusivity gλ is the same for all
noise levels, except for a linear scaling. This can be explained by the
way in which weight and contrast parameters work together: The
weight parameters determine the argument of the diffusivity, while
the contrast parameters only determine the diffusivity response. As
the weight parameters already account for the influence of noise on
the data, the contrast parameters do not need to adjust the balance of
scales.

This yields final parameter dynamics for the weight parameters
γ(σ, n) as

γ(σ, n) = exp
(
− σ2

2α2
√

n

)
, (5.22)

and for the contrast parameters λ(σ, n) as

λ(σ, n) = λ0 n exp
(
− σ2

2β2

)
. (5.23)

Through these insights, we have effectively reduced the parameter set
to only three trainable parameters α, β, λ0, one more than for EED.

ablation studies In a first ablation study, we show that we
hardly sacrifice any performance for the sake of parameter reduction.
In a first step, we train the full model for K = 10 explicit steps, L = 16
scales, and noise levels n ∈ {10, 15, 20, . . . , 60} without any smooth-
ness regularisation. With two parameters per scale and noise level,
this amounts to 352 parameters. Afterwards, we train the parameters
α, β, and λ0 of the reduced model for the same configuration jointly
for all noise levels. We obtain α = 0.35, β = 0.54 and λ0 = 1.70.

On average, the fully trained model with 352 parameters performs
only 0.03 dB better than the reduced model with three parameters. This
marginal performance difference shows that the parameter relations
which we have modelled represent the true parameter dynamics well.

In a second ablation study, we evaluate how many explicit steps
and scales are required for practical efficiency of the model. In Fig-

5.3 finding scale-adaptive parameter functions 101

ure 5.3, we display the performance of the fully trained model without
regularisation for a selected number of both explicit steps and scales.

We observe that for the displayed noise levels of n = 30 and n = 50,
performance improvements for more than K = 5 explicit steps are
only marginal. This is to be expected, as for denoising already a small
stopping time is often sufficient. Due to the multiscale information in
IAD, the required diffusion times seem to be even smaller than those
of single scale models.

The scale ablation shows an interesting behaviour. We perform
diffusion only on a subset of the original 16 sampled scales, and
gradually add larger scales to the set. However, the performance
improvement is not linear. We can make out two jumps within both
performance curves. One is at two scales, which is not surprising as
this constitutes the switch between an isotropic and an anisotropic
model.

However, an even larger jump can be found between 6 and 8 scales.
This suggests that information on scales is not of equal importance.
The scales in question that are added in this case are 0.56 and 0.75,
indicating that information on these scales is valuable for good de-
noising. Interestingly, the EED model for n = 50 selects an optimal
presmoothing scale of σ = 0.66. We conjecture that the IAD model in
fact realises EED at its core, but additionally equips the process with
additional structural information around the optimal smoothing scale.
This would be very much in line with our motivation.

comparison to other diffusion filters We compare the
reduced model to the model of Catté et al. [65] as well as EED [368].
Additionally, we consider IID as the isotropic variant of the IAD model.
This four-way comparison is designed in an ablative way to show that
both multiscale modelling and anisotropy are crucial for the success of
the IAD model: Multiscale information is not considered for EED and
Catté, while anisotropy is not used for Catté and IID. We explicitly
compare only to other diffusion-based methods, as it is our intention
to transparently improve those compact and insightful models rather
than to produce state-of-the-art results.

To ensure a fair comparison, all models are trained with the expo-
nential Perona–Malik diffusivity. For Catté and EED, we optimise the
parameters for each noise level individually. However, for IID and
IAD, we respectively use the reduced parameters over the full noise
range.

Figures 5.4 and 5.5 show representative denoising results on the
peppers image for n = 20, and on the cameraman image for n = 50.
The Catté model removes noise effectively in homogeneous areas,
but leaves noisy edges. EED yields sharp edges in the foreground.
However, due to the single smoothing scale, both are not able to
denoise the background efficiently, where a much larger smoothing

102 trainable integrodifferential diffusion

noisy,
PSNR = 22.22 dB

Catté,
PSNR = 30.06 dB

EED,
PSNR = 30.38 dB

ground truth
IID,

PSNR = 30.07 dB
IAD,

PSNR = 30.51 dB

Figure 5.4: Qualitative comparison of denoising performance on the peppers
image for n = 20. The multiscale information of IID and IAD
helps to adapt smoothing to different scales, and the anisotropy
of EED and IAD allows for directional smoothing along edges.

noisy,
PSNR = 19.03 dB

Catté,
PSNR = 25.13 dB

EED,
PSNR = 25.62 dB

ground truth
IID,

PSNR = 25.50 dB
IAD,

PSNR = 25.93 dB

Figure 5.5: Qualitative comparison of denoising performance on the camera-
man image for n = 50. As pixels are more strongly corrupted, the
benefits of the multiscale information in the IAD model increase.

5.3 finding scale-adaptive parameter functions 103

EED IAD

Figure 5.6: Smaller eigenvalue of the diffusion tensors for EED and the finest
scale of IAD at an intermediate diffusion time of T = 2.2. Large
grey values indicate high values, thus encouraging smoothing.
The diffusion tensor of IAD captures the structural information
of the ground truth image better than that of EED.

Table 5.1: Average PSNR on the test set of the four models considered. Higher
values indicate better quality.

n Catté EED IID IAD

10 32.07 32.12 32.05 32.29

20 28.19 28.31 28.25 28.53

30 26.28 26.38 26.43 26.68

40 24.94 25.06 25.16 25.39

50 24.10 24.22 24.33 24.53

60 23.40 23.53 23.67 23.84

scale would be appropriate. The IID and IAD models do not suffer
from this effect as the multiscale information can identify structures
on all scales. However, IID suffers from remaining noise around edges.
This is an intrinsic drawback of the isotropic model which detects only
the location of an edge, but not its orientation. Finally, IAD combines
edge enhancement together with efficient denoising in homogeneous
regions.

An investigation of the diffusion tensor supports these consider-
ations. In Figure 5.6, we display the smaller eigenvalue of the EED
diffusion tensor along with the smaller eigenvalue of the IAD diffu-
sion tensor on the finest scale. We obtain both diffusion tensors at an
intermediate diffusion time of T = 2.2. Larger grey values indicate
larger eigenvalues, leading to more smoothing. We see that IAD does
not inhibit the diffusion in the background as strongly and inhomo-

104 trainable integrodifferential diffusion

geneously as EED. Edges in the IAD model are more pronounced due
to the multiscale structure tensor information.

Lastly, we compare the performance of the four models on different
noise levels. Table 5.1 shows the average PSNR on the test set. Note
that these numbers deviate from those published in [14] due to the
different fitting and a different selection of smoothing scales. However
this does not fundamentally change our insights.

Surprisingly, already the IID model is able to beat EED for Gaussian
noise with standard deviation n ≥ 30. With its additional anisotropy,
the IAD model consistently outperforms its competitors. With higher
amounts of noise, IID and IAD increase the gap to their PDE-based pre-
decessors, indicating that multiscale information becomes increasingly
important with noise.

5.4 extension to inpainting

Our denoising experiments have shown that IAD is a fruitful extension
of EED for this setting. The multiscale nature helps to identify struc-
tures on multiple scales and steers the denoising process accordingly.

A natural question is whether IAD can advance EED also in other
applications. For denoising EED is not the state of the art, yet it is very
hard to beat in the setting of sparse image inpainting. In this section,
we investigate the potential of IAD for this task.

We want to obtain a reconstruction u from an image f which is only
partially available on an inpainting mask K ⊂ Ω. To this end, we solve
the inpainting problem

Lu = 0 on Ω \ K, (5.24)

u = f on K, (5.25)

with reflecting boundary conditions, where L is the inpainting operator
of choice.

We consider three models for this purpose. The IAD model uses

Lu =

∫ ∞

0
∇⊤

σ,γ

(
gλ(Jγ) ∇σ,γu

)
dσ. (5.26)

As a crucial modification, we replace the exponential Perona–Malik
diffusivity [279] by the Charbonnier diffusivity [70] as is typical for
nonlinear diffusion operators for inpainting. The quickly decaying
Perona–Malik diffusivity inhibits propagation of information from
mask points too strongly, which can be remedied by the Charbonnier
diffusivity.

As a second model, we consider EED inpainting which is defined
by

Lu = ∇⊤(D(∇σu)∇u) . (5.27)

EED inpainting also uses the Charbonnier diffusivity.

5.4 extension to inpainting 105

As we will see, the smoothing of the outer differential operators
in the IAD model is problematic for inpainting. Thus, we consider
an intermediate model between IAD and EED. To this end, we equip
EED with a multiscale structure tensor, giving us the multiscale EED
(MS-EED) model as

Lu = ∇⊤(g(Jγ)∇u) . (5.28)

This model substitutes the diffusion tensor D(∇σu) which relies on
the single smoothing scale σ by a diffusivity of a multiscale structure
tensor as defined in (5.9). It corresponds to the IAD model without
the outer integration and weighting of differential operators.

We reduce the complexity of the multiscale models by choosing
only L = 8 discrete scales, exponentially sampled between 0.1 and 3.0.
Moreover, the role of the noise level n in the learned parameter func-
tions (5.17) and (5.18) is now taken over by the mean free path length
of the inpainting mask. It denotes the average distance between known
data points, which is inversely proportional to the mask density. How-
ever, as we do not aim at general parameters for all mask densities in
this section, we directly learn the modified parameter functions

γ(σ) = exp
(
− σ2

2α2

)
, (5.29)

λ(σ) = λ0 exp
(
− σ2

2β2

)
. (5.30)

We optimise all parameters of the models: Contrast parameter λ

and smoothing scale σ for EED, contrast parameter λ and multiscale
weight parameters α for MS-EED, and α, β, and λ0 for IAD. We do so
by applying a nested golden section search. The configurations of the
learned multiscale parameter evolutions remain unchanged.

Instead of the parabolic PDE in the denoising case, the inpainting
setting considers an elliptic PDE. The EED model is solved with a
semi-implicit scheme with an efficient conjugate gradient solver. For
IAD, applying a conjugate gradient solver is hard as the resulting
system matrix is dense due involving large neighbourhood regions
around a pixel. Thus, we solve it with an explicit scheme accelerated
by FSI [170](see Section 3.1.2). We use cycles of length 200 and run as
many cycles as required for convergence. For the sake of efficiency
during the parameter and mask optimisations, convergence is defined
as the relative residual decreasing by a factor of 5 · 10−4. The final res-
ults with optimised parameters are computed with a relative residual
decrease factor of 10−6. The MS-EED model is solved in the same way
as the IAD model. All models use the standard discretisation obtained
for α = 0 in the stencil (3.51) of Weickert et al. [379].

random mask inpainting In our first experiment, we perform
an inpainting on the trui [402] image with a random mask of 5%

106 trainable integrodifferential diffusion

original random mask

EED, MSE 125.2 MS-EED, MSE 128.2 IAD, MSE 149.1

Figure 5.7: Comparison of inpainting results on a random mask with 5%
density. Mask points are shown in black, and the mask image is
framed for better visibility. The pure EED model performs best,
followed by MS-EED and IAD.

density with all three models. The results are depicted in Figure 5.7.
We see that the EED model yields the best quality, with MS-EED
following closely behind. The IAD model produces a significantly
worse inpainting. However, all three results are visually comparable
despite their differences in MSE. The multiscale models, and IAD in
particular, produce artefacts at mask points, similar to the singularities
that are observed for homogeneous diffusion inpainting.

The optimal parameters of the IAD model are α = 2.95, β = 0.32,
and λ0 = 1.3. In particular this means that the contrast parameters
decay very quickly. Already at σ = 1, the contrast parameter is smaller
than 10−3. Thus, significant diffusion tensors that contribute to the
inpainting live essentially only on the few finest scales. To preserve
anisotropic information within the multiscale structure tensor, the
weighting of scales with α = 2.95 incorporates essentially the full
range of available scales. This in turn assigns weights to the smoothing
of gradient and divergence outside of the diffusion tensor, which
deteriorates the result.

This becomes apparent when comparing the IAD model to the MS-
EED model: The MS-EED model is free to choose the weighting in the
multiscale structure tensor without introducing additional smoothing
outside of it. With a much smaller weight of α = 1.83 and a contrast
parameter λ = 2.58, it can achieve a result close in quality to that
of EED.

5.4 extension to inpainting 107

original
EED,

MSE 17.54

MS-EED,
MSE 23.53

IAD,
MSE 31.25

Figure 5.8: Comparison of inpainting results on masks with 5% density, op-
timised with probabilistic sparsification. Mask points are shown
in black, and mask images are framed for better visibility. As
in the random mask case, the pure EED model performs best,
followed by MS-EED and IAD.

However, EED yields the best inpainting result. With λ = 0.49 and
σ = 1.25 it smooths the gradient information on a single scale. We
conjecture that in contrast to the denoising case, there exists a single
optimal scale in the inpainting setting which is why EED remains
superior.

optimised mask inpainting This trend continues when in-
vestigating the inpainting of optimal masks. Instead of prescribing a
random mask, we interleave the parameter optimisation with a probab-
ilistic sparsification of the inpainting mask [246] (see Section 3.6.2). We
use candidate fractions p = 0.1 and q = 0.05, and alternate sparsifica-
tion and parameter optimisation until the inpainting error stabilises.
The mask density of 5% remains unchanged. The resulting reconstruc-
tions and the masks can be found in Figure 5.8.

While the gaps between the models become smaller, the overall
ranking remains the same. The IAD model yields worse quality than
its competitors, which for example can be seen in the hat and in the
more subtle patterns of the scarf. The masks look very similar, however
the IAD masks tend to cluster mask points slightly more than those
for EED and MS-EED.

The same parameter trend as in the random mask case can be
observed. With α = 6.4, β = 0.32, and λ0 = 1.49, the IAD model
suffers from the same effects as previously described. The MS-EED
model with α = 2.64 and λ = 1.79 remedies some of the problems
of the IAD model, however the EED model with λ = 0.86, σ = 0.89
remains unbeaten.

108 trainable integrodifferential diffusion

an outlook on iad inpainting It seems that without major
modifications, the IAD model is not more suitable for sparse image
inpainting than EED. In particular, considering the dramatic increase in
complexity for the IAD model, EED should also be preferred from an
efficiency viewpoint: The computational effort of an explicit IAD step
is about a factor L larger than that of EED. This does not consider the
additional computations resulting from larger Gaussian presmoothing
stencils.

Moreover, solving any type of scheme involving the inverse of the
system matrix is cumbersome for IAD: The smoothing of the outer
differential operators transforms the nonadiagonal system matrix of
EED into a dense matrix. Thus, sparse solvers are not applicable.

That being said, it is worthwhile to further investigate IAD for in-
painting. One option is to retrain the parameter evolutions specifically
for inpainting. This requires backpropagation through a sophisticated
solver, e.g. a multigrid approach or a surrogate U-net as presented in
Chapter 10. There is no guarantee that the parameter evolutions for
denoising are also suitable for inpainting. For denoising, the finest
scale is the most important one after all. For inpainting, however, there
might be an optimal non-zero scale as EED suggests, with a decreasing
weight of both coarser and finer scales.

Another option is to transform IAD into a more efficient inpaint-
ing strategy. A clever time-dynamic selection of scales may increase
convergence speed: Starting with a coarse set of scales and gradually
decreasing them with more explicit steps could mimic a coarse-to-fine
strategy which can help to efficiently compute the required long-range
interactions.

In any case, the connection between inner and outer weighted
smoothing operations seems to be problematic in the inpainting setting.
This connection arose from the goal of deriving IAD from a variational
energy. However, the scale-adaptive penalisation in the diffusion tensor
prevents us from designing such an energy. Therefore, one would not
give up any important model properties by decoupling the weights
and investigating whether a different set of outer smoothing weights
is more appropriate for the inpainting setting.

5.5 conclusions

This chapter has shown that one can elegantly introduce multiscale
information within an anisotropic diffusion process by considering
integrodifferential models. Similar as in the previous chapter, we used
learning to uncover the optimal scale dynamics of the resulting model.

Apart from their evident merits of improving anisotropic diffusion
methods, our findings are of more fundamental nature in two aspects:
We have seen that integrodifferential equations are hitherto hardly
explored but very promising extensions of differential equations. They

5.5 conclusions 109

are not only more general, but also allow new possibilities for data
adaptation, e.g. by anisotropy through multiscale integration.

On a more general note, this part of the thesis has shown the poten-
tial of learning with maximal model reduction. Such approaches can
benefit from the best of two worlds: the transparency and mathemat-
ical foundation of model-based techniques and performance improve-
ments by data-driven, learning-based strategies.

Part II

M AT H E M AT I C A L LY F O U N D E D N E U R A L
N E T W O R K S

6
M AT H E M AT I C A L M O D E L S A N D R E S I D UA L
N E T W O R K S

This chapter is the starting point of realising the second vision of the
thesis: More transparent neural networks with mathematical founda-
tions.

An analytic way towards this ambitious goal is to express successful
CNN architectures with well-founded mathematical concepts. How-
ever, deep learning offers a plethora of design possibilities, and mod-
ern architectures may involve hundreds of layers and millions of
parameters. Thus, this way of reducing a highly complex system to
a simple and transparent mathematical model is not only very bur-
densome, but also bears the danger to lose performance critical CNN
features along the way.

An alternative, synthetic way uses well-established models that offer
deep mathematical insights to build simple components of neural
architectures which inherit these qualities.

We adopt the latter strategy. As a simple first step, we consider
the simple prototypical problem of signal denoising and interpret
numerical approximations of classical methods as a residual network
(ResNet) architecture.

Our considerations in this chapter are purely theoretical. Since we
work with very simple models, we do not embed them yet into an
experimental framework. However, we can gain theoretical insights
that can be useful to suggest neural architectures that are simpler,
more compact, involve less parameters, and benefit from provable
stability guarantees.

We establish the first comprehensive framework that allows to trans-
late diffusion methods, wavelet approaches, and variational techniques
simultaneously into a ResNet architecture. The reason for choosing
three denoising techniques lies in the intrinsic stability of denoising:
Noise is a perturbation of the input data, which is not supposed to
change the denoised output substantially. To maximise transparency
and notational simplicity, we restrict ourselves to the one-dimensional
setting and choose particularly simple representatives in each class:
Perona–Malik diffusion, Haar wavelet shrinkage, smooth first order
variational models, and a single ResNet block. We show that discrete
formulations of all three denoising approaches can be expressed as a
specific ResNet block. It inherits its stability directly from the three
denoising algorithms. Thus, a ResNet consisting only of these blocks
is stable for any number of layers.

113

114 mathematical models and residual networks

Whereas typical CNNs learn convolution weights and fix the nonlin-
ear activation function to a simple design, we proceed in the opposite
way: We fix the convolution kernels and study various nonlinear
activation functions that are inspired by the diffusivities, shrinkage
functions, and variational regularisers. For researchers from the diffu-
sion, wavelet or variational communities, this introduces a dictionary
that allows them to translate their methods directly into CNN ar-
chitectures. Deep learning researchers will find hitherto unexplored
nonmonotone activation functions and new motivations for existing
ones.

Our results question two architectural principles behind CNNs
that are usually taken for granted. One of our findings is the fact
that antisymmetric activation functions can occur naturally. More
importantly, we also show that nonmonotone activation functions
do not contradict even the most restrictive notions of stability and
well-posedness.

related work A prominent avenue to establish mathematical
foundations of CNNs is through their analysis in terms of stability.
This can be achieved by studying their invertibility properties [37,
68], by exploiting sparse coding concepts [304], and by interpreting
deep learning as a parameter identification or optimal control problem
for ordinary differential equations [167, 352, 412]. CNNs can also
be connected to flows of diffeomorphisms [309] and to parabolic or
hyperbolic PDEs [112, 113, 231, 240], where it is possible to transfer
L2 stability results [319]. This thesis focuses on diffusion PDEs. In
this chapter, we establish stricter stability notions such as L∞ stability
and sign stability, before relaxing these conditions in the following
chapters.

We have already highlighted the connections between both wavelets
and variational models and CNNs in Section 3.5. In this chapter,
however, we focus on more traditional connections of wavelets [264]
and variational models [326] to diffusion. These works help us to
extend our findings on diffusion and residual networks to paint a
bigger picture.

We argue for shifting the focus of CNN models towards more soph-
isticated and also nonmonotone activation functions. The CNN liter-
ature offers only few examples of training activation functions [214]
or designing them in a well-founded and flexible way [361]. Non-
monotone activation functions have been suggested already before the
advent of deep learning [96, 254], but fell into oblivion afterwards. We
revitalise this idea by providing a natural justification from the theory
of diffusion filtering.

publication information The contents of this chapter can be
found in an unpublished technical report of Alt et al. [15]. It reflects our

6.1 review : basic approaches 115

first results on connections between PDEs and CNNs, and constitutes
the foundation of the following chapters.

organisation of the chapter This chapter is structured as
follows. We briefly recap the basic models that we consider in Sec-
tion 6.1. In Section 6.2, we discuss numerical approximations for three
instances of the classical models. We interpret them in terms of a
specific residual network architecture, for which we derive explicit
stability guarantees. This leads to a dictionary for translating the non-
linearities of the three classical methods to activation functions, which
is presented in Section 6.3. For a selection of the most popular nonlin-
earities, we derive their counterparts and discuss novel consequences
for the design of neural networks in detail. Finally, we summarise our
conclusions in Section 6.4.

6.1 review : basic approaches

Let us now briefly specify the models that we consider. For a more
detailed introduction into diffusion, wavelets, variational models, and
residual networks, we refer to Chapter 3.

To ensure a consistent notation, all models in this section produce
an output signal u from an input signal f . We define continuous one-
dimensional signals u, f as mappings from a signal domain Ω = [a, b]
to a codomain [c, d]. We employ reflecting boundary conditions on
the signal domain boundaries a and b. The discrete signals u, f ∈ Rn

are obtained by sampling the continuous functions at N equidistant
positions with grid size h.

nonlinear diffusion As a representative of a diffusion model,
we consider one-dimensional Perona–Malik diffusion [279], which cre-
ates filtered versions u(x, t) of an initial signal f (x) with the evolution

∂tu = ∂x

(
g
(
(∂xu)2

)
∂xu
)

, (6.1)

with initial condition u(x, 0) = f (x), diffusion time t, and reflecting
boundary conditions. As highlighted in previous chapters, the central
design choice lies in the diffusivity g

(
s2) which controls the amount

of smoothing depending on the local structure of the evolving signal.
We assume that it is nonnegative, nonincreasing, and bounded.

Choosing the constant diffusivity g
(
s2) = 1 [195] leads to a ho-

mogeneous diffusion process that smooths the signal equally at all
locations. A more sophisticated diffusivity such as the exponential
Perona–Malik diffusivity g

(
s2) = exp

(
− s2

2λ2

)
[279] inhibits smooth-

ing around discontinuities where |∂xu| is larger than the contrast
parameter λ. This allows discontinuity-preserving smoothing.

116 mathematical models and residual networks

wavelet shrinkage As a wavelet shrinkage model, we consider
shift-invariant Haar wavelet shrinkage in one dimension (see Sec-
tion 3.3). It can be seen as the one-dimensional counterpart of the
baseline model of Chapter 4. This model computes the discrete recon-
struction u from f as

u = W̃ S(Wf) . (6.2)

The matrices W and W̃ represent the one-dimensional shift-invariant
forward and backward Haar wavelet transformations. As we have
seen, besides the choice of the wavelet basis, the result is strongly
influenced by the shrinkage function S(s).

The hard shrinkage function [248] eliminates all coefficients with a
magnitude smaller than the threshold parameter, while the soft shrink-
age function [107] additionally modifies the remaining coefficients
equally.

variational regularisation As a variational model we choose
a functional with a quadratic data term and an increasing regulariser

E(u) =
∫

Ω

(
(u − f)2 + αΨ

(
(∂xu)2

))
dx . (6.3)

where the data term (u − f)2 drives u towards the input data f , and a
first order regularisation Ψ

(
(∂xu)2

)
enforces smoothness conditions

on u by penalising variations in ∂xu. We can control the balance
between both terms by the regularisation parameter α > 0. Choosing
e.g. Ψ

(
s2) = s2 is called Whittaker–Tikhonov regularisation [354, 391].

residual networks On the CNN side, we consider a single
residual block [173] consisting of two convolutional layers with biases
and nonlinear activation functions after each layer

u = φ2(f +W2 φ1(W1f + b1) + b2) (6.4)

with discrete convolution matrices W1,W2, activation functions φ1, φ2,
and bias vectors b1, b2.

The crucial difference between residual networks and the three
previous approaches is the design focus: The three classical methods
consider complex nonlinear modelling functions, while CNNs mainly
focus on learning convolution weights and use simple activation func-
tions. We will see that by permitting more general activation functions,
we can relate all four methods within a unifying framework.

6.2 translation into residual networks

Now we are in a position to discuss numerical approximations for
the three classical models that allow to interpret them in terms of a
residual network architecture.

6.2 translation into residual networks 117

from nonlinear diffusion to residual networks In prac-
tice, the continuous diffusion process is discretised and iterated to
approximate the continuous solution u(x, T) for a stopping time T.
With the help of the flux function Φ(s) = g

(
s2) s we rewrite the

diffusion equation (6.1) as

∂tu = ∂x (Φ(∂xu)) . (6.5)

For this equation, we perform a standard discretisation in the spatial
and the temporal domain. This yields an explicit scheme which can
be iterated. Starting with an initial signal u0 = f , the evolving signal
uk at a time step k is used to compute uk+1 at the next step by

uk+1
i − uk

i
τ

=
1
h

(
Φ

(
uk

i+1 − uk
i

h

)
− Φ

(
uk

i − uk
i−1

h

))
. (6.6)

Here the temporal derivative is discretised by a forward difference
with time step size τ. We apply a forward difference to implement the
inner spatial derivative operator and a backward difference for the
outer spatial derivative operator. Both can be realised with a simple
convolution.

To obtain a scheme which is stable in the L∞ norm, one can show
that the time step size must fulfil

τ ≤ h2

2gmax
, (6.7)

where gmax is the maximum value that the diffusivity g
(
s2) = Φ(s)

s can
attain [369]. This guarantees a maximum–minimum principle, stating
that the values of the filtered signal uk do not lie outside the range of
the original signal f .

To achieve a substantial filter effect, one often needs a diffusion
time T that exceeds the stability limit in (6.7). Then one concatenates
m explicit steps with a time step size τ = T

m that satisfies (6.7).
In order to translate diffusion into residual networks, we rewrite

the explicit scheme (6.6) in matrix-vector form:

uk+1 = uk + τ D−
h

(
Φ
(
D+

h uk
))

, (6.8)

where D+
h and D−

h are convolution matrices denoting forward and
backward difference operators with grid size h, respectively. In this
notation, the resemblance to a residual block becomes apparent:

Theorem 1. A diffusion step (6.8) is equivalent to a residual block (6.4) if

φ1 = τ Φ, φ2 = Id, W1 = D+
h , W2 = D−

h , (6.9)

and the bias vectors b1, b2 are set to 0.

118 mathematical models and residual networks

uk
i

uk
i+1−uk

i
h

τΦ
(

uk
i+1−uk

i
h

)

τ
h

(
Φ
(

uk
i+1−uk

i
h

)
− Φ

(
uk

i −uk
i−1

h

))

+

uk+1
i

convolution D+
h

activation τ Φ(s)

convolution D−
h

skip connection

Id

on
e-

di
m

en
si

on
al

di
ff

us
io

n
bl

oc
k

Figure 6.1: One-dimensional diffusion block for one explicit nonlinear diffu-
sion step (6.6) with flux function Φ(s) and time step size τ.

We see that the convolutions implement forward and backward
difference operators. Since we have D+

h = −
(
D−

h

)⊤, the convolutions
are symmetric to each other. This will become an important property
when generalising this result to arbitrary filters in Chapter 7.

Crucially, the inner activation function φ1 corresponds to the flux
function τΦ rescaled by the time step size. The effect of the skip-
connection in the residual block also becomes clear now: It is the
central concept to realise a time discretisation. We call a block of this
form a one-dimensional diffusion block.

Figure 6.1 visualises such a diffusion block. Graph nodes contain the
current state of the signal at position i, while edges describe operations
which are applied to proceed from one node to the next.

A related approach for learning parameters of nonlinear diffusion
filters in the context of inverse problems has been proposed by Chen
and Pock [75]. However, their work establishes a diffusion-reaction
framework: The skip-connection rewards similarity to the original
image in each step. Therefore, it cannot be translated directly into a
residual block (6.4). On the contrary, we use a pure diffusion model.
Our skip-connection rewards similarity to the image from the previous
layer and is thus compatible with the residual block formulation.

6.2 translation into residual networks 119

A consequence of Theorem 1 is that a residual network chaining m
diffusion blocks with activation function τΦ(s) approximates a non-
linear diffusion process with stopping time T = mτ and diffusivity
g
(
s2) = Φ(s)

s . These insights enable us to translate a diffusivity g
directly into an activation function through the flux function Φ:

φ(s) = τ Φ(s) = τ g
(
s2) s (6.10)

While this translation from a diffusion step to a residual block appears
simple, it will serve as the Rosetta stone in our dictionary: It also allows
to connect wavelet methods and variational regularisation to residual
networks, since both paradigms can be related to diffusion [264, 326].
Let us now sketch these correspondences.

from wavelet shrinkage to nonlinear diffusion The
connection between diffusion PDEs and specific ResNets can be exten-
ded to wavelet shrinkage. This is possible due to various equivalence
results between diffusion methods and wavelets; see e.g. [105, 243, 264,
385]. In our context, it is sufficient to focus on the results of Mrázek
and Weickert [264].

To explore the connection between wavelet shrinkage and nonlin-
ear diffusion, they consider shift-invariant Haar wavelet shrinkage
on the finest scale. The missing multiscale structure is compensated
by iterating this shrinkage. They show that one step with shrinkage
function S(s) is equivalent to an explicit diffusion step with diffusiv-
ity g

(
s2), grid size h = 1, and time step size τ if

g
(
s2) = 1

4τ

(
1 −

√
2

s
S
(

s√
2

))
. (6.11)

The L∞ stability condition (6.7) from the diffusion case translates into
a condition on the shrinkage function

−s ≤ S(s) ≤ s for s > 0, (6.12)

which is less restrictive than the typical design principle

0 ≤ S(s) ≤ s for s > 0. (6.13)

Mrázek et al. show that the latter one leads to a sign stable process in
the sense of Schönberg [332], i.e. the resulting signal shows not more
sign changes than the input signal. This is a stronger stability notion
than L∞ stability. It limits the time step size to τ ≤ h2

4gmax
. This is half

the bound of (6.7).

from variational models to nonlinear diffusion We
make use of the connections between variational methods and non-
linear diffusion presented by Scherzer and Weickert [326]. They con-

120 mathematical models and residual networks

sider an energy functional with a quadratic data term and a regular-
iser Ψ

(
s2):

E(u) =
∫

Ω

(
(u − f)2 + α Ψ

(
(∂xu)2

))
dx. (6.14)

The corresponding Euler–Lagrange equation for a minimiser u of the
functional reads

u − f
α

= ∂x

(
Ψ′
(
(∂xu)2

)
∂xu
)

. (6.15)

This can be regarded as a fully implicit time discretisation for a non-
linear diffusion process with stopping time T = α and diffusivity
g
(
s2) = Ψ′(s2) = ∂

∂(s2)
Ψ
(
s2). This process can also be approxim-

ated by m explicit diffusion steps of type (6.6) with time step size
τ = α

m [292], where m is chosen such that the stability condition (6.7)
holds.

A related interpretation which is equivalent to the concept of iter-
ated regularisation is given by algorithm unrolling [217, 260, 345].

stability guarantees for our residual network The con-
nections established so far imply direct stability guarantees for net-
works consisting of diffusion blocks.

Theorem 2 (L∞ Stability of Residual Networks with Diffusion Blocks).
A residual network chaining any number of diffusion blocks with grid size h
and activation function φ(s) = τΦ(s) = τg(s2)s with finite Lipschitz
constant L is stable in the L∞ norm if

τ ≤ h2

2L
, (6.16)

It is also sign stable if the bound is chosen half as large.

Proof. Since Φ(s) = g
(
s2) s and g is a nonincreasing symmetric dif-

fusivity with bound gmax, it follows that L = gmax. Thus, (6.16) is the
network analogue of the stability condition (6.7) for an explicit diffu-
sion step. In the same way, the diffusion block inherits its sign stability
from the sign stability condition of wavelet shrinkage. Stability of the
full network follows by induction.

Note that our results in terms of L∞ or sign stability are stricter stabil-
ity notions than the L2 stability proposed by Ruthotto and Haber [319].
However, they investigate more general convolution filters. This will
be our focus in the following chapter.

Contrary to the result of Ruthotto and Haber [319], our stability
result does not require activation functions to be monotone. We will
see that widely used diffusivities and shrinkage functions naturally
lead to nonmonotone activation functions.

6.2
tr

a
n

sla
tio

n
in

to
r

esid
u

a
l

n
etw

o
r

k
s

121

Table 6.1: Dictionary for diffusivities g
(
s2), regularisers Ψ

(
s2), wavelet shrinkage functions S(s), and activation functions Φ(s). A nonlinearity from a

row can be translated into a nonlinearity from a column with the respective equation.

from

to
diffusivity regulariser shrinkage function activation function

diffusivity g
(

s2
)

Ψ
(

s2
)
=

s2∫

0

g(x) dx S(s) = s
(

1 − 4τ g
(

2s2
))

φ(s) = τg
(

s2
)

s

regulariser g
(

s2
)
= Ψ′

(
s2
)

Ψ(s2) S(s) = s −
√

2α Ψ′
(

2s2
)

φ(s) = τΨ′
(

s2
)

s

shrinkage
function

g
(

s2
)
=

1
4τ

(
1−

√
2

s
S
(

s√
2

))
Ψ
(

s2
)
=

1
4α


s2−2

√
2

s2∫

0

S
(

x√
2

)
dx


 S(s) φ(s)=

1
4

(
s−

√
2 S
(

s√
2

))

activation
function

g
(

s2
)
=

φ(s)
τ s

Ψ
(

s2
)
=

1
τ

s2∫

0

φ(x)
x

dx S(s) = s−2
√

2 φ
(√

2s
)

φ(s)

122 mathematical models and residual networks

6.3 dictionary of activation functions

main result Exploiting the Equations (6.10), (6.11), and (6.15), we
are now in the position to present a general dictionary which can be
used to translate arbitrary diffusivities, wavelet shrinkage functions,
and variational regularisers into activation functions. This dictionary
is displayed in Table 6.1.

On one hand, our dictionary provides a blueprint for researchers
acquainted with diffusion, wavelet shrinkage or regularisation to build
a residual network for a desired model while preserving important
theoretical properties. This can help them to develop rapid prototypes
of the corresponding filters without the need to pay attention to
implementational details. Also parallelisation for GPUs is readily
available. Last but not least, these methods can be gradually refined
by learning.

On the other hand, also CNN researchers can benefit. The dictionary
shows how to restrict CNN architectures or parts thereof to models
which are well-motivated, provably stable, and can benefit from the
rich research results for diffusion, wavelet shrinkage and regularisa-
tion. Lastly, it can inspire CNN practitioners to use more sophisticated
activation functions, in particular antisymmetric and nonmonotone
ones.

what we can learn from popular methods Let us now
apply our general dictionary to prominent diffusivities, shrinkage
functions, and regularisers in order to identify their activation func-
tions.

We visualise these functions in Tables 6.2 and 6.4 and display their
mathematical formulas in Tables 6.3 and 6.5. For our examples, we
choose a grid size of h = 1. As we have gmax = 1 for all cases
considered, we set τ = α = 1

4 . This fulfils the sign stability condi-
tion (6.16).

We generally observe that all resulting activation functions τΦ(s) =
τg
(
s2) s are antisymmetric, since they involve the product of a sym-

metric diffusivity g
(
s2) and the antisymmetric identity function s. This

is very natural in the diffusion case, where the argument of the flux
function is the signal derivative ∂xu. It reflects a desired invariance
axiom of denoising: Signal negation and filtering are commutative.

Still, the discussed antisymmetric activation functions can be ex-
pressed with typical ReLU functions [266]. The truncated total vari-
ation activation relying on the flux function

Φ(s) =

{
s, |s| ≤

√
2 θ,√

2 θ sgn(s), |s| >
√

2 θ,
(6.17)

provides a simple example as it can be rewritten as

Φ(s) = s − ReLU
(

s −
√

2 θ
)
+ ReLU

(
−s −

√
2 θ
)

. (6.18)

6.4 conclusions 123

Other activation functions which are not piecewise linear can be
approximated with a series of feedforward layers [190]. By allowing
more advanced antisymmetric activation functions, we can end up
with fewer layers.

Our six examples fall into two classes: The first class in Tables 6.2
and 6.3 comprises diffusion filters with constant [195] and Charbon-
nier diffusivities [70], as well as soft wavelet shrinkage [107] which
involves a Huber regulariser [193] and a truncated total variation (TV)
diffusivity [16, 313].

These methods have strictly convex regularisers, and their shrinkage
functions do not approximate the identity function for s → ±∞. Most
importantly, their activation functions are monotonically increasing.
This is compatible with the standard scenario in deep learning where
the ReLU activation function dominates [266]. On the diffusion side,
the corresponding increasing flux functions act contrast reducing.
Strictly convex regularisers have unique minimisers, and popular
minimisation algorithms such as gradient descent converge globally.

The second class in Tables 6.4 and 6.5 is much more exciting. Its
representatives are given by Perona–Malik diffusion [279] and two
wavelet shrinkage methods: garrote shrinkage [136] and hard shrink-
age [248]. Garrote shrinkage corresponds to the truncated balanced
forward–backward (BFB) diffusivity of Keeling and Stollberger [210],
while hard shrinkage has a truncated quadratic regulariser which is
used in the weak string model of Geman and Geman [138].

Approaches of the second class have nonconvex regularisers, which
may lead to multiple energy minimisers. Their shrinkage functions
converge to the identity function for s → ±∞. The flux function of the
diffusion filter is nonmonotone. While this was considered somewhat
problematic for continuous diffusion PDEs, it has been shown that
their discretisations are well-posed [372], in spite of the fact that they
may act contrast enhancing. Since the activation function is a rescaled
flux function, it is also nonmonotone. This is very unusual for CNN
architectures. Although there were a few very early proposals in the
neural network literature arguing that such networks offer a larger
storage capacity [96] and have some optimality properties [254], they
had no impact on modern CNNs.

Our results motivate the idea of nonmonotone activation functions
from a different perspective. Since it is well-known that nonconvex
variational methods can outperform convex ones, it appears promising
to incorporate nonmonotone activations into CNNs in spite of some
challenges that have to be mastered.

6.4 conclusions

We have seen that CNNs and classical methods have much more in
common than many would expect: Focusing on three classical de-

124
m

a
th

em
a

tic
a

l
m

o
d

els
a

n
d

r
esid

u
a

l
n

etw
o

r
k

s

Table 6.2: Plots of selected functions resulting in monotone activation functions. Names of known functions are written above the graphs. Bold font
indicates the best known function for each row. Axes and parameters are individually scaled for optimal qualitative inspection.

diffusivity g
(
s2) regulariser Ψ

(
s2) shrinkage function S(s) activation function φ(s)

constant Whittaker–Tikhonov rescaled identity

1

1

s

g
(
s2
)

1

1

s

Ψ
(
s2
)

1

1

s

S(s)

1

1
4

s

φ(s)

Charbonnier

λ

1

s

g
(
s2
)

λ s

Ψ
(
s2
)

λ s

S(s)

λ

λ
4
√

2

s

φ(s)

truncated TV Huber soft

√
2 θ

1

s

g
(
s2
)

√
2 θ

2θ2

s

Ψ
(
s2
)

θ s

S(s)

√
2 θ

√
2 θ
4

s

φ(s)

6.4
c

o
n

c
lu

sio
n

s
125

Table 6.3: Formulas for the function plots in Table 6.2. The names of known functions are written above the equations. Bold font indicates the best
known function for each row.

diffusivity g
(
s2) regulariser Ψ

(
s2) shrinkage function S(s) activation function φ(s)

constant Whittaker–Tikhonov rescaled identity

g
(

s2
)
= 1 Ψ

(
s2
)
= s2 S(s) = 0 φ(s) =

s
4

Charbonnier

g
(

s2
)
=

1√
1 + s2

λ2

Ψ
(

s2
)
= 2λ2

√
1 +

s2

λ2 − 2λ2 S(s) = s


1 − 1√

1 + 2s2

λ2


 φ(s) =

s

4
√

1 + s2

λ2

truncated TV Huber soft

g
(

s2
)
=





1, |s|≤
√

2 θ√
2 θ

|s| , |s|>
√

2 θ
Ψ
(

s2
)
=





s2, |s|≤
√

2 θ

2θ
(√

2 |s| − θ
)

, |s|>
√

2 θ
S(s) =

{
0, |s|≤ θ

s − θ sgn(s), |s|> θ
φ(s) =





s
4

, |s|≤
√

2 θ

1
4

√
2 θ sgn(s), |s|>

√
2 θ

126
m

a
th

em
a

tic
a

l
m

o
d

els
a

n
d

r
esid

u
a

l
n

etw
o

r
k

s

Table 6.4: Plots of selected functions resulting in nonmonotone activation functions. Names of known functions are written above the graphs. Bold font
indicates the best known function for each row. Axes and parameters are individually scaled for optimal qualitative inspection.

diffusivity g
(
s2) regulariser Ψ

(
s2) shrinkage function S(s) activation function φ(s)

Perona–Malik

λ

1

s

g
(
s2
)

λ s

Ψ
(
s2
)

λ s

S(s)

λ

λ
4
√

e

s

φ(s)

truncated BFB Garrote

√
2 θ

1

s

g
(
s2
)

√
2 θ

2θ2

s

Ψ
(
s2
)

θ s

S(s)

√
2 θ

√
2 θ
4

s

φ(s)

truncated quadratic hard

√
2 θ

1

s

g
(
s2
)

√
2 θ

2θ2

s

Ψ
(
s2
)

θ

θ

s

S(s)

√
2 θ

√
2 θ
4

s

φ(s)

6.4
c

o
n

c
lu

sio
n

s
127

Table 6.5: Formulas for the function plots in Table 6.4. The names of known functions are written above the equations. Bold font indicates the best
known function for each row.

diffusivity g
(
s2) regulariser Ψ

(
s2) shrinkage function S(s) activation function φ(s)

Perona–Malik

g
(

s2
)
= exp

(
− s2

2λ2

)
Ψ
(

s2
)
= 2λ2

(
1 − exp

(
− s2

2λ2

))
S(s) = s

(
1 − exp

(
− s2

λ2

))
φ(s) =

s
4

exp
(
− s2

2λ2

)

truncated BFB Garrote

g
(

s2
)
=





1, |s|≤
√

2 θ
2θ2

s2 , |s|>
√

2 θ
Ψ
(

s2
)
=





s2, |s|≤
√

2 θ

2θ2
(

ln
(

s2

2θ2

)
+ 1
)

, |s|>
√

2 θ
S(s) =





0, |s|≤ θ

s − θ2

s
, |s|> θ

φ(s) =





s
4

, |s|≤
√

2 θ

θ2

2s
, |s|>

√
2 θ

truncated quadratic hard

g
(

s2
)
=

{
1, |s|≤

√
2 θ

0, |s|>
√

2 θ
Ψ
(

s2
)
=

{
s2, |s|≤

√
2 θ

2θ2, |s|>
√

2 θ
S(s) =

{
0, |s|≤ θ

s, |s|> θ
φ(s) =





s
4

, |s|≤
√

2 θ

0, |s|>
√

2 θ

128 mathematical models and residual networks

noising approaches in a one-dimensional setting and on a ResNet
architecture with simple convolutions, we have established a diction-
ary that allows to translate diffusivities, shrinkage functions, and
regularisers into activation functions. This does not only yield strict
stability results for specific ResNets with an arbitrary number of layers,
but also suggests to invest more efforts into the design of activation
functions. In particular, antisymmetric and nonmonotone activation
functions warrant more attention.

Needless to say, our restrictions to a single dimension, to a single
scale, and to denoising methods have been introduced mainly for
didactic reasons. This chapter is considered a theoretical analysis
of the connections between the models in the simplest setting. The
following two chapters extend these basic results to more general
frameworks: Chapter 7 analyses the one-dimensional connections in
the presence of generalised filter matrices, and Chapter 8 is concerned
with the two-dimensional setting and associated concepts such as
rotation invariance.

7
N U M E R I C A L A L G O R I T H M S A N D N E U R A L
A R C H I T E C T U R E S

In the previous chapter we have established first connections between
diffusion and residual networks. Using further popular links between
diffusion, variational methods, and wavelets, we were able to connect
all four worlds in a unifying framework. This allowed us to focus
on the links between different nonlinear design functions, while the
convolution structure of the filters was fixed. Even though this led
us to strict stability guarantees, this framework was more of tutorial
value w.r.t. activation functions inspired from diffusivities, shrinkage
functions, and variational regularisers.

This ignored the strengths of practical neural networks: Learning
the filter kernels in combination with nonlinear activation functions
makes neural networks so powerful. To this end, we extend our results
to more general diffusion filters in this chapter, at the cost of a slightly
weaker stability notion in the form of Euclidean stability.

Moreover, the previous chapter has shown that not the diffusion
model alone determines the resulting network architecture, but also
the choice of the numerical algorithm with which the model is solved.
Thus, this chapter provides an in-depth discussion of different nu-
merical algorithms for diffusion models and how they translate into
neural architectures.

Similar to untrained neural networks, numerical algorithms can be
applied to a multitude of problems in a general purpose fashion. The
model at hand is then specified by the differential equation, which is
approximated by training the neural network. Thus, we believe that
the design principles of modern neural networks realise a small but
powerful set of numerical strategies at their core.

In particular, we consider the neural counterparts of explicit schemes,
acceleration strategies thereof [110, 170], implicit schemes, and multi-
grid approaches [53, 54]. We supplement our findings with an experi-
mental evaluation of the proposed network architectures for denoising
and inpainting tasks. Therein, we demonstrate the effectiveness of
the architectures together with nonmonotone activation functions in
practice.

As a starting point of our investigations, we consider a generalised
nonlinear diffusion equation. Similar to the previous chapter, we stay
within the one-dimensional setting for didactic purposes only, since
all important concepts can already be translated in this simple setting.
We show that also this diffusion model can be connected to ResNets
when considering an explicit discretisation.

129

130 numerical algorithms and neural architectures

This connection inspires a more general ResNet architecture than
the one in the previous chapter. It follows a symmetric structure which
saves half the amount of network parameters compared to standard
ResNets, and additionally allows to derive a theory for guaranteeing
stability in the Euclidean norm. This chapter also provides empirical
evidence that nonmonotone activation functions can be effective for
trainable denoising.

By considering acceleration strategies for explicit schemes and solu-
tion strategies for implicit schemes, we justify the effectiveness of
skip connections in neural networks. We show that Du Fort–Frankel
schemes [110], fast semi-iterative (FSI) schemes [170], and fixed point
iterations for implicit schemes motivate different architectural designs
which all rely on skip connections as a foundation of their efficiency.

Finally, we consider the rich class of multigrid approaches [53, 54].
We show that a nonlinear full approximation scheme (FAS) can be
cast in the form of the popular U-net [306] architecture. We think that
at their core, U-nets realise a multigrid strategy, and we support this
claim by proposing a U-net which realises a full multigrid strategy for
an inpainting task.

The findings in this chapter do not only inspire new design cri-
teria for stable neural architectures and show that uncommon design
choices can perform well in practice. They also provide structural
insights into the success of popular CNN architectures from the per-
spective of numerical algorithms.

related work In contrast to many others, our philosophy of
translating numerical concepts into neural architectures is shared
only by few works [43, 229, 240, 275, 416]; see also Section 3.5. They
motivate additional or modified skip connections based on numerical
schemes for ODEs, such as Runge-Kutta methods or implicit Euler
schemes. Our work provides additional motivations for such skip
connections based on several numerical strategies for PDEs.

A common result is that ResNets with a symmetric filter structure
can be shown to be stable in the Euclidean norm [166, 167, 309, 319,
412]. We motivate this result from a novel viewpoint based on diffusion
processes. In contrast to previous results, this unique starting point
allows us to present our stability result independently of the mono-
tonicity of the activation function, inspiring the use of nonmonotone
and trainable activation functions.

Nonmonotone activation functions are rarely found in standard
CNNs, with some notable exceptions [75, 151, 272]. Recently, the
so-called Swish activation [294] and modifications thereof [257, 417]
have been found to empirically boost the classification performance of
CNNs. While these activations are modifications of the ReLU activa-
tion which are nonmonotone around the zero position, the activations
that arise from our diffusion interpretation are antisymmetric and

7.1 review : generalised one-dimensional diffusion 131

nonmonotone. Such functions have been analysed before the advent of
deep learning [96, 254], but have not found their way into current CNN
architectures. Our experiments, however, suggest that these activations
can be advantageous in practice.

Multigrid ideas have been combined with CNNs already in the
early years of neural network research [29, 30]. Current works use
inspiration from multigrid concepts to learn restriction and prolong-
ation operators of multigrid solvers [159, 209], to couple channels
for parameter reduction [117] or to boost training with ideas from
multigrid-in-time [163].

However, to the best of our knowledge, the only architectures that
consequently implement a trainable multigrid approach are presented
by He and Xu [172] and Hartmann et al. [171]. However, both works
do not draw any connections to the popular U-net architecture [306],
whereas we directly link both concepts.

publication information The contents in this chapter ap-
peared in the conference paper of Alt et al. [10] at the Scale Space and
Variational Methods in Computer Vision conference in 2021. An ex-
tended version has been published as an invited paper in the Journal
of Mathematical Imaging and Vision [11]. The present chapter in-
cludes additional visualisations of multiple diffusion-inspired neural
architectures.

organisation of the chapter In Section 7.1, we review a
generalised nonlinear diffusion model. We connect it to residual net-
works in Section 7.2 and analyse the implications in terms of stability
and novel activation functions. Afterwards we motivate skip connec-
tions from different numerical algorithms in Section 7.3. We review
multigrid approaches and U-nets in Section 7.4 before connecting
both worlds in Section 7.5. Finally, we experimentally evaluate the
proposed architectures in Section 7.6 and present a discussion and our
conclusions in Section 7.7.

7.1 review : generalised one-dimensional diffusion

In this section, we review generalised one-dimensional diffusion filters
as the basic model for our first translation. We start by considering a
generalised one-dimensional diffusion PDE of arbitrary high order. It
produces signals u(x, t) : [a, b]× [0, ∞) → R evolving over time from
an initial signal f (x) on a domain [a, b] ⊂ R according to

∂tu = −D∗(g
(
|Du|2

)
Du
)

(7.1)

132 numerical algorithms and neural architectures

with reflecting boundary conditions. We use a general differential
operator

D =
M

∑
m=0

αm∂m
x (7.2)

and its adjoint

D∗ =
M

∑
m=0

(−1)mαm∂m
x . (7.3)

The operators consist of weighted derivatives up to order M with
weights αm of arbitrary sign, yielding a PDE of order 2M.

Choosing e.g. M = 1 yields the second order PDE of Perona and
Malik [279] from the previous chapter (cf. Equation (6.1)), while M = 2
leads to a one-dimensional version of the fourth order model of You
and Kaveh [401] (cf. Equation (3.21)).

In analogy to the previous chapter, the diffusion PDE (7.1) is the
gradient flow which minimises the energy functional

E(u) =
∫ b

a
Ψ(|Du|2) dx, (7.4)

where the penaliser Ψ can be linked to the diffusivity with the connec-
tion g = Ψ′ [326]. The penaliser must be increasing, but not necessarily
convex. This connection motivates the specific filter structure of the
resulting ResNet blocks.

7.2 from diffusion to symmetric residual networks

We are now in the position to show that explicit diffusion schemes
realise a ResNet architecture with a symmetric filter structure. As
before, we consider a ResNet block of the form

u = φ2(f +W2 φ1(W1f + b1) + b2) . (7.5)

In analogy to the previous chapter we can rewrite the generalised
nonlinear diffusion equation (7.1) with the help of the flux function

Φ(s) = g(s2) s (7.6)

as
∂tu = −D∗Φ(Du) . (7.7)

A discrete version of this equation is obtained by means of a stand-
ard finite difference scheme. We discretise the temporal derivative by
a forward difference with time step size τ. The spatial derivative oper-
ator D is implemented by a convolution matrix K. Consequently, the
adjoint operator D∗ is realised by a transposed convolution matrix K⊤.
The matrix transposition corresponds to mirroring the associated dis-
crete convolution kernel.

7.2 from diffusion to symmetric residual networks 133

uk

Kuk

τ Φ
(
Kuk

)

−τ K⊤Φ
(
Kuk

)

+

uk+1

convolution K

activation τ Φ(·)

convolution −K⊤

skip connection

Id
ge

ne
ra

li
se

d
on

e-
di

m
en

si
on

al
di

ff
us

io
n

bl
oc

k

Figure 7.1: Generalised one-dimensional diffusion block for an explicit dif-
fusion step (7.9) with flux function Φ, time step size τ, and a
discrete derivative operator K.

This yields the discrete evolution equation

uk+1 − uk

τ
= −K⊤Φ

(
Kuk

)
. (7.8)

Solving this expression for the new signal uk+1 yields the explicit
scheme

uk+1 = uk − τK⊤Φ
(
Kuk

)
. (7.9)

In contrast to the previous chapter, we are now free to choose the
convolution filters K without being restricted to specific first order
operators.

Thus, we can generalise our findings in Theorem 1 to trainable
ResNet blocks.

Theorem 3 (Diffusion-inspired ResNets). An explicit step (7.9) of the
generalised higher order diffusion scheme (7.1) can be expressed as a residual
block (7.5) by

φ1 = τ Φ, φ2 = Id, W1 = K, W2 = −K⊤, (7.10)

with the bias vectors b1, b2 set to 0.

We call a ResNet block of this form a generalised one-dimensional
diffusion block. Figure 7.1 visualises such a block in the form of a graph.

134 numerical algorithms and neural architectures

This insight confirms the observations from the previous chapter:
The rescaled flux function τΦ serves as the sole activation function φ1,
and the skip connection naturally arises from the discretisation of the
temporal derivative. However, an additional structural property now
becomes more apparent: The filters exhibit a negated symmetric filter
structure W2 = −W⊤

1 . This is a natural consequence of the gradient
flow structure of the diffusion process, and leads to provable stability
guarantees for ResNets with such a filter structure, as we show in the
following.

7.2.1 Stability for Symmetric ResNets

The structural connection between explicit schemes and ResNets al-
lows us to transfer classical stability [101] and well-posedness [369]
results of diffusion evolutions to a specific residual network architec-
ture. By relaxing the maximum-minimum stability from the previous
chapter to stability in the Euclidean norm, we obtain a good balance
between degrees of freedom in the ResNet block and mathematical
guarantees.

To this end, we consider ResNets which chain generalised diffusion
blocks. Since we show that a key to stability of these networks is the
symmetric filter structure, we refer to these architectures as symmetric
residual networks (SymResNets), following [319, 412].

For these networks, we prove Euclidean stability and well-posedness.
Euclidean stability guarantees that the Euclidean norm of the signal is
nonincreasing in each iteration, i.e. ∥uk+1∥2 ≤ ∥uk∥2. Well-posedness
ensures that the network output is a continuous function of the input
data.

Theorem 4 (Euclidean Stability of Symmetric Residual Networks).
Consider a symmetric residual network chaining any number of diffusion
blocks (7.9) with convolutions represented by a convolution matrix K and
activation function τΦ. Moreover, assume that the activation function can
be expressed as a diffusion flux function Φ(s) = g(s2) s and has a finite
Lipschitz constant L. Then the symmetric residual network is well-posed and
stable in the Euclidean norm if

τ ≤ 2
L∥K∥2

2
. (7.11)

Here, ∥ · ∥2 denotes the spectral norm which is induced by the Euclidean
norm.

Proof. The activation function φ(s) can be expressed in terms of a
diffusivity function by

φ(s) = τΦ(s) = τg(s2) s. (7.12)

7.2 from diffusion to symmetric residual networks 135

Thus, its application is equivalent to a rescaling with a diagonal matrix
G(uk) with g((Kuk)2

i) as i-th diagonal element. Therefore, we can
write (7.9) as

uk+1 =
(
I − τK⊤G(uk)K

)
uk. (7.13)

At this point, well-posedness follows directly from the continuity of
the operator I − τK⊤G(uk)K, as the diffusivity g is assumed to be
smooth [369].

We now show that the time step size restriction (7.11) guarantees
that the eigenvalues of the operator always lie in the interval [−1, 1].
Then the explicit step (7.9) constitutes a contraction mapping which
in turn guarantees Euclidean stability.

As the spectral norm is sub-multiplicative, we can estimate the
eigenvalues of K⊤G(uk)K for each matrix separately. Since g is non-
negative, the diagonal matrix G is positive semidefinite. The maximal
eigenvalue of G is then given by the supremum of g, which can be
bounded by the Lipschitz constant L of Φ:

L = sup
s

∣∣Φ′(s)
∣∣ = sup

s

∣∣g(s2) + 2s2g′(s2)
∣∣ ≥ sup

s

∣∣g(s2)
∣∣ . (7.14)

Consequently, the eigenvalues of K⊤G(uk)K lie within the interval[
0, τL∥K∥2

2
]
. Then the operator I − τK⊤G(uk)K has eigenvalues in[

1 − τL∥K∥2
2, 1
]
, and the condition

1 − τL∥K∥2
2 ≥ −1 (7.15)

leads to the bound (7.11).

Similar results have been obtained recently in [309, 319, 412], albeit
with alternative justifications. However, our unique diffusion interpret-
ation allows novel design concepts for CNNs such as nonmonotone
activation functions (cf. Chapter 6).

7.2.2 How General is Our Stability Result?

While our focus on explicit diffusion schemes appears restrictive at
first glance, our stability result is more general.

The fact that we use discrete differential operators as convolutions
is no restriction, since any convolution matrix can be expressed as a
weighted combination of discrete differential operators. Moreover, our
proof does not even require a convolutional matrix structure.

A key requirement for stability is the
symmetric structure W2 = −W T

1 .

136 numerical algorithms and neural architectures

The symmetric convolution structure is an important structural dif-
ference to the original ResNet formulation [173]. It does not only yield
a stable network, but also allows to reduce the amount of trainable
parameters by 50%, since inner and outer convolution share their
weights. Our experiments in Section 7.6 show that this is not neces-
sarily a trade-off: The symmetric residual networks provide a stable
alternative with the same performance as standard ResNets for the
same amount of parameters when using few trainable network layers.

Moreover, the requirement of using a flux function as an activation
function can be relaxed. As we have shown, one only requires the
diagonal matrix G to be positive semidefinite. While this is naturally
fulfilled for a diffusion flux function, other activations also adhere to
this constraint. For example, the ReLU function multiplies positive
arguments with one and negative ones with zero, yielding a binary
positive semidefinite matrix G. Thus, using the ReLU instead of a diffu-
sion flux does not affect stability. This shows that diffusion algorithms
inspire general, sufficient design criteria for stable networks.

In particular, we do not require any assumptions on the monoton-
icity of the activation function, in contrast to the results of Ruthotto
and Haber [319].

7.2.3 Enforcing Stability in Practice

While the stability criterion (7.11) can be computed on the fly already
during the training process of the network, evaluating the spectral
radius of the operator K is costly. To this end, we suggest a simple
rescaling to turn the stability bound (7.11) into an a priori criterion.

For a symmetric residual network with a single channel, one can
directly use Gershgorin’s circle theorem [143] to bound the maximum
absolute eigenvalue of K. More precisely, the eigenvalues of K lie
in the union of circles around the diagonal entries ki,i with radii
ri = ∑j ̸=i |ki,j| corresponding to the absolute sums of the off-diagonal
values. Thus, the maximal absolute eigenvalue of K is bounded by
the largest absolute row sum of K. If we simply rescale both inner
and outer convolutions by this sum, we can guarantee ∥K∥2

2 ≤ 1.
Then the stability condition (7.11) transforms into τ ≤ 2

L . Since the
Lipschitz constant L of the activation is known a priori, this simple
rescaling allows to constrain the time step size to a fixed value, while
not affecting the expressive power of the network.

However, most networks in practice are not concerned with only a
single channel. To this end, we extend our stability result to symmetric
ResNets with multiple channels.

For a diffusion block operating on a signal with C channels, the mat-
rix K is a C × C block convolution matrix. As long as the transposed
structure is realised, this is not problematic for the stability proof.

7.3 the value of skip connections 137

An extension of Gershgorin’s circle theorem to block matrices [357]
states that the eigenvalues of K lie in the union of circles which are
centred around the eigenvalues of the diagonal blocks. The radii of the
circles are given by the sum of the spectral norms of the off-diagonal
blocks. If we rescale each block matrix as in the single channel case, we
simply need to additionally divide the operator K by

√
C to ensure

that ∥K∥2
2 ≤ 1. With this, we obtain the same a priori criterion as in

the single channel case.
This strategy constitutes an instance of the popular weight norm-

alisation technique [323], and related spectral normalisations have
shown to be successful for improving the performance and conver-
gence speed of the training process [62, 157].

Our translation of explicit schemes is an example of a simple, direct
correspondence which in turn allows for multiple novel insights. In
the following, we explore variants of explicit schemes as well as
implicit schemes which inspire changes to the skip connections of the
symmetric ResNets, leading to more efficient architectures.

7.3 the value of skip connections

So far, we have seen that the temporal discretisation of an explicit
scheme naturally leads to skip connections. This, however, is just
one of the many justifications for their use. Since their proposal,
skip connections [173] have been adapted into numerically inspired
networks in many different forms; see e.g. [191, 229, 240, 275, 416].

This motivates us to explore several other numerical algorithms
which justify several types of skip connections from a numerical
perspective. We explore unconditionally stable schemes, acceleration
strategies for explicit schemes, and fixed point iterations for implicit
schemes.

7.3.1 Du Fort–Frankel Schemes

While the classical explicit scheme (7.9) is only conditionally stable,
there exist absolutely stable schemes which are still explicit. These
schemes are not that popular in practice since they trade unconditional
stability for conditional consistency. However, we will see that this is
not problematic from the perspective of learning.

Du Fort and Frankel [110] propose to change the temporal discret-
isation of the explicit scheme (7.9) to a central difference and introduce
a stabilisation term on the right hand side, corresponding to an ap-
proximation of ∂ttu. A Du Fort–Frankel scheme for the generalised
diffusion (7.1) evolution can be written as

uk+1 − uk−1

2τ
= −K⊤Φ

(
Kuk

)
− α

(
uk+1 − 2uk + uk−1

)
, (7.16)

138 numerical algorithms and neural architectures

where a positive constant α controls the influence of the stabilisation
term.

Solving this scheme for uk+1 yields

uk+1 =
4τα

1 + 2τα

(
uk − 1

2α
K⊤Φ

(
Kuk

))
+

1 − 2τα

1 + 2τα
uk−1. (7.17)

For τα = 1
2 , one obtains the explicit scheme (7.9).

The scheme involves the signals uk and uk−1 at the current and
the previous time level. The first term is nothing else than a rescaled
diffusion block, where 1

2α takes the role of the original time step size.
Since the scalar factors 4τα

1+2τα and 1−2τα
1+2τα add up to one, this is simply

an extrapolation of the result of an explicit step based on the signal at
time level k − 1.

If α is large enough, this scheme is unconditionally stable. Thus,
one does not need to obey any stability condition, in contrast to the
explicit case. Whereas classical proofs such as [156] consider only the
linear case and typically work in the Fourier space, we are not aware
of any proofs for the stability of nonlinear Du Fort–Frankel schemes.
To this end, we prove stability of the nonlinear case in Appendix B.

However, this scheme is not unconditionally consistent. If the time
step size τ is too large, the scheme (7.17) approximates a different
PDE [110], namely a nonlinear variant of the telegrapher’s equation.
Such PDEs have also been used in image processing; see e.g. [297].

In the trainable setting, the conditional consistency is not an issue,
but can even present a chance. It allows the network to learn a more
suitable PDE for the problem at hand. In our experiments we show
that indeed, the unconditional stability of the Du Fort–Frankel scheme
can help to achieve better results when only few residual blocks are
available.

This scheme can be realised with a small change in the original
diffusion block from Figure 7.1 by adding an additional skip con-
nection. The two skip connections are weighted by 4τα

1+2τα and 1−2τα
1+2τα ,

respectively. The resulting architecture is visualised in Figure 7.2 as a
Du Fort–Frankel block.

7.3.2 Fast Semi-iterative Schemes

Another numerical scheme which also leads to the same concept
from a different motivation is based on acceleration strategies for
explicit schemes. Hafner et al. [170] introduced fast semi-iterative (FSI)
schemes to accelerate explicit schemes for diffusion processes; see e.g.
Section 3.1.2.

In a similar manner as the Du Fort–Frankel schemes, FSI extra-
polates the diffusion result at a fractional time step k + ℓ

L with the

7.3 the value of skip connections 139

uk−1

diffusion block

+

uk

diffusion block

+

uk+1

· 1−2τα
1+2τα

· 4τα
1+2τα

· 1−2τα
1+2τα

· 4τα
1+2τα

D
u

Fo
rt

–F
ra

nk
el

bl
oc

k

Figure 7.2: Du Fort–Frankel block for the acceleration of an explicit diffusion
step (7.18) with extrapolation parameter α. The diffusion block
employs a time step size of 1

2α .

previous fractional time step k + ℓ−1
L and a weight αℓ. For the explicit

diffusion scheme (7.9), an FSI acceleration with cycle length L reads

uk+ ℓ+1
L = αℓ

(
uk+ ℓ

L − τK⊤Φ
(
Kuk+ ℓ

L

))
+ (1 − αℓ)u

k+ ℓ−1
L (7.18)

with fractional time steps ℓ = 0, . . . , L−1 and extrapolation weights
αℓ := (4ℓ+ 2)/(2ℓ+ 3). One formally initialises with uk− 1

L := uk.
The crucial difference to Du Fort–Frankel schemes is that FSI uses

time-varying extrapolation coefficients instead of fixed ones. These
coefficients are motivated by a box filter factorisation and allow a
cycle to realise a super time step of size L(L+1)

3 τ. Thus, with one
cycle involving L steps, one reaches a super step size of O(L2) rather
than O(L). This explains its remarkable efficiency [170].

Even though Du Fort–Frankel and FSI schemes have fundamentally
different motivations, they lead to the same architectural changes,
where additional weighted skip connections help to realise acceleration
strategies. This is in line with observations in the CNN literature; see
e.g. [240, 275]. We visualise this concept at the example of an FSI block
in Figure 7.3.

FSI and Du Fort–Frankel schemes are just two representatives of
a large class of extrapolation strategies; see e.g. [267, 287, 362]. The
ongoing success of using momentum methods for training [317, 347]
and constructing [240, 275, 416] neural networks warrants an extensive
investigation of these strategies in both worlds.

140 numerical algorithms and neural architectures

uk+ ℓ−1
L

diffusion block

+

uk+ ℓ
L

diffusion block

+

uk+ ℓ+1
L

·(1 − αℓ)
·αℓ

·(1 − αℓ−1)
·αℓ−1

FS
I

bl
oc

k

Figure 7.3: FSI block realising the acceleration of an explicit diffusion
step (7.18) with time-varying extrapolation parameters αℓ.

7.3.3 Implicit Schemes

So far, we have investigated variants of explicit schemes and their
neural counterparts. However, implicit discretisations constitute an-
other important solver class. We now show that such a discretisation
of the generalised diffusion equation can be connected to a recur-
rent neural network (RNN) (cf. Section 3.4.2). At the same time, this
translation inspires yet another way of leveraging skip connections.

A fully implicit discretisation of the diffusion equation (7.1) is given
by

uk+1 = uk − τK⊤Φ
(
Kuk+1

)
. (7.19)

The crucial difference as opposed to the explicit scheme lies in using
the new signal uk+1 within the flux function Φ. This yields a nonlinear
system of equations, which we solve by means of a fixed point iteration
with a cycle of length L:

uk+ ℓ+1
L = uk − τK⊤Φ

(
Kuk+ ℓ

L

)
, (7.20)

where ℓ = 0, . . . , L−1, and where we assume that τ is sufficiently
small to yield a contraction mapping.

For L = 1, we obtain the explicit scheme (7.9) with its ResNet
interpretation. For larger L, however, different skip connections arise.
They connect the layer at time step k with all subsequent layers at
steps k + ℓ

L with ℓ = 0, . . . , L−1.

7.3 the value of skip connections 141

uk

−τK⊤Φ
(
Kuk

)

+

uk+ 1
L

−τK⊤Φ
(
Kuk+ 1

L

)

+

uk+ 2
L

(a) Unrolled implicit scheme with
skip connections.

uk+ ℓ
L

−τK⊤Φ
(
Kuk+ ℓ

L

)

+ uk

uk+ ℓ+1
L

L timesim
pl

ic
it

bl
oc

k

(b) RNN interpretation.

Figure 7.4: Two equivalent representations of an implicit diffusion
scheme (7.20).

There are two possible ways of interpreting this type of connection.
One option is to regard this as a consequent extension of the extra-
polation idea of FSI and Du Fort–Frankel schemes. Instead of only
connecting a node to its two successors, the fixed point iteration above
links a node to L of its successors. Similar ideas have been used in the
popular DenseNet architecture [191], where each layer is connected
to all subsequent ones. We present a corresponding visualisation in
Figure 7.4(a). Another option is to interpret the repeated connection
to uk as a feedback loop, which in turn is closely related to a recurrent
neural network (RNN) architecture [188]. This variant is depicted in
Figure 7.4(b).

In their trainable nonlinear diffusion model, Chen and Pock [75] pro-
posed a similar architecture. However, they explicitly supplement the
diffusion process with an additional reaction term which results from
the data term of the energy. Our feedback term is a pure numerical
phenomenon of the fixed point solver.

We see that skip connections can implement a number of successful
numerical concepts: forward difference approximations of the tem-
poral derivative in explicit schemes, extrapolation steps to accelerate
them e.g. via FSI or Du Fort–Frankel schemes, and recurrent connec-
tions within fixed point solvers for implicit schemes.

142 numerical algorithms and neural architectures

7.4 review : multigrid solvers and u-nets

Although the previously investigated numerical strategies and their
neural counterparts can be efficient, they work on a single scale: The
signal is considered at its original resolution at all points in time.
However, using different signal resolutions in a clever combination
can yield even higher efficiency.

This is the core idea of the large class of multigrid approaches [53,
54, 168]. They belong to the most efficient numerical methods for
PDE-related problems and have been successfully applied to various
tasks such as image denoising [57], inpainting [246], video compres-
sion [219], and image sequence analysis [59].

On the CNN side, architectures that work on multiple resolutions
of the signal have become very successful. In particular, the shape of
the popular U-net architecture [306] suggests that there is a structural
connection between multigrid and CNN concepts.

By translating multigrid solvers into a U-Net architecture, we show
that this is indeed the case, which serves as a basis for explaining the
remarkable success of U-nets. Since both underlying concepts are not
self-explanatory, we review them in the following before connecting
them in the next section.

7.4.1 Multigrid Solvers for Nonlinear Systems

Multigrid methods [53, 54, 168] are designed to accelerate the con-
vergence speed of standard numerical solvers such as the Jacobi or
the Gauss–Seidel method [320]. These solvers attenuate high-frequent
components of the residual error very quickly, while low-frequent
error components are damped slowly. This causes a considerable drop
in convergence speed after a few iterations.

Multigrid methods remedy this effect by transferring the low-
frequent error to a coarser grid, transforming them into high-frequent
components. This allows a coarse grid solver to attenuate them more
efficiently. By correcting the fine grid approximation with coarse grid
results, convergence speed can be significantly improved.

In the following, we review the so-called full approximation scheme
(FAS) [53] for a nonlinear system of equations. We consider a two-grid
cycle as the basic building block of more complex multigrid solvers.

We are interested in solving a nonlinear system of equations of the
form

A(x) = b, (7.21)

with a nonlinear operator A and a right hand side vector b for an
unknown coefficient vector x.

The two-grid FAS involves two grids with different step-sizes: a
fine grid of size h, and a coarse grid of size H > h. We denote the

7.4 review : multigrid solvers and u-nets 143

respective grid by superscripts. The following six steps describe the
two-grid FAS:

1. Presmoothing Relaxation: A standard solver is applied to the
fine grid system Ah(xh) = bh. Given an initialisation xh

0, it
produces an approximation x̃h to the solution with a reduced
high frequency error.

2. Restriction: In order to approximate low-frequent components
of the error more efficiently, one transfers the problem to the
coarse grid with the help of a restriction operator Rh→H. One
restricts both the residual rh = Ah(xh)− bh as well as the current
approximation x̃h to the coarse grid. One obtains two parts
of the right hand side for the coarse grid problem: One part
bH = Rh→Hrh which is used directly, and a second one which
we denote by yH = Rh→Hx̃h serving as the argument for the
nonlinear operator AH. The coarse grid problem then reads

AH
(
xH
)
= AH

(
yH
)
+ bH. (7.22)

If we express the desired solution xH in terms of the error eH

by xH = yH + eH, then we see that this equation is solved for
the full approximation rather than the error alone, in contrast to
a linear multigrid scheme. Hence, this scheme is called the full
approximation scheme. If the operator A is linear, FAS reduces
to a linear multigrid scheme.

A standard choice for Rh→H is a simple averaging. However,
finding suitable restriction operators is a difficult task, which
motivates researchers to even learn such operators; see e.g. [159,
209].

3. Coarse Grid Computation: Solving the coarse grid problem with
a standard solver produces an error approximation x̃H.

4. Prolongation: The approximation on the coarse grid needs to
be transferred to the fine grid again.To this end, one applies a
prolongation operator P H→h.

Since a coarse grid solution x̃H is a full approximation, we need
to compute the approximation to the error by x̃H −yH . This error
approximation is then transferred to the fine grid via P H→h.

A standard choice for P H→h is a nearest neighbour interpolation,
but as for the restriction operator, finding a good prolongation
operator is not easy.

5. Correction: The fine grid approximation x̃h is corrected with the
upsampled coarse grid error approximation P H→h(x̃H − yH) to
produce a new approximation

x̃h
new = x̃h +P H→h

(
x̃H − yH

)
. (7.23)

144 numerical algorithms and neural architectures

6. Postsmoothing Relaxation: Finally, one applies another solver
on the fine grid to smooth high frequent errors which have been
introduced by the correction step.

The two-grid FAS will serve as the starting point for translating
multigrid concepts into the a U-net formulation. It is more general
than the linear connections from our conference publication [10].

7.4.2 Review: U-nets

In Section 3.4.2 we have already introduced the U-net as a network
architecture performing repeated down- and upsampling of input data.
In the following, we introduce an abstract mathematical formulation
of a simple U-net to compare it to a multigrid cycle.

A two-level U-net with fine grid size h and coarse grid size H has
the following structure:

1. An input signal f h is fed into a series of general convolutional
layers which we denote by Ch

1 (·). The resulting output signal is
denoted by f̃h = Ch

1

(
f h).

Originally, these layers are assumed to be feed-forward convolu-
tional layers, but they can also be replaced by any other suitable
layer type such as residual layers.

2. The fine grid signal f̃h is transferred to a coarser grid with a
restriction operator Rh→H, yielding a coarse grid signal fH =

Rh→Hf .

3. On the coarse grid, another series of convolutional layers CH(·)
is applied to the signal, yielding a modified coarse grid signal
f̃H = CH(fH).

4. The modified coarse grid signal is upsampled with a prolonga-
tion operator P H→h.

5. With the help of a skip connection, the modified fine grid sig-
nal f̃ h and the upsampled coarse grid signal P H→hf̃H are added
together. This produces a new fine grid signal f̃ h

new.

6. Lastly, another series of convolutional layers Ch
2 (·) is applied to

the new fine grid signal, producing the final output signal f̂ h.

We visualise this architecture in Figure 7.5(a).

7.5 from multigrid to u-nets

Now we show how one can express FAS in terms of a U-net architec-
ture. For our U-net, we use multiple network channels which carry
the variables required by FAS. Even though not all variables are used

7.5 from multigrid to u-nets 145

f h Ch
1 (·) f̃ h + f̃ h

new Ch
2 (·) f̂ h

fH CH(·) f̃H

Rh→H P H→h

(a) U-net architecture for an input f h.

xh
0, bh, · Sh

A(·) x̃h, bh, rh + x̃h
new, bh, · Sh

A(·) x̂h, bh, r̂h

xH
0 , bH , · SH

A(·) x̃H , bH , rH





0 0 0

0 0 Rh→H

· · ·









P H→h 0 0

0 0 0

· · ·





(b) Linear two-grid cycle in the form of a U-net utilising three network
channels. Besides the iteration variable x, the network tracks variables b

as the system’s right hand side, as well as the residual r.

xh
0,yh, bh, · Sh

A(·) x̃h,yh, bh, rh + x̃h
new,yh, bh, · Sh

A(·) x̂h,yh, bh, r̂h

xH
0 ,yH , bH , · SH

A(·) x̃H ,yH , bH , rH





0 0 0 0

Rh→H 0 0 0

0 0 0 Rh→H

· · · ·









P H→h −P H→h 0 0

0 0 0 0

0 0 0 0

· · · ·





(c) FAS two-grid cycle in the form of a U-net utilising four network channels.
In addition to the linear scheme, the network tracks variables b and y as
linear and nonlinear parts of the system’s right hand side.

Figure 7.5: Architectures for a general U-net (a), a linear two-grid cycle (b)
and an FAS two-grid cycle (c).

at each point in the network, we keep the channel number consistent
for the sake of simplicity.

We track the FAS variables in dedicated channels only for didactic
reasons, as a direct translation shows that a U-net architecture is
sufficient for representing FAS. When practically implementing FAS,
this overhead can be omitted.

Firstly, let us assume that we are given suitable solvers Sh
A(·),SH

A(·)
for the nonlinear operators on the fine and coarse grid, respectively.
To be able to use the two-grid cycle as a recursive building block, we
assume that all solvers approximate solutions for nonlinear systems
of the form A(x) = A(y) + b, regardless of the grid.

To this end, we always keep track of the iteration variable x, the
nonlinear right hand side y, and the linear right hand side b. In
addition, we track the residual r. By appropriately modifying these
variables, we can ensure that the solvers always act on the desired
system, despite having a common specification.

146 numerical algorithms and neural architectures

1. Presmoothing Relaxation: The first instance of the fine grid
solver obtains an initial iteration variable xh

0, which can be 0 or
a more sophisticated guess. Since the first solver is supposed
to solve Ah(xh) = bh, we simply set yh = 0. In addition, we
provide the linear right hand side bh. A residual is not needed
as an input.

The solver produces a preliminary approximation x̃h, and passes
the right hand side components yh and bh through without
changes. It also computes the residual rh = bh −Ah(x̃h) as an
additional output.

2. Restriction: As the downsampling is now explicitly concerned
with four channels, the corresponding operator in our U-net is a
4 × 4 block matrix. We apply the multigrid restriction operator
only to certain channels.

The coarse grid initialisation xH
0 can be set to 0, taking no inform-

ation from the fine grid. The coarse, nonlinear right hand side
yH = Rh→Hx̃h is given by the downsampled fine grid approxim-
ation. The corresponding linear right hand side bH = Rh→Hrh is
the downsampled residual.

In contrast to our linear correspondences in [10], the restriction
step in FAS fits a U-net interpretation even better, since the
approximation x̃h itself is restricted, as is the case in the U-net.

3. Coarse Grid Computation: The coarse solver follows the same
specification as the fine grid one. However, since yH is not set
to 0 at this point, the coarse solver actually solves the desired
system AH(xH) = AH(yH)+ bH. It produces a coarse approx-
imation x̃H and a residual rH , while leaving the right hand side
components unchanged.

4. Prolongation: The upsampling step allows to prepare the coarse
grid variables in such a way that the skip connection automatic-
ally performs the correct additions.

The first row of the matrix operator ensures that we upsample
the correction P H→hx̃H −P H→hyH. Note that this is equivalent
to the FAS formulation P H→h(x̃H − yH) if the prolongation
operator is linear. This is no limitation, however, since for the
nonlinear case we can require the solvers to directly output the
difference x̃H − yH.

The right hand side components yH and bH are not used in the
upsampling, as the fine grid right hand side is supposed to be
passed on. The same holds for the residual, as it is not relevant
to the second fine grid solver. It is only needed in case one adds
another coarser level to the cycle.

7.6 experimental evaluations 147

5. Correction: In the correction step, the fine approximation x̃h

is appropriately corrected, and the fine grid right hand side
components yh and bh are forwarded.

6. Postsmoothing Relaxation: Another instance of the fine grid
solver solves the problem Ah(xh) = bh. The nonlinear part yh

of the right hand side is still set to 0, ensuring that the correct
system is solved.

The resulting architecture is visualised in Figure 7.5(c). For the sake
of completeness, we also depict a linear multigrid cycle in its U-net
formulation in Figure 7.5(b). To this end, one only needs to drop the
nonlinear right hand side y and adapt the operators accordingly.

This shows that U-nets share essential structural properties with
multigrid methods. In particular, employing multiple image resolu-
tions connected through pooling and upsampling operations, as well
as horizontal skip connections which realise correction steps are the
keys for the success of both methods. This leads us to believe that at
their core, U-nets realise a sophisticated multigrid strategy.

7.5.1 V-Cycles, W-Cycles and Full Multigrid

Our connections between two-grid FAS and U-nets are the basic build-
ing block for more advanced multigrid strategies.

So-called V-cycles arise from recursively stacking the two-grid FAS.
Moreover, W-cycles can be built by concatenating several V-cycles.
Optimising the depth and length of these cycles can lead to vast
efficiency gains over direct solution strategies.

On the CNN side, the corresponding concept of U-nets with more
levels as well as concatenations thereof is successful in practice: Typ-
ical U-nets work on multiple resolutions [306], and so-called stacked
hourglass models [268] arise by concatenating multiple V-cycle archi-
tectures.

A full multigrid (FMG) strategy solves a problem on multiple grids
by successively concatenating V- and W-cycles, usually starting at
the coarsest grid and progressing towards the finest one. In our ex-
periments in Section 7.6.2 we will construct a trainable FMG model
based on the two-grid FAS network to approximate the solution of an
inpainting problem. This shows that our model reduction of the full
U-net is successful in practice and inspires new design strategies for
U-nets.

7.6 experimental evaluations

Let us now show that our findings are also of practical relevance.
Our experiments are divided into two parts. First, we evaluate the

148 numerical algorithms and neural architectures

proposed symmetric ResNet architectures, along with their variations
and nonmonotone activation functions for a denoising problem.

In a second experiment, we make use of our connections between
multigrid and U-nets to learn an efficient solver for diffusion-based
sparse inpainting, based on a trainable FAS architecture.

7.6.1 Symmetric ResNets and Nonmonotone Activations

Since we motivate our network designs through numerical algorithms
for a diffusion problem, we start with an elementary comparison on
a denoising problem. We deliberately choose a denoising problem,
since it is a prime example of a well-posed problem, for which the
presented numerical schemes can be easily applied.

In a second step, we refine the simple network structures to more
and more complex ones, approaching the standard neural network
design. This shows the extent to which our networks can compete
with off-the-shelf ResNets.

experimental setup We compare symmetric ResNets and their
Du Fort–Frankel and FSI extensions with the original ResNet architec-
ture [173]. As activation functions we allow the ReLU [266], Charbon-
nier [70], and rational Perona–Malik [279] activation functions.

The original ResNets train two filter kernels per ResNet block, along
with two bias terms. The symmetric ResNets on the other hand only
train one filter kernel per block, without any bias terms. We only
consider kernels of width three. For maximal transparency, we do not
use any additional optimisation layers such as batch normalisation.

When using Charbonnier and Perona–Malik activations, we always
train the corresponding contrast parameter λ. The Du Fort–Frankel
networks also learn the extrapolation parameter α, and the FSI net-
works train individual extrapolation parameters of each block.

In addition, all models train their numerical parameters such as
time step size and extrapolation parameters. We restrict the time step
size τ to our stability condition (7.11) to obtain a stable symmetric
ResNet model. In the case of the Du Fort–Frankel extension we restrict
the extrapolation parameter α to the bound in Appendix B, thus
also yielding a stable scheme. For FSI, we restrict the extrapolation
parameters αℓ to the range [0, 2]. This preserves the extrapolation
character of the scheme. However, no stability theory is available in
the case of learned extrapolation parameters.

We evaluate the networks on a synthetic dataset of one-dimensional
signals which are piecewise affine, with jumps between the segments.
This design highlights the ability of the different approaches to pre-
serve signal discontinuities. The signals are of length 256 and are
composed of linear segments that span between 1

10 and 1
2 of the signal

length. Their values lie within the interval [0, 255].

7.6 experimental evaluations 149

Finally, we add Gaussian noise of standard deviation σ = 10 to the
signals, without clipping out of bounds values. This yields pairs of cor-
rupted and ground truth signals. The training dataset contains 10000
such pairs, and the test and validation datasets contain 1000 pairs
each. As a measure of denoising quality, we choose the peak-signal-
to-noise ratio (PSNR), where higher values indicate better denoising
performance.

For a fair comparison, we train all network configurations in the
same fashion. We use the Adam optimiser [212] with a learning rate
of 0.001 for at most 2000 training epochs, and choose the average
mean square error (MSE) over the training dataset as an optimisation
objective.

The filter weights are initialised according to a uniform random
distribution with a range of [−0.1, 0.1]. The contrast parameters λ, the
time step sizes τ, and the extrapolation weights α are initialised with
fixed values of 15, 1.0, and 1.0, respectively. Out of several random
initialisations, we choose the best performing one.

evaluation of model components We first evaluate the po-
tential of the proposed network blocks on an individual level. To this
end, we train the architectures for varying amounts of residual blocks.
However, all blocks share their weights, and we also use only a single
network channel.

This configuration is closest to the interpretation of explicit schemes,
and it allows us to investigate the approximation qualities of the
different architectures within a tightly controlled frame.

Figure 7.6 presents the denoising quality of the architectures in
dependence of the number of residual blocks. Each plot is concerned
with a different activation function.

Firstly, we compare the different network architectures. As the sym-
metric ResNet is guaranteeing stability and uses less than half of the
parameters of the standard ResNet, it performs slightly worse. This is
not surprising, since there is a natural trade-off between performance
(high approximation quality) and stability, as is well-known in the
field of numerical analysis. Nevertheless, when enough blocks are
provided, the symmetric ResNet catches up to the standard one.

The acceleration methods of Du Fort–Frankel and FSI outperform
the symmetric ResNet and yield comparable performance to the stand-
ard ResNet. The trainable extrapolation parameters help both methods
to achieve better quality especially when not enough residual blocks
are provided to reach a sufficient denoising result. This is in full ac-
cordance with our expectations. When enough steps are provided
and no extrapolation is required, both methods are on par with the
standard and symmetric ResNets.

A side-by-side comparison yields insights into the performance
of different activation functions. We observe that the performance

150 numerical algorithms and neural architectures

of ReLU networks is only slightly better than classical linear diffu-
sion [195]. This shows that the ReLU is not suited for our denoising
problem, regardless of the network architecture. After as few as three
network blocks, the improvement of deeper networks is only marginal.

In contrast, both the Charbonnier and the Perona–Malik activations
are much more suitable. The nonmonotone Perona–Malik activation
function yields the best denoising performance, as our diffusion inter-
pretation suggests. When using the original ResNet with a diffusion-
inspired activation function, tremendous performance gains in com-
parison to the ReLU activation can be achieved. This shows that in this
experimental setting, the activation is the key to a good performance.

optimality of diffusion processes Interestingly, the standard
ResNet with a diffusion activation naturally learns a symmetric filter
structure with biases close to zero.

For example, the ResNet with Perona–Malik activation, a grid size
of h = 1, and 20 shared residual blocks learns kernels

k1 = (0.922,−0.917, 0.006)⊤ (7.24)

k2 = (0.051, 0.437,−0.489)⊤, (7.25)

and biases b1 = 1.6 · 10−1 and b2 = 1.2 · 10−5. If we factor out the time
step size limit of τ = 0.5 for this setting from the outer kernel k2,
we see that it transforms into k̃2 = (0.102, 0.874,−0.978)⊤. It becomes
apparent that the kernels approximately fulfil the negated symmetric
filter structure.

Moreover, the kernels closely resemble rescaled standard forward
and backward difference discretisations. This is surprising, as a kernel
of width three allows to learn derivative operators of second order,
but a first order operator appears to yield already optimal quality.

This shows that in this constrained setting, second order diffusion
processes are an optimal model which is naturally learned by a resid-
ual network.

time dynamic case In a practical setting, the residual blocks
typically do not share their weights, but train them independently. If
the parameters evolve smoothly over the blocks, we can interpret this
as an approximation of a time dynamic PDE model.

To investigate the performance of the proposed architectures in this
setting, we train the parameters of each block individually, but enforce
a certain smoothness between them. If the parameter vector of a block
at time level k is given by θk, we add a regulariser

β
K

∑
k=1

τ

(
θk − θk−1

τ

)2

(7.26)

to the loss function. Here, a smoothness parameter β controls the
amount of smoothness between the blocks, with higher values of β

7.6 experimental evaluations 151

leading to smoother evolutions. This expression approximates the
continuous temporal regulariser

β
∫ T

0
(∂tθ(t))

2 dt, (7.27)

which enforces smoothness of the continuous parameter evolution θ(t).
The regularisation ensures that the learned filters change smoothly
throughout the layers. This is essential for the numerical scheme to be
consistent with the continuous limit case where the step size τ tends
towards zero; see also [319].

For the residual network, where no time step size τ is learned
explicitly, we set the time step size to the inverse of the number of
blocks. This requires to use a different smoothness parameter β. We
tune the smoothness parameters for all architectures such that their
parameters exhibit similarly smooth evolutions over time. Numerical
parameters such as time step size and extrapolation parameters are
not affected by the regulariser.

Figure 7.7 presents the performance of time dynamic architectures
with a single channel. We use β = 5 for the standard ResNets, and set
β = 10 for all other architectures. In contrast to the previous compar-
isons, we now compare the denoising quality against the number of
network parameters. This allows us to measure performance against
model complexity.

For the symmetric ResNet we observe the same behaviour as in the
setting without a temporal dynamic. The overall best performance
still on par with the respective classical diffusion process for the
Charbonnier and Perona–Malik activation functions.

However, the time dynamic allows this model to achieve better
denoising quality for fewer blocks. For example, the symmetric ResNet
with Perona–Malik activation and seven residual blocks can achieve
a denoising quality of 36.51 dB if weights are shared, but already
37.08 dB with a regularised temporal dynamic. Similar observations for
classical diffusion processes with a time dynamic diffusivity function
can be found in [148]. Yet, this effectiveness comes at the price of
additional parameters.

The Du Fort–Frankel and FSI networks allow for higher efficiency
at the cost of more network parameters. Especially in the case of FSI,
the trainable extrapolation parameters help to achieve significantly
better performance when more residual blocks are provided. This is
in accordance with observations in the literature [240].

The proposed architectures outperform the standard ResNet for the
same amount of parameters when using Charbonnier and Perona–
Malik activations. This shows that the model reduction to a symmetric
convolution structure is indeed fruitful. Moreover, the ranking of
activation functions remains the same in most cases.

None of the architectures significantly outperform the classical
Perona–Malik diffusion process. This supports our claim that these

152 numerical algorithms and neural architectures

1 5 10 15 20

31

33

35

37

number of residual blocks

PS
N

R

ReLU activation

ResNet
SymResNet
Du Fort–Frankel
FSI
Linear diffusion

1 5 10 15 20

31

33

35

37

number of residual blocks

PS
N

R

Charbonnier activation

ResNet
SymResNet
Du Fort–Frankel
FSI
Charbonnier diffusion

1 5 10 15 20

31

33

35

37

number of residual blocks

PS
N

R

Perona–Malik activation

ResNet
SymResNet
Du Fort–Frankel
FSI
Perona–Malik diffusion

Figure 7.6: Denoising quality of network architectures with varying depth.
We use a single channel, and weights between all blocks are
shared. Each plot is concerned with a different activation function.
Architectures with Perona–Malik activation perform best, while
the ReLU activation is not suitable in this setting. Due to the tight
network constraints, the architectures reproduce the performance
of classical diffusion filters.

7.6 experimental evaluations 153

101 102

31

33

35

37

number of parameters, logarithmic scale

PS
N

R

ReLU activation
ResNet
SymResNet
Du Fort–Frankel
FSI
Linear diffusion

101 102

31

33

35

37

number of parameters, logarithmic scale

PS
N

R

Charbonnier activation

ResNet
SymResNet
Du Fort–Frankel
FSI
Charbonnier diffusion

101 102

31

33

35

37

number of parameters, logarithmic scale

PS
N

R

Perona–Malik activation

ResNet
SymResNet
Du Fort–Frankel
FSI
Perona–Malik diffusion

Figure 7.7: Denoising quality of network architectures with varying depth
and a single channel. The parameters are smoothly changing
between the residual blocks. Each plot is concerned with a differ-
ent activation function. The proposed architectures can outper-
form the standard ResNet by saving a large amount of parameters.

154 numerical algorithms and neural architectures

103 104

31

33

35

37

39

41

number of parameters, logarithmic scale

PS
N

R

ReLU activation

ResNet
SymResNet
Du Fort–Frankel
FSI
Linear diffusion

103 104

31

33

35

37

39

41

number of parameters, logarithmic scale

PS
N

R

Charbonnier activation

ResNet
SymResNet
Du Fort–Frankel
FSI
Charbonnier diffusion

103 104

31

33

35

37

39

41

number of parameters, logarithmic scale

PS
N

R

Perona–Malik activation

ResNet
SymResNet
Du Fort–Frankel
FSI
Perona–Malik diffusion

Figure 7.8: Denoising quality of network architectures with varying depth
and C = 16 network channels. Each plot is concerned with a dif-
ferent activation function. The proposed architectures outperform
the standard ResNet for the same amount of parameters. In this
setting, the acceleration strategies are on par with the symmetric
ResNet, and the margin between activation functions becomes
smaller.

7.6 experimental evaluations 155

tightly constrained networks realise a numerical algorithm at their core.
Different architectures can solve the problem with varying efficiency,
but they converge towards the same result. This will only change
when we allow for more flexibility within the network architecture,
e.g. by using multiple network channels.

towards larger networks So far, we have only considered
architectures with a single network channel. However, typical CNNs
show their full potential when using multiple channels. In this case,
the simplicity of the ReLU activation is compensated by a rich set of
convolutions between channels.

We now extend our evaluations to architectures with multiple net-
work channels. For simplicity, we leave the number of channels con-
stant throughout the network. To this end, we copy the input signal
into C channels. The output signal is computed as the average over
the individual channel results. In between, we employ the proposed
symmetric residual blocks which now use C × C block convolution
matrices with the appropriate stability constraints. These convolutions
can be interpreted as ensembles of differential operators which are
applied to the signal. The channels are then activated individually,
and convolved again with the adjoint counterparts of the differential
operators.

To allow for maximum flexibility and performance, we remove the
temporal parameter regularisation in this experiment.

The denoising performance of the networks are visualised in Fig-
ure 7.8 for the case of C = 16 channels.

This experiment is the first instance where all architectures signific-
antly outperform their respective classical diffusion counterparts. The
multi-channel architecture allows to approximate a more sophisticated
denoising model, as information in the various channels is exchanged
by means of multi-channel convolution operators.

All proposed architectures can still outperform the standard ResNet
for the same amount of parameters. In this case, the extrapolation
methods are on par with the symmetric ResNet. Interestingly, the
ranking of activation functions remains the same, albeit with a much
smaller margin. The symmetric ResNet with 20 residual blocks yields
PSNR values of 40.04 dB, 40.44 dB and 40.88 dB for the ReLU, Char-
bonnier and Perona–Malik activations, respectively. We conclude that
the more complex the network, the less the activation function matters
for performance. On the contrary, this means that networks might be
drastically reduced in size when trading network size for sophisticated
activation function design.

156 numerical algorithms and neural architectures

7.6.2 Learning a Multigrid Solver for Inpainting

So far, it is not clear if our interpretation of the two-grid FAS is a
reasonable model reduction of a full U-net. To prove that this inter-
pretation is indeed of practical relevance, we show how it can be used
to learn a multigrid solver for EED inpainting of images [135, 368,
378].

As a proof of concept, we construct a network implementing a full
multigrid structure. We replace the prescribed nonlinear solvers by
trainable feed-forward layers that learn to approximate EED inpainting
by minimising the residual of the inpainting equation

(1 − c(x))∇⊤(D∇u)− c(x)(u − f) = 0, (7.28)

where we use the Charbonnier diffusivity [70] within the diffusion
tensor D; see also Section 3.6.2.

experimental setup Our trainable FMG architecture is designed
as follows: Instead of prescribing nonlinear solvers on each grid, we
employ a series of convolutional layers with trainable weights. The
remainder of the architecture is fixed: We set the restriction operators
to a simple averaging over a 2 × 2 pixel neighbourhood, and the
prolongation operators to nearest neighbour interpolation.

Since FMG employs the same solver on each grid, we realise this
idea also in our network by sharing the weights between all solvers for
a specific grid. This drastically reduces the amount of parameters and
incites that an iterated application of the solvers performs the correct
computations.

Instead of training our network by minimizing a Euclidean loss
between ground truth data and inpainting reconstructions, we use the
absolute residual of a discretisation of the inpainting equation (7.28) as
a loss function. This is closely related to the idea of deep energies [150],
where one chooses a variational energy as a loss function.

Since we do not have such an energy available for EED inpainting,
we resort to minimising the absolute residual of the associated Euler–
Lagrange equation, which is given by (7.28). This guarantees that the
trained architecture realises EED inpainting as efficiently as possible.
To discretise the Euler–Lagrange equation, we employ the standard
discretisation from [379]. This approach is generalisable to many more
classical models beyond EED inpainting. In fact, it should be applicable
to any elliptic PDE problem.

Whereas classical solution methods for the inpainting problem
specify the known data u = f on Ω\K by means of Dirichlet boundary
conditions, we leave it to the network to reproduce also the known
data. We have found that this leads to a better approximation quality.

The inpainting masks consist of randomly sampled pixels with a
density d as a percentage of the number of image pixels. Since the

7.6 experimental evaluations 157

coarse
4h

2h

h
fine

Figure 7.9: Visualization of the full multigrid strategy which we employ in
our experiments. Dashed horizontal lines denote the three grids,
and grids become coarser from top to bottom. Each circle denotes
an instance of a solver.

masks are also required on coarser grids to compute the residual
within the FMG architecture, we downsample them by putting defin-
ing a coarse pixel as known, if at least one pixel in the 2 × 2 cell on
the fine grid is known.

We train the architecture on a subset of 1000 images of the ImageNet
dataset [318] with the Adam optimiser [212] with standard settings.

evaluation of the full multigrid network We construct
a full multigrid network using three grids of size h, 2h, and 4h. The
order in which the problem is solved on different grids is given by
[4h, 2h, 4h, 2h, h, 2h, 4h, 2h, 4h, 2h, h]. This is the simplest FMG strategy
that can be employed in a setting involving three grids and serves as a
proof-of-concept architecture. We visualise this strategy in Figure 7.9.
Thus, we employ 11 solvers, each using 12 feed-forward convolutional
layers with 20 channels and ReLU activations. Weights are shared for
solvers on the same grid.

We train this network on an EED inpainting problem with random
masks of 20% density. The EED parameters λ = 0.93, σ = 0.97 have
been optimised for inpainting quality with a simple grid search.

To show how the FMG network can benefit from the multigrid
structure, we compare it against two networks with the same amount
of parameters. One network solves the problem only on a single
grid by using 25 layers and 24 channels. Moreover, we compare our
FMG network to a standard U-net with addition with three scales, 17
channels and two layers per scale. All three models contain 1.2 × 105

trainable parameters.
Figure 7.10 shows the inpainting results for both networks at the

example of a 128× 128 version of the image trui. Moreover, we present
the true inpainting result obtained from a conjugate gradient (CG)
solver for EED inpainting.

In contrast to the single grid network, the FMG network and the
U-net are able to approximate the EED inpainting result. The FMG
and U-net results are visually comparable, while the residual of the
U-net is slightly better. This does not only show that the multigrid

158 numerical algorithms and neural architectures

original mask
single grid network

residual 0.41

full multigrid network
residual 1.7 × 10−2

standard U-net
residual 7.4 × 10−3

CG solver
residual 1.0 × 10−8

Figure 7.10: Reconstruction quality of a single grid network, a full multigrid
network, a standard U-net, and a classical CG solver for the EED
inpainting problem. All results use λ = 0.93, σ = 0.97 and the
same random mask with 20% density. Both the full multigrid
network and the standard U-net approximate an EED inpainting
result, while a single grid network fails to do so.

structure is an adequate network design, but also that a standard
U-net is not able to obtain a much better solution in this case. From
the perspective of numerical algorithms, this is expected, since we
know that multigrid methods are highly efficient for these problems.

The advantage of the FMG network is that adding further solvers
on the three scales will not inflate the number of parameters as these
solvers are shared. This is in contrast to the U-net, where any addition
increases the trainable parameter set. The architectural design of the
FMG network suggests that U-nets should also be constructed in a
similar way. In practice, already concatenating multiple U-nets [268]
is a successful idea. Instead of a single down- and upsampling pass,
multiple alternating computations on different resolutions should be
beneficial.

7.7 conclusions

We have shown that numerical algorithms for diffusion evolutions
share structural connections to CNN architectures and inspire novel
design concepts.

7.7 conclusions 159

Table 7.1: Overview of connections between numerical and neural concepts
which we have encountered.

Numerical Concept Neural Concept

numerical algorithm neural network architecture




interpretationevolution equation trained neural network
specification of
nonlinear dynamics

training

explicit scheme residual network




coarse
connectionsimplicit scheme recurrent network

multigrid techniques U-net architectures

time level residual block




detailed
connections

flux function activation function

spatial derivative convolution kernel

temporal derivative skip connection

acceleration strategies weighted skip connections

Explicit diffusion schemes yield a specific form of residual networks
with a symmetric filter structure, for which one can prove Euclidean
stability. Moreover, this architecture saves half of the network pa-
rameters, and its stability constraint is easy to implement without
affecting its performance. Answering an open question from the pre-
vious chapter, we have shown that nonmonotone activations perform
well for a denoising task, even when using them within standard
architectures in a plug-and-play fashion.

By investigating accelerated explicit schemes and implicit schemes
we have justified the effectiveness of skip connections in neural net-
works. They realise time discretisations in explicit schemes, extrapol-
ation terms to increase their efficiency, and recurrent connections in
implicit schemes with fixed point structure. In practice, the result-
ing architectures are particularly useful when training networks with
small amounts of layers.

Lastly, our connection between multigrid concepts and U-net ar-
chitectures serves as a basis for explaining their success. We have
shown that a U-net architecture is able to implement a full multigrid
strategy, which allows to learn efficient solutions for PDEs which are
typically hard to solve. By directly using the residual norm as a loss
function, we can guarantee that the network approximates the PDE at
hand. This suggests to extend the standard U-net architecture in a full
multigrid fashion.

160 numerical algorithms and neural architectures

This concludes our considerations in the one-dimensional setting.
Our direct translations of classical methods and their numerical im-
plementations have yielded structural insights into popular neural
networks and inspired well-founded neural building blocks with prac-
tical relevance. An overview of the detailed connections that we have
encountered so far is presented in Table 7.1.

Our numerical perspective on neural networks differs from most
viewpoints in the literature. However, it provides a blueprint for dir-
ectly translating a plethora of numerical strategies into well-founded
and practically relevant neural building components. In the follow-
ing chapter, we extend these considerations to the two-dimensional
setting. Therein, we discuss the central question of guaranteeing rota-
tional invariance within neural networks. Our established connections
between explicit schemes and ResNets provide the foundation of this
endeavour.

8
R O TAT I O N A L LY I N VA R I A N T N E U R A L N E T W O R K S

In this chapter, we transfer our insights from the one-dimensional
setting to the two-dimensional domain. In particular, we focus on
guaranteed rotation invariance for neural networks.

PDEs and variational methods are again an excellent starting point,
as such models often achieve invariance under transformations such
as translations and rotations by design. These invariances reflect the
physical motivation of the models: Transforming the input should
lead to an equally transformed output.

Due to their convolution structure, CNNs are shift invariant by
design. However, they lack inherent rotation invariance. Proposed
adaptations often inflate the network structure and rely on complex
filter design with large stencils; see e.g. [382].

As a core novelty we propose activation functions which couple net-
work channels by combining information from several oriented filters.
This guarantees rotation invariance within the basic building blocks of
the networks while still allowing for directional filtering. The resulting
neural architectures are inherently rotationally invariant. With only
a few small filters, they can achieve the same invariance as existing
techniques which require a fine-grained sampling of orientations.

Since in the literature, multiple notions of rotation invariance exist,
we define our terminology in the following. We call an operation
rotationally invariant, if rotating its input yields an equally rotated
output. Thus, rotation and operation are interchangeable. This notion
follows the classical definition of rotation invariance for differential
operators. Note that recent CNN literature refers to this concept as
equivariance.

We start with simple two-dimensional diffusion models for greyscale
images. Extending the connections from the previous chapters between
explicit schemes for these models and ResNets leads to activation
functions which couple network channels. Their result is based on a
rotationally invariant measure involving specific channels representing
differential operators.

By exploring multi-channel and multiscale diffusion models, we
generalise the concept of coupling to ResNeXt [398] architectures as
an extension of the ResNet. Activations which couple all network
channels preserve rotation invariance, but allow to design anisotropic
models with a directional filtering.

We derive three central design principles for rotationally invariant
neural network design, discuss their effects on practical CNNs and
evaluate their effectiveness within an experimental evaluation.

161

162 rotationally invariant neural networks

related work A simple option to learn a rotationally invariant
model is to perform data augmentation [339], where the network is
trained on randomly rotated input data. This strategy, however, only
approximates rotation invariance and is heavily dependent on the data
at hand.

An alternative is to design the filters themselves in a rotationally
invariant way, e.g. by weight restriction [74]. However, the resulting
rotation invariance is too fine-grained: The filters as the smallest
network component are not oriented. Thus, the model is not able to
perform a directional filtering.

Other works [123, 221] create a set of rotated input images and apply
filters with weight sharing to this set. Depending on the amount of
sampled orientations, this can lead to large computational overhead.

An elegant solution for inherent rotation invariance is based on
symmetry groups. Gens and Domingos [139] as well as Dieleman et
al. [102] propose to consider sets of feature maps which are rotated
versions of each other. This comes at a high memory cost as four
times as many feature maps need to be processed. Marcos et al. [249]
propose to rotate the filters instead of the features, with an additional
pooling of orientations. However, the pooling reduces the directional
information too quickly. A crucial downside of all these approaches
is that they only use four orientations. This only yields a coarse
approximation of rotation invariance.

This idea has been generalised to arbitrary symmetry groups by
Cohen and Welling [84] through the use of group convolution layers.
Group convolutions lift the standard convolution to other symmetry
groups which can also include rotations, thus leading to rotation
invariance by design. However, also there, only four rotations are
considered. This is remedied by Weiler et al. [380, 382] who make use
of steerable filters [129] to design a larger set of oriented filters. Duits
et al. [112] go one step further by formulating all layers as solvers
to parametrised PDEs. Similar ideas have been implemented with
wavelets [337] and circular harmonics [395], and the group invariance
concept has also been extended to higher dimensional data [83, 289,
381]. However, processing multiple orientations in dedicated network
channels inflates the network architecture, and discretising the large
set of oriented filters requires the use of large stencils.

We provide an alternative by means of a more sophisticated activa-
tion function design. By coupling specific network channels, we can
achieve inherent rotation invariance without using large stencils or
group theory, while still allowing for models to perform directional
filtering. In a similar manner, we have seen in Chapter 4 how wavelet
shrinkage can be made rotationally invariant by using a coupling
wavelet shrinkage function [262]. However, to the best of our know-
ledge coupling activation functions have not been considered in CNNs
so far.

8.1 two views on rotational invariance 163

publication information This chapter is based on the contents
of Alt et al. [12] which has been published within the special issue ‘PDE
Methods for Machine Learning’ of the Research in the Mathematical
Sciences journal.

organisation of the chapter We motivate our view on ro-
tationally invariant design with a tutorial example in Section 8.1. In
Section 8.2, we connect various diffusion models and their associated
energies to their neural counterparts and identify central concepts
for rotation invariance. We summarise our findings and discuss their
practical implementation in Section 8.3 and conduct experiments on
rotation invariance in Section 8.4. We finish this chapter with our
conclusions in Section 8.5.

8.1 two views on rotational invariance

To motivate our viewpoint on rotationally invariant model design,
we review a nonlinear diffusion filter of Weickert [367] for image
denoising and enhancement. It achieves anisotropy by integrating one-
dimensional diffusion processes over all directions. This integration
model creates a family of greyscale images u(x, t) : Ω × [0, ∞) → R

on an image domain Ω ⊂ R2 according to the integrodifferential
equation

∂tu =
2
π

∫ π

0
∂eθ

(
g
(
|∂eθ

uσ|2
)

∂eθ
u
)

dθ (8.1)

where ∂eθ
is a directional derivative along the orientation of an angle θ.

The evolution is initialised as u(·, 0) = f with the original image f , and
reflecting boundary conditions are imposed. The model integrates one-
dimensional nonlinear diffusion processes with different orientations θ.
All of them share a diffusivity function g which steers the diffusion in
dependence of the local directional image structure |∂eθ

uσ|2.
As this model diffuses more along low contrast directions than along

high contrast ones, it is anisotropic. It is still rotationally invariant,
since it combines all orientations of the one-dimensional processes
with equal importance. However, this concept comes at the cost of an
elaborate discretisation. First, one requires a large amount of discrete
rotation angles for a reasonable approximation of the integration.
Discretising the directional derivatives in all these directions with a
sufficient order of consistency requires the use of large filter stencils;
cf. also [48]. The design of rotationally invariant networks such as [382]
faces similar difficulties. Processing the input by applying several
rotated versions of an oriented filter requires large stencils and many
orientations.

A much simpler option arises when considering the closely related
EED model [368]

∂tu = ∇⊤(D(∇uσ)∇u) . (8.2)

164 rotationally invariant neural networks

As discussed in Section 3.1.1, a diffusion tensor D(∇uσ) adapts the
diffusion process to local directional information by smoothing along,
but not across dominant image structures.

Discretising the EED model (8.2) is much more convenient. For
example, a discretisation of the divergence term with good rotation
invariance can be performed on a 3 × 3 stencil, which is the minimal
size for a consistent discretisation of a second order model [379]; see
Section 3.1.2.

This illustrates a central insight: One can replace a complex discret-
isation by a sophisticated design of the nonlinearity. This motivates us to
investigate how rotationally invariant design principles of diffusion
models translate into novel activation function designs.

8.2 from diffusion pdes and variational models to ro-
tationally invariant networks

8.2.1 Isotropic Diffusion on Greyscale Images

We first consider the simplest setting of isotropic diffusion models for
images with a single channel. By selecting three diffusion models from
Section 3.1.1, we identify the common concepts for rotation invariance,
and find a unifying neural network interpretation.

We start with the second order isotropic diffusion model of Perona
and Malik [279], which is given by the PDE

∂tu = ∇⊤
(

g
(
|∇u|2

)
∇u
)

(8.3)

with reflecting boundary conditions.
A reformulation of the variational counterpart of this model helps

us to identify the cause of its rotation invariance. An energy for the
Perona–Malik model can be written in the following way which allows
a different generalisation:

E(u) =
∫

Ω
Ψ
(

tr
(
∇u∇u⊤

))
dx (8.4)

with an increasing regulariser function Ψ and g = Ψ′ [326].
Note that we restrict ourselves to energy functionals with only a

regularisation term and interpret the gradient descent to the energy as
a parabolic diffusion PDE. The variational framework is the simplest
setting for analysing invariance properties, as these are automatically
transferred to the corresponding diffusion process.

The argument of the regulariser is the trace of the so-called structure
tensor [127], here without Gaussian regularisation, which reads

∇u∇u⊤ =

(
u2

x uxuy

uxuy u2
y

)
. (8.5)

8.2 towards rotationally invariant networks 165

This structure tensor is a 2 × 2 matrix with eigenvectors v1 ∥ ∇u and
v2⊥∇u parallel and orthogonal to the image gradient. The corres-
ponding eigenvalues are given by ν1 = |∇u|2 and ν2 = 0, respectively.
Thus, the eigenvectors span a local coordinate system where the axes
point across and along dominant structures of the image, and the
larger eigenvalue describes the magnitude of image structures.

The use of the structure tensor is the key to rotation invariance. A
rotation of the image induces a corresponding rotation of the structure
tensor and the structural information that it encodes: Its eigenvectors
rotate along, and its eigenvalues remain unchanged. Consequently,
the trace as the sum of the eigenvalues is rotationally invariant.

In the following, we explore other ways to design the energy func-
tional based on rotationally invariant quantities and investigate how
the resulting diffusion model changes.

The fourth order model of You and Kaveh [401] relies on the Hessian
matrix. The corresponding energy functional reads

E(u) =
∫

Ω
Ψ
(
(tr(H(u)))2

)
dx. (8.6)

Here, the regulariser takes the squared trace of the Hessian mat-
rix H(u) as an argument. Since the trace of the Hessian is equivalent
to the Laplacian ∆u, the gradient flow of (8.6) can be written as

∂tu = −∆
(

g
(
(∆u)2

)
∆u
)

. (8.7)

This is a fourth order counterpart to the Perona–Malik model. Instead
of the gradient operator, one considers the Laplacian ∆. This change
was motivated as one remedy to the staircasing effect of the Perona–
Malik model [401].

The rotationally invariant matrix at hand is the Hessian H(u). In
a similar manner as the structure tensor, the Hessian describes local
structure and thus follows a rotation of this structure. Also in this
case, the trace operation reduces the Hessian to a scalar that does not
change under rotations.

To avoid speckle artefacts of the model of You and Kaveh, Lysaker et
al. [242] propose to combine all entries of the Hessian in the regulariser.
They choose the Frobenius norm of the Hessian ∥H(u)∥2

F together
with a total variation regulariser. For more general regularisers, this
model reads [101]

E(u) =
∫

Ω
Ψ
(
∥H(u)∥2

F
)

dx. (8.8)

Its gradient descent yields a diffusion process of the form

∂tu = −D⊤(g
(
∥H(u)∥2

F
)
Du
)

, (8.9)

where the differential operator D induced by the Frobenius norm
reads

D =
(
∂xx, ∂xy, ∂yx, ∂yy

)⊤ . (8.10)

166 rotationally invariant neural networks

This shows another option how one can use the rotationally invariant
information of the Hessian matrix. While the choice of a Frobenius
norm instead of the trace operator changes the associated differential
operators in the diffusion model, it does not destroy the rotation
invariance property: The squared Frobenius norm is the sum of the
squared eigenvalues of the Hessian, which in turn are rotationally
invariant.

8.2.2 Coupled Activations for Operator Channels

In the following, we extend the connections between residual net-
works and explicit schemes from the previous chapters in order to
transfer rotation invariance concepts to neural networks. To this end,
we consider the generalised diffusion PDE

∂tu = −D∗(g
(
|Du|2

)
Du
)

. (8.11)

Here, we use a generalised differential operator D and its adjoint D∗.
This PDE is the two-dimensional counterpart of Equation (7.1) and
subsumes the diffusion models (8.3), (8.7), and (8.9). Since the dif-
fusivities take a scalar argument, we can express the diffusivity as
g(|Du|2). The differential operator D is induced by the associated
energy functional.

As before, to connect the generalised model (8.11) to a ResNet
architecture, we rewrite (8.11) by means of the now vector-valued flux
function

Φ(s) = g(|s|2) s (8.12)

as
∂tu = −D∗ (Φ(Du)) . (8.13)

Let us now consider an explicit discretisation for this diffusion PDE.
Following the same reasoning as in the previous chapter, we obtain
an explicit scheme for (8.13) as

uk+1 = uk − τK⊤Φ
(
Kuk

)
. (8.14)

In contrast to the one-dimensional case, the matrix K implements a
set of two-dimensional convolutions. However, due to the flexibility
of the residual block, this does not change its connections to the
explicit scheme. As before, one can connect the two by identifying
convolutions W1,W2 and activation functions φ1, φ2 with

φ1 = τΦ, φ2 = Id, W1 = K, W2 = −K⊤, (8.15)

and setting the bias vectors to 0 [10, 319, 412].
In contrast to the one-dimensional considerations in Chapter 7, the

connection between flux and activation in the two-dimensional setting
yields additional, novel design concepts for activation functions. This
yields the first design principle for neural networks.

8.2 towards rotationally invariant networks 167

Design Principle 1 (Coupled Activations for Rotational Invariance).
Activation functions which couple network channels can be used to design
rotationally invariant networks. At each position of the image, the channels
of the inner convolution result are combined within a rotationally invariant
quantity which determines the nonlinear response.

The coupling effect of the diffusivity and the regulariser directly
transfers to the activation function. This is apparent when the differen-
tial operator D contains multiple components. For example, consider
an operator D = (D1,D2)

⊤ with two components and its discrete
variant K = (K1,K2)

⊤.
The application of the operator K transforms the single-channel

signal uk into a signal with two channels. Then the activation function
couples the information from both channels within the diffusivity g.
For each pixel position i, j, we have

Φ



(
K1u

k)
i,j(

K2u
k)

i,j


 = g

(∣∣∣K1u
k
∣∣∣
2

i,j
+
∣∣∣K2u

k
∣∣∣
2

i,j

)

(
K1u

k)
i,j(

K2u
k)

i,j


 . (8.16)

Afterwards, the application of K⊤ reduces the resulting two-channel
signal to a single channel again.

In the general case, the underlying differential operator D determ-
ines how many channels are coupled. The choice

D =
(
∂xx, ∂xy, ∂yx, ∂yy

)⊤ (8.17)

of Lysaker et al. [242] induces a coupling of four channels containing
second order derivatives. This shows that a central condition for
rotation invariance is that the convolution K implements a rotationally
invariant differential operator. We discuss the effects of this condition
on the practical filter design in Section 8.3.

We call a block of the form (8.14) a generalised two-dimensional diffu-
sion block. It is visualised in Figure 8.1 in graph form. We denote the
channel coupling by a shaded connection to the activation function.

The coupling effect is natural in the diffusion case. However, in
standard networks, the input is quickly deconstructed into multiple
channels, each one concerned with different, specific image features.
Each channel is activated independently, and information is exchanged
through trainable convolutions. While this makes networks flexible, it
does not take into account concepts such as rotation invariance. Thus,
we see that allowing coupled activations can serve as an alternative
way to guarantee built-in rotation invariance within a network. To the
best of our knowledge, this concept has not been proposed for CNNs
in the context of rotation invariance.

168 rotationally invariant neural networks

uk

Kuk

τΦ(·)

τΦ
(
Kuk

)

−τ K⊤Φ
(
Kuk

)

+

uk+1

convolution K

coupled
activation

convolution −K⊤

skip connection

Id

ge
ne

ra
li

se
d

tw
o-

di
m

en
si

on
al

di
ff

us
io

n
bl

oc
k

Figure 8.1: Generalised two-dimensional diffusion block for an explicit dif-
fusion step (8.14) with activation function τΦ, time step size τ,
and convolution filters K. The activation function couples the
channels of the operator K.

8.2.3 Diffusion on Multi-channel Images

So far, the considered models were isotropic. However, we will see
that anisotropic models inspire another form of activation function
which combines directional filtering with rotation invariance.

To this end, we move to diffusion on multi-channel images. While
there are anisotropic models for single-channel images [369], they
require a presmoothing as in the EED model. However, such models do
not have a conventional energy formulation [384]. The multi-channel
setting allows one to design anisotropic models that do not require a
presmoothing and arise from a variational energy.

In the following we consider images u = (u1, u2, . . . , uM)⊤ with M
channels. To distinguish them from the previously considered channels
of the differential operator, we refer to image channels and operator
channels in the following.

A naive extension of the Perona–Malik model (8.3) to multi-channel
images would treat each image channel separately. Consequently, the
energy would consider a regularisation of the trace of the structure

8.2 towards rotationally invariant networks 169

tensor for each individual channel. This in turn does not respect the
fact that structural information is correlated in the channels.

To incorporate this correlation, Gerig et al. [141] proposed to sum
up structural information from all channels. An energy functional for
this model reads

E(u) =

∫

Ω

Ψ

(
tr

M

∑
m=1

∇um∇u⊤
m

)
dx. (8.18)

Here we also use the trace formulation. It shows that this model makes
use of a colour structure tensor, which goes back to Di Zenzo [98]. It is
the sum of the structure tensors of the individual channels. In contrast
to the single-channel structure tensor without Gaussian regularisation,
no closed form solutions for its eigenvalues and eigenvectors are
available. Still, the sum of structure tensors stays rotationally invariant.

The corresponding diffusion process is described by the coupled
PDE set

∂tum = ∇⊤
(

g

(
M

∑
n=1

|∇un|2
)
∇um

)
(m = 1, . . . , M) (8.19)

with reflecting boundary conditions. As trace and summation are
interchangeable, the argument of the regulariser corresponds to a sum
of channel-wise gradient magnitudes. Thus, the diffusivity considers
information from all channels. It allows to steer the diffusion process
in all channels depending on a joint structure measure.

Interestingly, a simple change in the energy model (8.18) incor-
porates directional information [373] such that the model becomes
anisotropic. Switching the trace operator and the regulariser yields
the energy

E(u) =

∫

Ω

tr Ψ

(
M

∑
m=1

∇um∇u⊤
m

)
dx. (8.20)

Now the regulariser acts on the colour structure tensor in the sense of
a power series. Thus, the regulariser modifies the eigenvalues ν1, ν2

to Ψ(ν1) , Ψ(ν2) and leaves the eigenvectors unchanged. For the 2 × 2
colour structure tensor we have

Ψ

(
M

∑
m=1

∇um∇u⊤
m

)
= Ψ(ν1) v1v

⊤
1 + Ψ(ν2) v2v

⊤
2 . (8.21)

The eigenvalues are treated individually. This allows for an anisotropic
model, as each eigenvalue determines the local image contrast along
its corresponding eigenvector. Still, the model is rotationally invariant
as the colour structure tensor rotates accordingly. Consequently, the
trace of this regulariser is equivalent to the sum of the regularised
eigenvalues:

tr Ψ

(
M

∑
m=1

∇um∇u⊤
m

)
= Ψ(ν1) + Ψ(ν2) . (8.22)

170 rotationally invariant neural networks

This illustrates the crucial difference to the isotropic case, where we
have

Ψ

(
tr

M

∑
m=1

∇um∇u⊤
m

)
= Ψ(ν1 + ν2) , (8.23)

Both eigenvalues of the structure tensor are regularised jointly and
the result is a scalar, which shows that no directional information
can be involved. At this point, the motivation for using the structure
tensor notation in the previous models becomes apparent: Switching
the trace operator and the regulariser changes an isotropic model into
an anisotropic one. This is the same connection that we used to obtain
the IID model from the IAD model in Chapter 5.

The gradient descent of the energy (8.20) is an anisotropic nonlinear
diffusion model for multi-channel images [373]:

∂tum = ∇⊤
(

g

(
M

∑
n=1

∇un∇u⊤
n

)
∇um

)
(m = 1, . . . , M) . (8.24)

The diffusivity inherits the matrix-valued argument of the regulariser.
Thus, it is applied in the same way and yields a 2 × 2 diffusion tensor.
In contrast to single-channel diffusion, this creates anisotropy as its
eigenvectors do not necessarily coincide with ∇u. Thus, the multi-
channel case does not require Gaussian presmoothing.

We have seen that the coupling effect within the diffusivity goes
beyond the channels of the differential operator. It combines both the
operator channels as well as the image channels within a joint measure.
Whether the model is isotropic or anisotropic is determined by the
shape of the diffusivity result: Isotropic models use scalar diffusivities,
while anisotropic models require matrix-valued diffusion tensors. In
the following, we generalise this concept and analyse its influence on
the ResNet architecture.

8.2.4 Coupled Activations for Image Channels

A generalised formulation of the multichannel diffusion models (8.19)
and (8.24) is given by

∂tum = −D∗Φ(u,Dum) (m = 1, . . . , M) . (8.25)

As the flux function uses more information than only Dum, we switch
to the notation Φ(u,Dum). An explicit scheme for this model is de-
rived in a similar way as before, yielding

uk+1
m = uk

m − τK⊤Φ
(
uk,Kuk

m

)
(m = 1, . . . , M) . (8.26)

The activation function now couples more than just the operator chan-
nels, it couples all its input channels. In contrast to Design Principle 1,
this coupling is more general and provides a second design principle.

8.2 towards rotationally invariant networks 171

Design Principle 2 (Fully Coupled Activations for Image Channels).
Activations which couple both operator channels and image channels can be
used to create anisotropic, rotationally invariant models. At each position of
the image, all operator channels for all image channels are combined within a
rotationally invariant quantity which determines the nonlinear response.

The different coupling effects serve different purposes: Coupling
the image channels accounts for structural correlations and can be
used to create anisotropy. Coupling the channels of the differential
operators guarantees rotation invariance.

This design principle becomes apparent when explicitly formulating
the activation function. Isotropic models use a scalar diffusivity within
the flux function

Φ

(
uk,
(
Kuk

m

)
i,j

)
= g

(
M

∑
m=1

∣∣∣Kuk
m

∣∣∣
2

i,j

)(
Kuk

m

)
i,j

(m = 1, . . . , M) ,

(8.27)

which couples all channels of u at the position i, j, as well as all
components of the discrete operator K. Anisotropic models require a
matrix-valued diffusion tensor in the flux function

Φ

(
uk,
(
Kuk

m

)
i,j

)
= g

(
M

∑
m=1

(
Kuk

m

)
i,j

(
Kuk

m

)⊤
i,j

)(
Kuk

m

)
i,j

(m = 1, . . . , M) ,

(8.28)

This concept is visualised in Figure 8.2 in the form of a fully coupled
multi-channel diffusion block. To clarify the distinction between image
and operator channels, we explicitly split the image into its channels.
We see that all information of the inner filter passes through a single
activation function and influences all outgoing results in the same
manner.

Design Principle 2 shows that coupling cannot only be used for
rotationally invariant design, but also makes sense for implementing
modelling aspects such as anisotropy. This is desirable as anisotropic
models often exhibit higher performance through better adaptivity to
data.

8.2.5 Integrodifferential Diffusion

The previous models work on the finest scale of the image. However,
as shown in Part I, generating a structural measure which incorporates
information from multiple image scales can be beneficial.

To this end, we consider variants of the integrodifferential models
from Chapter 5. In analogy to the multi-channel diffusion setting, these
models inspire a full coupling of scale information for a variation of
residual networks.

172 rotationally invariant neural networks

uk
1, . . . ,uk

M

Kuk
1 Kuk

2 · · · Kuk
M

τΦ(uk, ·)

τΦ
(
uk,Kuk

1

)
τΦ
(
uk,Kuk

2

)
· · · τΦ

(
uk,Kuk

M

)

−τK⊤Φ
(
uk,Kuk

1

)
−τK⊤Φ

(
uk,Kuk

2

)
· · · −τK⊤Φ

(
uk,Kuk

M

)

−τK⊤Φ
(
uk,Kuk

1

)
, . . . ,−τK⊤Φ

(
uk,Kuk

M

)

+

uk+1
1 , . . . ,uk+1

M

convolution K K K

fully coupled
activation

convolution −K⊤ −K⊤ −K⊤

Id

skip connection

fu
ll

y
co

up
le

d
m

ul
ti

-c
ha

nn
el

di
ff

us
io

n
bl

oc
k

Figure 8.2: Fully coupled multi-channel diffusion block for an explicit
step (8.26) with a fully coupled activation function τΦ and convo-
lution filters K. The activation function couples all operator and
image channels of its input jointly. Depending on the design of
the activation, the resulting model can be isotropic or anisotropic.

We start with the energy functional

E(u) =
∫

Ω
Ψ
(

tr
∫ ∞

0

(
D(σ)u

) (
D(σ)u

)⊤
dσ

)
dx. (8.29)

We denote the scale parameter by σ and assume that the differential
operators D(σ) are dependent on the scale. This can be realised for
example by an adaptive presmoothing of an underlying differential
operator; see e.g. [14, 100].

Instead of summing structure tensors over image channels, this

model integrates generalised structure tensors
(
D(σ)u

) (
D(σ)u

)⊤
over

multiple scales. This results in a multiscale structure tensor [14] which
contains a semi-local measure for image structure. If D(σ) are rotation-
ally invariant operators, then the multiscale structure tensor is also
invariant.

8.2 towards rotationally invariant networks 173

The corresponding diffusion model reads

∂tu = −
∫ ∞

0
D(σ)∗

(
g
(∫ ∞

0

∣∣∣D(γ)u
∣∣∣
2

dγ

)
D(σ)u

)
dσ, (8.30)

where g = Ψ′ and one employs reflecting boundary conditions. Due
to the chain rule, one obtains two integrations over the scales: The
outer integration combines diffusion processes on each scale. The
inner integration, where the scale variable has been renamed to γ,
accumulates multiscale information within the diffusivity argument.

This model is a modification of the IID model from Chapter 5.
Therein, however, the diffusivity uses a scale-adaptive contrast para-
meter. Thus, it does not arise from an energy functional.

As for the multi-channel diffusion models, switching trace and
regulariser yields an anisotropic model, which is described by the
energy

E(u) =
∫

Ω
tr Ψ

(∫ ∞

0

(
D(σ)u

) (
D(σ)u

)⊤
dσ

)
dx. (8.31)

In analogy to the multi-channel model, the regulariser is applied
directly to the structure tensor, which creates anisotropy. Consequently,
the resulting diffusion process is a modification of the IAD model
from Chapter 5:

∂tu = −
∫ ∞

0
D(σ)∗

(
g
(∫ ∞

0

(
D(γ)u

) (
D(γ)u

)⊤
dγ

)
D(σ)u

)
dσ. (8.32)

The anisotropic regularisation is inherited by the diffusivity and results
in a flux function that implements a matrix-vector multiplication.

8.2.6 Coupled Activations for Image Scales

Both the isotropic and the anisotropic multiscale models can be sum-
marised by the flux formulation

∂tu = −
∫ ∞

0
D(σ)∗

(
Φ
(

u,D(σ)u
))

dσ. (8.33)

To discretise this model, we now require a discretisation of the scale
integral. To this end, we select a set of L discrete scales σ1, σ2, . . . , σL.
On each scale σℓ, we employ discrete differential operators Kℓ. This
yields an explicit scheme for the continuous model (8.33) which reads

uk+1 = uk − τ
L

∑
ℓ=1

ωℓ K
⊤
ℓ Φ

(
uk,Kℓu

k
)

. (8.34)

Here, ωℓ is a step size over the scales, discretising the infinitesimal
quantity dσ. It is dependent on the scale to allow a nonuniform
sampling of scales σℓ. A simple choice is ωℓ = σℓ+1 − σℓ; see Chapter 5.

174 rotationally invariant neural networks

Interestingly, an extension of residual networks called ResNeXt [398]
provides the corresponding neural architecture to this model. Therein,
the authors consider a sum of transformations of the input signal
together with a skip connection. We restrict ourselves to the following
formulation:

u = φ2

(
f +

L

∑
ℓ=1

W2,ℓ φℓ(W1,ℓf + b1,ℓ) + b2,ℓ

)
. (8.35)

This ResNeXt block modifies the input image f within L independent
paths, and sums up the results before the skip connection. Each path
may apply multiple, differently shaped convolutions. Choosing a
single path with L = 1 yields the ResNet model.

We can identify an explicit multiscale diffusion step (8.34) with a
ResNeXt block (8.35) by

φ1,ℓ = τ Φ, φ2 = Id, W1,ℓ = Kℓ, W2,ℓ = −ωℓK
⊤
ℓ , (8.36)

and all bias vectors b1,ℓ, b2,ℓ are set to 0, for all ℓ = 1, . . . , L.
In contrast to the previous ResNet relation (8.15), we apply different

filters Kℓ in each path. Their individual results are summed up before
the skip connection, which approximates the scale integration. While
the ResNeXt block allows for individual activation functions in each
path, we use a common activation with a full coupling for all of them.
This constitutes a variant of Design Principle 2, where one now couples
image scales.

Design Principle 3 (Fully Coupled Activations for Image Scales).
Activations which couple both operator channels and image scales can be
used to create anisotropic, rotationally invariant multiscale models. At each
position of the image, all operator channels for all image scales are combined
within a rotationally invariant quantity which determines the nonlinear
response.

Also in this case, the combined coupling serves different purposes.
Coupling the operator channels yields rotation invariance, and coup-
ling of scales allows to obtain a more global representation of the
image structure. Isotropic models employ a coupling with a scalar
diffusivity in the flux function

Φ

(
uk,
(
Kℓu

k
)

i,j

)
= g

(
L

∑
ℓ=1

∣∣∣Kℓu
k
∣∣∣
2

i,j

)(
Kℓu

k
)

i,j
, (8.37)

and a matrix-valued diffusion tensor in the flux function

Φ

(
uk,
(
Kℓu

k
)

i,j

)
= g

(
L

∑
ℓ=1

(
Kℓu

k
)

i,j

(
Kℓu

k
)⊤

i,j

)(
Kℓu

k
)

i,j
(8.38)

can be used to create anisotropic models.

8.3 discussion 175

uk

K1u
k K2u

k · · · KLu
k

τΦ(uk, ·)

τ Φ
(
uk,K1u

k
)

τ Φ
(
uk,K2u

k
)

· · · τ Φ
(
uk,KLu

k
)

−τ K⊤
1 Φ

(
uk,K1u

k
)

−τ K⊤
2 Φ

(
uk,K2u

k
)

· · · −τ K⊤
L Φ

(
uk,KLu

k
)

+

−τ ∑L
ℓ=1 ωℓ K

⊤
ℓ Φℓ

(
uk,Kℓu

k
)

+

uk+1

convolution K1 K2 KL

fully coupled
activation

convolution −K⊤
1 −K⊤

2 −K⊤
L

·ω1 ·ω2 ·ωL

weighted sum
over scales

Id

skip connection

fu
ll

y
co

up
le

d
m

ul
ti

sc
al

e
di

ff
us

io
n

bl
oc

k

Figure 8.3: Fully coupled multiscale diffusion block for an explicit multiscale
diffusion step (8.34) with a single activation function τΦ, time
step size τ, and convolution filters Kℓ on each scale. The activa-
tion function couples all inputs jointly. Depending on the design
of the activation, the resulting model can be isotropic or aniso-
tropic.

We call a block of the form (8.34) a fully coupled multiscale diffusion
block. This block is visualised in Figure 8.3. Comparing its form to
that of the multichannel diffusion block in Figure 8.2, one can see that
the different architectures use the same activation function design,
however with different motivations.

8.3 discussion

We have seen that shifting the design focus from convolutions to
activation functions can yield new insights into CNN design. We sum-
marise all models that we have considered in Table 8.1 as a convenient
overview.

All variational models are rotationally invariant, as they rely on a
structural measure which accounts for rotations. This directly transfers

176 rotationally invariant neural networks

to the diffusion model, its explicit scheme, and thus also its network
counterpart, resulting in Design Principle 1. Moreover, the different
coupling options for models with multiple scales and multiple chan-
nels show how a sophisticated activation design can steer the model
capacity. This has led to the additional Design Principles 2 and 3.

The coupling effects are naturally motivated for diffusion, but are
hitherto unexplored in the CNN world. While activation functions
such as maxout [151] and softmax introduce a coupling of their input
arguments, they only serve the purpose of reducing channel inform-
ation. Even though some works focus on using trainable and more
advanced activations [75, 124, 272], the coupling aspect has not been
considered so far.

The rotation invariance of the proposed architectures can be ap-
proximated efficiently in the discrete setting. For example for second
order models, Weickert et al. [379] present L2 stable discretisations
with good practical rotation invariance that only require a 3× 3 stencil.
For models of second order, this is the smallest possible discretisation
stencil which still yields consistent results.

In a practical setting with trainable filters, one is not restricted to the
differential operators that we have encountered so far. To guarantee
that the learned filter corresponds to a rotationally invariant differ-
ential operator, one has several options. For example, one can design
the filters based on a dictionary of operators which fulfil the rotation
invariance property, which are then combined into more complex
operators through trainable weights; see e.g. [201]. In a similar man-
ner, one can employ different versions of a base operator which arise
from a rotationally invariant operation, e.g. a Gaussian smoothing. We
pursue this strategy in our experiments in the following section in
analogy to Chapter 5.

Apart from the coupling aspect, the underlying network architecture
is not modified. This is a stark contrast to the CNN literature where
a set of orientations is discretised, requiring much larger stencils
for a good approximation of rotation invariance. We neither require
involved discretisations, nor a complicated lifting to groups. Moreover,
the proposed architectures allow for a Euclidean stability theory, as
we prove in Appendix C. Thus, we regard the proposed activation
function design as a promising alternative to the directional splitting
idea.

8.4 experiments

In the following, we present an experimental evaluation to support our
theoretical considerations. To this end, we design trainable multiscale
diffusion models for denoising. We compare models with and without
coupling activations, and evaluate their performance on differently

8.4
exper

im
en

ts
177

Table 8.1: The considered diffusion models, along with their variational energies and the resulting network architectures.

model variational energy diffusion PDE explicit scheme / network block activation coupling

Perona–Malik [279],
single-channel,

isotropic
E(u) =

∫

Ω
Ψ
(

tr
(
∇u∇u⊤

))
dx ∂tu = ∇⊤

(
g
(
|∇u|2

)
∇u
)

uk+1 = uk − τK⊤Φ
(
Kuk

)

structure tensor,
scalar multiplication

You and Kaveh [401],
single-channel,

isotropic
E(u) =

∫

Ω
Ψ
(
(tr(H(u)))2

)
dx ∂tu = −∆

(
g
(
(∆u)2

)
∆u
) Hessian,

scalar multiplication

Lysaker et al. [242],
single-channel,

isotropic
E(u) =

∫

Ω
Ψ
(
∥H(u)∥2

F

)
dx

∂tu = −D∗
(

g
(
∥H(u)∥2

F

)
Du
)

with D =
(
∂xx, ∂xy, ∂yx, ∂yy

)⊤
Hessian,

scalar multiplication

Gerig et al. [141],
multi–channel,

isotropic
E(u) =

∫

Ω
Ψ

(
tr

M

∑
m=1

∇um∇u⊤
m

)
dx ∂tum = ∇⊤

(
g

(
M

∑
n=1

|∇un|2
)
∇um

)

uk+1
m = uk

m − τK⊤Φ
(
uk,Kuk

m

)

multi-channel
structure tensor,

scalar multiplication

Weickert and Brox [373],
multi–channel,

anisotropic
E(u) =

∫

Ω
tr Ψ

(
M

∑
m=1

∇um∇u⊤
m

)
dx ∂tum = ∇⊤

(
g

(
M

∑
n=1

∇un∇u⊤
n

)
∇um

) multi-channel
structure tensor,

matrix multiplication

Alt and Weickert [14],
multiscale,
isotropic

E(u)=
∫

Ω
Ψ
(

tr
∫ ∞

0

(
D(σ)u

)(
D(σ)u

)⊤
dσ

)
dx ∂tu=−

∫ ∞

0
D(σ)∗

(
g
(∫ ∞

0

∣∣∣D(γ)u
∣∣∣
2

dγ

)
D(σ)u

)
dσ

uk+1 = uk − τ
L

∑
ℓ=1

ωℓ K
⊤
ℓ Φ

(
uk,Kℓu

k
)

multiscale
structure tensor,

scalar multiplication

Alt and Weickert [14],
multiscale,
anisotropic

E(u)=
∫

Ω
tr Ψ

(∫ ∞

0

(
D(σ)u

)(
D(σ)u

)⊤
dσ

)
dx ∂tu=−

∫ ∞

0
D(σ)∗

(
g
(∫ ∞

0

(
D(γ)u

)(
D(γ)u

)⊤
dγ

)
D(σ)u

)
dσ

multiscale
structure tensor,

matrix multiplication

178 rotationally invariant neural networks

rotated datasets. This shows that the Design Principle 1 is indeed
necessary for rotation invariance.

8.4.1 Experimental Setup

We train the isotropic (8.30) and anisotropic (8.32) multiscale diffusion
models. Both perform a full coupling of all scales, i.e. they imple-
ment Design Principles 1 and 3. As a counterpart, we train the same
multiscale diffusion model with the diffusivity applied to each channel
of the discrete derivative operator separately. Thus, the activation is
applied independently in each direction. This violates Design Prin-
ciple 1. Hence, the model should yield worse rotation invariance than
the coupled models. Still, all models implement Design Principle 3 by
integrating multiscale information.

The corresponding explicit scheme for the considered models is
given by

uk+1 = uk − τ
L

∑
ℓ=1

ωℓ K
⊤
ℓ Φ

(
uk,Kℓu

k
)

(8.39)

The choice for ωℓ is set to σℓ+1 − σℓ.
As differential operators Kℓ we choose weighted and Gaussian

smoothed gradients βℓ∇σℓ on each scale σℓ. The application of a
smoothed gradient to an image via ∇σu = Gσ ∗∇u is equivalent to
computing a Gaussian convolution with standard deviation σ of the
image gradient. Moreover, we weight the differential operators on
each scale by a scale-adaptive, trainable parameter βℓ.

A discrete set of L = 8 scales is determined by an exponential
sampling between a minimum scale of σmin = 0.1 and a maximum
one of σmax = 10 in analogy to Chapter 5. This yields discrete scales
[0.1, 0.18, 0.32, 0.56, 1.0, 1.77, 3.16, 5.62]. As a diffusivity, we choose the
exponential Perona–Malik [279] diffusivity with a trainable contrast
parameter λ. Moreover, we train the time step size τ and we use 10
explicit steps with shared parameter sets. This amounts to a total
number of 10 trainable parameters: τ, λ, and β1 to β8.

In the practical setting, a discretisation with good rotation invariance
is crucial. We use the nonstandard finite difference discretisation of
Weickert et al. [379]; see Section 3.1.2. For isotropic models, it has a free
parameter α ∈

[
0, 1

2

]
which can be tuned for rotation invariance, with

an additional parameter γ ∈ [0, 1] for anisotropic ones. We found that
in the denoising case, both parameter choices constitute a trade-off
between performance and rotation invariance.

We train all models on a synthetic dataset which consists of greyscale
images of size 256 × 256 with values in the range [0, 255]. Each image
contains 20 randomly placed white rectangles of size 140 × 70 on a
black background. The rectangles are all oriented along a common
direction, which creates a directional bias within the dataset. The
training set contains 100 images and is oriented with an angle of 30◦

8.4 experiments 179

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

25

27

29

31

rotation angle

PS
N

R

uncoupled, α = 0.41
coupled isotropic, α = 0.41
coupled anisotropic, α = 0.41, γ = 0
coupled isotropic, α = 0.5
coupled anisotropic, α = 0.5

Figure 8.4: Analysis of rotation invariance in terms of denoising quality on
differently rotated versions of the test dataset. The models have
been trained on a dataset with 30◦ orientation. The models with
coupling approximate rotation invariance significantly better than
the uncoupled model.

from the x-axis. As test datasets, we consider rotated versions of a
similar set of 50 images. The rotation angles are sampled between 0◦

and 90◦ in steps of 5◦. To avoid an influence of the image sampling on
the evaluation, we exclude the axis-aligned datasets.

To train the models for the denoising task, we add noise of standard
deviation 60 to the clean training images and minimise the Euclidean
distance to the ground truth images. We measure the denoising quality
in terms of peak-signal-to-noise ratio (PSNR). All models are trained
for 400 epochs with the Adam optimiser [212] with standard settings
and a learning rate of 0.001. One training epoch requires 50 seconds
on an NVIDIA GeForce GTX 1060 6GB, and the evaluation on one of
the test sets requires 7 seconds.

8.4.2 Evaluation

A rotationally invariant model should produce the same PSNR on all
rotations of the test dataset. Thus, in Figure 8.4 we plot the PSNR on
the test datasets against their respective rotation angle.

We see that the fluctuations within both anisotropic and isotropic
coupled models are much smaller than those within the uncoupled
model. A choice of α = 0.41 and γ = 0 yields a good balance between
performance and rotation invariance for all models. However, rotation
invariance can be driven to the extreme: A choice of α = 0.5, which
renders the choice of γ irrelevant, eliminates rotational fluctuations
almost completely, but also drastically reduces the quality. The reason
for this is given by Weickert et al. [379]: A value of α = 0.5 decouples

180 rotationally invariant neural networks

ground truth
noisy,

PSNR 15.6 dB

uncoupled,
PSNR 27.0 dB

coupled isotropic,
PSNR 28.1 dB

coupled anisotropic,
PSNR 29.2 dB

Figure 8.5: Visual comparison of denoising results for a rotation angle of 45◦.
The coupled models with α = 0.41 achieve better denoising qual-
ity as they generalise better to the rotated data.

the image grid into two decoupled checkerboard grids which do not
communicate except at the boundaries.

For the balanced choice of α = 0.41, the anisotropic model consist-
ently outperforms the isotropic one, as it can smooth along oriented
structures. As the uncoupled model can only do this for structures
which are aligned with the x- and y-axes, it performs better the closer
the rotation is to 0◦ and 90◦, respectively. Hence, it performs worst for
a rotation angle of 45◦. Thus, it does not achieve rotation invariance.

We measure the rotation invariance in terms of the variance of the
test errors over the rotation angles. While the isotropic and anisotropic
coupled models with α = 0.41 achieve variances of 0.035 dB and
0.014 dB, the uncoupled model suffers from a variance of 1.25 dB. The
extreme choice of α = 0.5 even reduces the variances of the coupled
models to 0.013 dB and 8.7 · 10−4 dB, respectively.

A visual inspection of the results in Figure 8.5 supports this trend.
Therein, we present the denoised results on an example from the
test data set with 45◦ orientation. The uncoupled model suffers from
ragged edges as the training on the differently rotated dataset has
introduced a directional bias. The coupled isotropic model preserves
the edges far better, and the coupled anisotropic model can even
smooth along them to obtain the best reconstruction quality.

8.5 conclusions 181

These findings show that the coupling effect leads to significantly
better rotation invariance properties.

8.5 conclusions

We have seen that the two-dimensional extension of our established
connections between diffusion and neural networks allows to bring
novel concepts for rotation invariance to the world of CNNs. The
considered models inspire different activation function designs, which
we summarise in Table 8.1.

The central design principle for rotation invariance is a coupling of
operator channels. Diffusion models and their associated variational
energies apply their respective nonlinear design functions to rota-
tionally invariant quantities based on a coupling of multi-channel
differential operators. Thus, the activation function as their neural
counterpart should employ this coupling, too. Moreover, coupling im-
age channels or scales in addition allows to create anisotropic models
with better measures for structural information.

This strategy provides an elegant and minimally invasive modific-
ation of standard architectures. Thus, coupling activation functions
constitute a promising alternative to the popular network designs of
splitting orientations and group methods in orientation space.

This chapter concludes Part II. Overall, we have shown that in
particular novel design ideas for activation functions can be justified
from diffusion models and their numerical implementations, and that
these ideas can be fruitful in a practical setting. We hope that our
considerations provide one further contribution to the mathematical
foundations of deep learning. In the following and final part, we show
how ideas from diffusion and deep learning can help to improve
inpainting-based image compression strategies.

Part III

I M A G E I N PA I N T I N G W I T H H Y B R I D M O D E L S

9
I N PA I N T I N G W I T H A N I S O T R O P I C S H E PA R D
I N T E R P O L AT I O N

The present chapter initiates the final part of this thesis. It deals
with an image inpainting model which combines the efficiency of
a classical interpolation method with the reconstruction quality of
anisotropic diffusion. Even though it does not involve any learning
as the exception in this thesis, it nevertheless already constitutes an
instance of a hybrid model as described in our third and final vision.
We show that combining ideas from two research areas that have for
a long time lived in separation can yield performant models without
introducing too much additional complexity.

In the previous chapter, we have already extensively investigated the
architectural differences between isotropic and anisotropic diffusion
models. The present chapter is concerned with an anisotropic exten-
sion of a classical interpolation method. Similar to the approaches in
Part I, our goal is to design a model with solid mathematical founda-
tions and only few transparent parameter choices. The only difference
is that we do not make use of any concepts from machine learning.

The starting point of this chapter is Shepard interpolation [336],
which is a fast and simple method for interpolating sparse data. Partic-
ularly its low complexity makes it attractive in the context of compres-
sion codecs where interactive computation times are desirable [280].

Shepard interpolation computes a reconstruction from known data
by a normalised weighted averaging. Typically, the weighting is de-
termined by an inverse distance function which is rotationally in-
variant. However, for the case where the mask data are distributed
regularly, additional directional information is encoded in the known
data for free. This motivates us to combine the speed and simplicity of
Shepard interpolation with ideas from edge-enhancing diffusion [368].

To this end, we introduce anisotropic Shepard interpolation, which
allows the weighting function to adapt to the local directional struc-
ture of the available data. In particular, when these data are arranged
in a regular fashion, it allows us to compute gradients and structure
tensors on the respective regular mask which yields approximations of
local orientations. In the same fashion as EED, we use this information
to guide the influence function accordingly, thus achieving an aniso-
tropic distribution of information. In an extensive evaluation, we show
that this strategy does not only improve the inpainting quality, but
also helps boost the performance of lossy image compression codecs
significantly.

185

186 inpainting with anisotropic shepard interpolation

related work Shepard interpolation [336] has originally been
proposed as a general purpose interpolation strategy. An equivalent
concept was suggested under the name of normalised convolutions
by Knutsson and Westin [215]. Therein, a set of known sampling
positions is used to reconstruct unknown positions by an inverse
distance weighting: Each known point contributes to each unknown
one according to their respective distance. Typically, the importance
of points with larger distances decreases rapidly.

To improve the efficiency of the original formulation, Franke and
Nielson [128] present a modified Shepard’s method wherein only a fixed
number of neighbouring points contribute to the reconstruction of
an unknown position. The characteristics of the weighting function
remain mostly unchanged. The seminal work of Renka [299] extends
this idea by locally varying the radius of the weighting functions, in-
creasing local adaptivity and thus reconstruction quality. Li et al. [232]
compute the weights based on a measure of local redundancy: The
less points are clustered around a known data point, the more it con-
tributes to the reconstruction. Such isotropic modifications allow to
control the influence of known points locally and are one important
building block for our model.

As the underlying true function from which the known data points
are sampled exhibits some directional structure, many works come up
with strategies to estimate this structure from the known data. Tom-
czak [356] computes an effective distance between data points which
incorporates the ratio of local anisotropy of the data. The effective
distance is used in the inverse distance function and artificially moves
points closer together when they are aligned along the locally domin-
ant anisotropic axis, thus assigning higher weights to these points. In
a similar manner, Ringaby et al. [300] compute an anisotropic distance
measure in the context of image rectification. In a higher-dimensional
setting, Lorenzi et al. [239] use such local distance measures to define
the local interpolation regions as high-dimensional ellipsoids that are
elongated along principal directions of the data.

The latter strategy is arguably the one which is related to our idea
the most. However, we greatly benefit from assuming that known data
points are sampled on a regular grid, whereas all previous references
assume irregularly spaced data. This allows us to come up with a
much simpler anisotropic measure based on an approximation of the
structure tensor. Thus, we can easily control the size and the shape of
the anisotropic weighting functions. We show that, in a pure inpainting
setting, our anisotropic Shepard interpolation model elegantly and
efficiently extends the set of anisotropic Shepard modifications.

The first instance where Shepard interpolation was used for image
compression is the regular grid codec with joint inpainting and prediction
(RJIP) codec of Peter [280]. He leverages the efficiency of Shepard
interpolation to create a highly efficient inpainting-based compression

9.1 review : isotropic shepard interpolation 187

codec as an alternative to diffusion-based ones [135, 327]. The work
of Mohideen et al. [258] extends the RJIP codec to colour images and
constitutes the baseline of our image compression experiments. Within
a simplified variant of their codec, we replace the standard isotropic
Shepard interpolation by our anisotropic modification and show that
it can boost the compression performance significantly, with only a
moderate increase of computation time.

publication information The contents in this chapter have
not appeared in a publication so far. A manuscript to be submitted to
a journal is in preparation; see also Appendix D.

organisation of the chapter In Section 9.1, we briefly review
isotropic Shepard interpolation. Afterwards, in Section 9.2 we present
our anisotropic modification and evaluate its effect on inpainting
quality in Section 9.3. We then integrate our model into a compression
codec in Section 9.4 to judge its performance in an actual compression
setting in Section 9.5. Finally, we summarise our findings in Section 9.6.

9.1 review : isotropic shepard interpolation

We consider a continuous greyscale image f : Ω → R which contains
known data at a set of positions K ⊂ Ω on a rectangular image domain
Ω ⊂ R2. Shepard interpolation [336] computes the reconstruction u
by accumulating neighbouring available information as

u(x) =

∫
y∈K w(x− y) f (y) dy∫

y∈K w(x− y) dy
, (9.1)

where w : R2 → R is a scalar weighting function.
Thus, the reconstructed value at some position is computed as a

weighted mean of the available data. One option is to use a Gaussian
weighting function with a standard deviation σ depending on the
percentage of known data. To accelerate the process, one can constrain
the weighting functions to a rectangular window and truncate them
at a given precision as a factor of the standard deviation σ; see e.g.[4,
280].

The above formulation is a continuous interpretation of the original
discrete formulation by Shepard [336]. A notable difference of our
variant is that the values at mask points are computed with the same
formula as non-mask points, while the original expression fixes the
values of known points. We have found that our modification helps
with overall inpainting quality, in particular when performing tonal
optimisation. Even though our method is technically an approximation
instead of an interpolation, we still denote it as Shepard interpolation
in the following for the sake of the original naming conventions.

188 inpainting with anisotropic shepard interpolation

9.2 anisotropic shepard interpolation

It is obvious that the original Shepard interpolation constitutes an
isotropic inpainting process if the weighting function is rotationally
invariant. Yet, if the mask data are arranged in a regular fashion, it
is easy to extract directional information of the original image at no
additional storage cost.

We propose to modify the weighting function w based on structural
information which is encoded in f . To this end, we adapt the weighting
function at each mask position y ∈ K to obtain a set of functions wy.
Our anisotropic Shepard interpolation computes the reconstruction u
as

u(x) =

∫
y∈K wy(x− y) f (y) dy∫

y∈K wy(x− y) dy
, (9.2)

Note that the only difference to the isotropic variant (9.1) are the spa-
tially varying weighting functions that depend on the local structure
of the masked image f .

The gradient ∇ f encodes the structural information of f which al-
lows to define structure-adaptive weighting functions. As a weighting
function we choose an oriented Gaussian with standard deviations
σ1, σ2, and a rotation angle θ. The two standard deviations σ1, σ2 de-
termine the major and minor directions of the Gaussian. The axis-
aligned Gaussian is then rotated by the angle θ. For σ1 = σ2, we
want to obtain a rotationally invariant Gaussian corresponding to the
isotropic case.

A model which fulfils the above properties based on the structural
information described by the image gradient ∇ f = (fx, fy)⊤ is given
by

σ2
1 = σ2, (9.3)

σ2
2 = g

(
|∇ f |2

)
σ2, (9.4)

θ = arctan
(
− fx

fy

)
, (9.5)

where σ is an input parameter determining the base standard deviation
of the Gaussian. In Figure 9.1, we visualise the relation between these
parameters in a continuous setting.

The function g(s2) is a nonlinear diffusivity function. In our exper-
iments, we found the rational Perona–Malik diffusivity [279] to be
a suitable choice. Thus, it damps the variance σ2 at image locations
with dominant structures where the edge detector |∇ f | exceeds some
contrast parameter λ. Choosing the constant diffusivity [195] yields
the isotropic Shepard interpolation model.

The angle θ determines the rotation of the deformed Gaussian func-
tion. As ∇ f points into the direction of the steepest ascent of f , the
deformed Gaussian should be oriented along the orthogonal direc-
tion ∇⊥ f . In two dimensions, a vector which is orthogonal to the

9.2 anisotropic shepard interpolation 189

∇ f

∇⊥ f

y

x
θ

σ1

σ2

Figure 9.1: Local adaptation of the weighting function to the image structure
in a continuous setting. The gradient ∇ f spans a coordinate sys-
tem rotated by θ w.r.t. the (x, y)-system. The gradient magnitude
shrinks the level lines of the Gaussian kernel (blue) across domin-
ant structures. This gives elliptic level lines with major and minor
axes proportional to σ1 and σ2, respectively.

gradient can be easily constructed, e.g. as ∇⊥ f = (fy,− fx)⊤. The
angle of this vector in the (x, y)-coordinate system is given by (9.5).

In the (∇⊥ f ,∇ f)-coordinate system, the resulting Gaussian weight-
ing function should scale the kernel along the principal directions by
the standard deviations σ1, σ2 given above. Thus, we obtain

z⊤Σz =
(

z1 z2

)



1
2σ2

1
0

0 1
2σ2

2



(

z1

z2

)
(9.6)

as an argument for the Gaussian function, where z is the spatial
difference between to positions in the (∇⊥ f ,∇ f)-coordinate system.

Let us now bring this argument to the (x, y)-coordinate system. To
this end, we multiply a rotation by θ from the right, and its inverse
from the left, yielding

R−1
θ z⊤ΣzRθ = d⊤R−1

θ ΣRθd. (9.7)

Here, d is the spatial distance between two positions in the (x, y)-
coordinate system. Note that we used the relation z = Rθd to move
the rotation matrices inside the expression.

Expressing the inner matrix as with parameters α, β, γ, we obtain
(

α β

β γ

)
= R−1

θ ΣRθ

=

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)


1
2σ2

1
0

0 1
2σ2

2



(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
,

(9.8)

190 inpainting with anisotropic shepard interpolation

which, by additionally using the identity cos(θ) sin(θ) = 1
2 sin(2θ)

yields

α =
cos2(θ)

2σ2
1

+
sin2(θ)

2σ2
2

, (9.9)

β = −sin(2θ)

4σ2
1

+
sin(2θ)

4σ2
2

, (9.10)

γ =
sin2(θ)

2σ2
1

+
cos2(θ)

2σ2
2

. (9.11)

The resulting Gaussian weighting function takes the distance between
two spatial positions d = (d1, d2)

⊤ = x− y and computes

G(d) = exp
(
−αd2

1 + 2βd1d2 − γd2
2
)

. (9.12)

This function forms the basis of the anisotropic Shepard interpolation
strategy as it adapts to the structural information of the known data.

adaptation to colour images So far, we assumed that the
input is a grey value image. However, a simple adaptation of the
gradient computation allows us to adapt our model to colour images.
For an RGB image f = (fr, fg, fb)

⊤ with three channels, the colour
structure tensor [98]

J = ∑
c∈{r,g,b}

∇ fc∇ f⊤c (9.13)

helps to find the dominant direction over all channels. It is a 2 × 2
positive semi-definite matrix. Its normalised eigenvectors v1, v2 span a
coordinate system similar to that of ∇ f , ∇⊥ f in the grey value case,
and its eigenvalues ν1, ν2 ≥ 0 measure the local contrast along the
eigenvectors. Thus, we can simply use the entries of the dominant
eigenvector v1 = (v1,x, v1,y)

⊤ and the corresponding eigenvalue ν1 in
the parameter computations:

σ2
1 = σ2, (9.14)

σ2
2 = g(ν1) σ2, (9.15)

θ = arctan
(
−v1,x

v1,y

)
. (9.16)

The channel-wise gradient approximations are computed as in
the grey value case. Note that our colour adaptation is also com-
patible with the grey value setting: The single channel structure tensor
∇ f∇ f⊤ has an eigenvector ∇ f with eigenvalue |∇ f |2, and an eigen-
vector ∇⊥ f with eigenvalue zero.

Moreover, we have also implemented a luma preference (LP) mode
inspired by diffusion-based colour image compression techniques [281]
in analogy to [258]. Therein, the gradient approximation for a colour

9.2 anisotropic shepard interpolation 191

image is computed only on the luma channel of a YCbCr version of
the image. In the pure inpainting setting, without quantisation and
different mask densities in each channel, the luma preference version
performed negligibly worse than the RGB variant, which is why we
do not consider it in the inpainting setting.

However, this result is promising for the compression context: An
LP mode allows to choose different mask densities in the luma (Y),
and the chroma (Cb and Cr) channels, as it is beneficial to sample
structural information with higher rates than colour information. As
the LP mode is on par with the RGB mode in the inpainting setting, we
expect that an embedding into a compression framework can benefit
from the higher sampling rates in the luma channel.

discrete implementation When using a discrete image f ∈
RNx×Ny which contains known data at a set of positions K ⊂ Ω on an
image domain Ω = {1, . . . , Nx} × {1, . . . , Ny}, a discrete variant of the
anisotropic Shepard interpolation computes the reconstruction ui,j at
pixel position i, j as

ui,j =
∑(p,q)∈K wp,q(i − p, j − q) fp,q

∑(p,q)∈K wp,q(i − p, j − q)
, (9.17)

where wp,q are the space-adaptive weighting functions at known pixel
positions.

In this setting, the gradient approximation (∇ f)i,j must be com-
puted carefully. If the mask pixels obey uniform sampling distances
dx, dy in x- and y-direction, then we can obtain a gradient approxima-
tion (∇ f)i,j = ((fx)i,j, (fy)i,j)

⊤ by central differences:

(fx)i,j ≈
fi+dx ,j − fi−dx ,j

2dxhx
, (9.18)

(fy)i,j ≈
fi,j+dy − fi,j−dy

2dyhy
, (9.19)

where hx, hy are the pixel sizes in x- and y-direction. The central
difference in x-direction considers the two pixels which lie dx positions
away from i. This ensures that if we want to compute the gradient
approximation at a mask position (p, q) ∈ K, the closest mask pixels
are considered for the approximation. This yields consistent gradient
approximations at mask pixels. Inconsistent approximations at pixels
in unknown image regions can be safely ignored, as they are not
required for the computation of the reconstruction.

fast tonal optimisation When inpainting sparse data, the
given data are often not optimal. A slight manipulation of the given
data can significantly improve reconstruction quality [183]. This has
also been observed in the context of Shepard interpolation [280]. In
contrast to diffusion-based inpainting methods, tonal optimisation for

192 inpainting with anisotropic shepard interpolation

Shepard interpolation can be extremely fast [280], and even closed-
form optimal solutions are possible [258].

In the anisotropic setting, no closed-form solution is available. Still,
we can make use of the superposition principle to obtain a fast tonal
optimisation for our model. Changing the value fp,q at a mask point
(p, q) ∈ K changes the following data: The pixel value fp,q itself, but
also the gradient approximation at (p, q) and all four neighbouring
mask pixels.

In practice, we compute numerator and denominator of (9.2) sep-
arately, and truncate the Gaussian weighting functions. For the novel
anisotropic setting, this gives a set of influence windows instead of a
fixed one. This allows us to quickly update a reconstruction for a new
tonal value f new

p,q :

1. For each of the five affected pixels fp,q, fp+dx ,q, fp−dx ,q, fp,q+dy ,
and fp,q−dy we remove their influence on all reconstructed pixels
within their respective influence windows. This is done by sub-
tracting the associated terms in both numerator and denominator
of (9.2).

2. We insert the new value f new
p,q and update the gradient approx-

imations and structure tensors at the five affected positions.

3. Based on the new approximations, we update the corresponding
anisotropic weighting functions wp,q.

4. Within the updated influence windows, we add the refined con-
tribution of the five pixels to the numerator and the denominator.

5. In the union of old and new influence windows, we re-compute
the reconstruction and update the reconstruction error locally.

We repeat these steps for all mask pixels in a random order. Each
time, we check if the reconstruction error is improved by changing the
current pixel’s value to both neighbouring quantised values. If this
yields a better reconstruction, the value is kept, otherwise the change
is reverted. One full pass through all mask pixels is denoted an epoch,
and we stop the process once a fixed number of epochs is computed,
or if the improvement becomes too small.

Compared to the isotropic Shepard interpolation, tonal optimisation
in the anisotropic model also includes changes in the directional
information. The optimisation automatically takes into account if it
pays off to focus on improving grey and colour values or on refining
the directional information. Thus, we expect that the gap between
tonally optimised and original interpolations will be larger in the case
of anisotropic Shepard interpolation.

9.3 inpainting experiments 193

9.3 inpainting experiments

Let us now evaluate the potential of anisotropic Shepard interpolation
within several experiments. For now, we consider the pure inpainting
case without any quantisation or compression.

To this end, we consider the greyscale images cameraman, house [342],
and trui [402], as well as three colour images from the Kodak image
database [115] kodim19 (lighthouse), kodim20 (airplane), and kodim23
(parrots). To directly compare colour and greyscale setting, we addi-
tionally consider both a greyscale and a colour version of peppers.

For each image we employ a range of mask grid sizes d = dx = dy

from d = 2 to d = 7. This corresponds to a mask density 100
d2 %. On

each combination of image and grid size, we compare the performance
of isotropic and anisotropic Shepard interpolation, before and after
tonal optimisation (TO). As an error measure, we consider the peak-
signal-to-noise ratio (PSNR).

For all approaches, we optimise the parameters with a golden sec-
tion search. In the case of isotropic Shepard interpolation, the only
parameter is the standard deviation σ of the Gaussian weighting func-
tion. For anisotropic Shepard interpolation, the contrast parameter λ

of the diffusivity is optimised in addition. In case of tonal optimisation,
we interleave the parameter optimisation with the tonal optimisation
iteratively, until the error does not improve significantly.

qualitative analysis . Figure 9.2 presents two reconstruction
examples for the images trui and cameraman for different sampling
rates. The isotropic Shepard interpolation leaves the images blurred,
and strong block artefacts arise from the subsampled grid.

Our anisotropic Shepard model alleviates these problems: The image
is generally sharper, and in particular edges are enhanced. This is
especially apparent for diagonal edges, e.g. the hat and scarf contours
of trui, and the camera tripod in cameraman. The PSNR values support
this visual impression, as the anisotropic ones are significantly higher
than those of the isotropic model.

The effect on the larger colour image kodim23 is presented in Fig-
ure 9.3. A zoom onto the right macaw shows the benefits, but also
the limitations of our anisotropic model. The coarse parts of the face
texture are enhanced, and background structures appear less blocky.
However, the pattern around the eye cannot be preserved by neither
the isotropic nor the anisotropic model, as the sampling is too coarse.

quantitative analysis . Table 9.1 lists the reconstruction errors
on a selected subset of the test images.

Throughout the experiments, the improvements of the tonally op-
timised anisotropic model over the tonally optimised isotropic one are
significant. On average, the improvement in all experiments is 0.86 dB,

194 inpainting with anisotropic shepard interpolation

original
isotropic + TO,
PSNR 31.33 dB

anisotropic + TO,
PSNR 32.50 dB

(a) trui with d=4

original
isotropic + TO,
PSNR 26.57 dB

anisotropic + TO,
PSNR 27.52 dB

(b) cameraman with d=5

Figure 9.2: Qualitative comparison between anisotropic and isotropic Shep-
ard interpolation on trui (a) and cameraman (b). Anisotropic images
occur less blurred. In particular, diagonal edges are enhanced
significantly.

where the average improvement on grey value images is significantly
higher with 1.04 dB than that on the colour images with 0.69 dB.

Moreover, we observe that with decreasing mask density, the im-
provements stagnate slightly. On average, for d = 2, the anisotropic
model is 0.87 dB better, while for d = 7, the improvement is only
0.76 dB. This is to be expected: With coarser sampling, the directional
data used in the anisotropic model becomes more unreliable. Thus,
with decreasing density the anisotropic model tends towards the iso-
tropic one. On the individual image, this effect cannot always observed
as coarse masks are not necessarily subsets of fine ones. This observa-
tion again motivates the use of an LP mode in a compression setting:
We expect that the higher sampling rates in the luma channel mitigate
this effect.

influence of colour . As we have seen, the improvements of
our anisotropic model compared to the isotropic one are not as large
on colour images. To this end, Figure 9.4 visualises the reconstruction
of peppers for both models with d = 5. We conjecture that, as isotropic

9.3 inpainting experiments 195

original zoom into original

isotropic + TO, PSNR 28.22 dB zoom into isotropic + TO

anisotropic + TO, PSNR 28.75 dB zoom into anisotropic + TO

Figure 9.3: Comparison between anisotropic and isotropic Shepard interpol-
ation on the image kodim23 with d = 5. The anisotropic model
reconstructs outlines such as the beak and face pattern more
faithfully. Moreover, background structures appear smoother.

196 inpainting with anisotropic shepard interpolation

Table 9.1: Comparison of PSNR values in decibels (dB) on selected images
for isotropic (iso.) and anisotropic (aniso.) Shepard interpolation,
and the corresponding tonally optimised counterparts (+TO). The
mask density is defined by the sampling distance d = dx = dy. The
best performance for each row is highlighted in bold.

image d
density

in %
iso. aniso.

iso.
+ TO

aniso.
+ TO

cameraman
(greyscale)

2 25.0% 34.19 35.91 37.12 38.28

3 11.1% 29.67 30.22 31.82 32.74

4 6.2% 26.80 27.05 28.49 29.46

5 4.0% 25.05 25.21 26.53 27.50

6 2.8% 23.91 24.08 25.35 26.24

7 2.0% 22.93 23.06 24.53 25.51

peppers
(greyscale)

2 25.0% 31.86 32.31 33.56 34.12

3 11.1% 29.56 30.12 31.46 32.49

4 6.2% 27.91 28.38 29.80 31.03

5 4.0% 26.63 27.03 28.51 29.75

6 2.8% 25.57 25.84 27.45 28.56

7 2.0% 24.82 25.15 26.61 27.80

peppers
(colour)

2 25.0% 29.81 30.15 31.43 31.78

3 11.1% 28.08 28.59 29.88 30.56

4 6.2% 26.80 27.26 28.64 29.58

5 4.0% 25.73 26.14 27.58 28.46

6 2.8% 24.85 25.17 26.69 27.72

7 2.0% 24.21 24.56 25.97 27.01

kodim20
(colour)

2 25.0% 28.37 28.62 30.30 31.79

3 11.1% 26.16 26.35 27.97 29.18

4 6.2% 24.84 25.02 26.56 27.47

5 4.0% 24.18 24.38 25.75 26.44

6 2.8% 23.64 23.83 25.16 25.78

7 2.0% 23.22 23.43 24.69 25.16

9.3 inpainting experiments 197

original, greyscale
isotropic + TO,
PSNR 28.52 dB

anisotropic + TO,
PSNR 29.75 dB

(a) greyscale version of peppers with d=5

original, colour
isotropic + TO,
PSNR 27.61 dB

anisotropic + TO,
PSNR 28.48 dB

(b) colour version of peppers with d=5

Figure 9.4: Comparison between anisotropic and isotropic Shepard interpol-
ation on a grey and a colour version of peppers for d = 5.

Shepard interpolation already gives worse quality in the colour setting
than in the greyscale setting, the margin to our anisotropic model
becomes smaller in turn.

effect of tonal optimisation. The tonal optimisation is the
crucial part which massively increases the performance gap between
anisotropic and isotropic Shepard interpolation. While the average
improvement from isotropic to anisotropic with tonal optimisation is
0.86 dB, it is only 0.38 dB without it. This becomes even more apparent
when splitting the average for grey and colour images: Without tonal
optimisation, greyscale image reconstructions are improved by 0.57 dB,
while colour image reconstructions are only improved by 0.19 dB.

On the contrary, the anisotropic model can leverage the freedom
of tonal optimisation much more than the isotropic one: On average,
tonal optimisation improves reconstructions by 1.80 dB in the isotropic
case, but by 2.28 dB in the anisotropic case. This confirms our previous
conjecture that the implicit optimisation of the interpolation directions
in the anisotropic model helps drastically.

The image kodim20 and its reconstructions in Figure 9.5 highlights
this effect. The zoom into the aircraft propeller region shows that in

198 inpainting with anisotropic shepard interpolation

the isotropic model, the tonal optimisation partly corrects the block
artefacts and the lacking colour information. However, the result
still contains ragged edges. The anisotropic reconstruction without
tonal optimisation suffers from a different problem: Due to the coarse
sampling, the interpolation directions at the propeller edges alternate
between only two possible choices, creating a zig-zag pattern. However,
the tonal optimisation is able to cure this problem almost completely.

9.4 application to compression

Let us now embed the anisotropic Shepard interpolation model into a
compression context. Therein, several new questions arise, the main
one being if the benefits of the anisotropic approach carry over. Ad-
ditional factors such as a quantisation of the input data influence
the quality of the reconstruction, and, in addition for the anisotropic
model, also the accuracy of interpolation directions.

To this end, we build a simple codec based on ideas from [258,
280]. First, we start with a codec with scalar quantisation for grey and
colour images which proceeds as follows:

Step 1: Mask optimisation. We optimise the mask density by
stepping through the possible grid sizes d, starting with d = 1.
We deliberately include the option of storing the full image, as
quantisation alone is sometimes enough to reach low compres-
sion ratios.

Step 2: Parameter optimisation. For each grid size, we optimise
the parameters λ and σ of the inpainting model with a golden
section search.

Step 3: Quantisation. Afterwards, optimise the number of quant-
isation levels q for a desired compression ratio. To this end, we
write the current mask data along with the image size, the para-
meters h, q, λ, and σ into a file and compress it with LPAQ [244].

We repeat steps 1–3 until we find the combination of grid size h
and quantisation q which yields the lowest error for the given
compression ratio.

Optional Step 4: Tonal optimisation. If desired, the mask data
are tonally optimised while keeping the grid size and the quant-
isation range fixed. This step is repeated multiple times and
interleaved with another optimisation of the inpainting parame-
ters σ and λ, until the error does not improve significantly.

One of the crucial differences to the codecs of [258, 280] is that
the tonal optimisation is excluded from the grid and quantisation
optimisation due to runtime limitations. Moreover, no prediction is
involved and the data are compressed with an off-the-shelf algorithm
for simplicity.

9.4 application to compression 199

original

isotropic,
PSNR 24.18 dB

isotropic + TO,
PSNR 25.78 dB

anisotropic,
PSNR 24.38 dB

anisotropic + TO,
PSNR 26.48 dB

(a) full size images

original isotropic anisotropic iso. + TO aniso. + TO

(b) zooms

Figure 9.5: Effect of tonal optimisation for the image kodim20 for d = 5. A
zoom into the anisotropic propeller region shows the benefit of
anisotropic tonal optimisation: Not only colour information is
adapted, but also the interpolation directions.

200 inpainting with anisotropic shepard interpolation

variant : vector quantisation. Following [258], one variant
that we implement is the option of vector quantisation for colour
images. To this end, we simply replace the uniform quantisation in the
codec above by vector quantisation [144]. Instead of quantising each
colour channel independently, vector quantisation defines a sparse
set of colours in the RGB space. While in the uniform quantisation
case a quantisation parameter q allows for q3 possible colours, it only
yields q colours for the case of vector quantisation.

variant : lp mode . We also implement an LP mode for colour
image compression. Therein, the interpolation directions are only
computed from the luma channel of a YCbCr version of the input
image. Moreover, it allows to choose different mask densities dℓ, dc

and quantisation levels qℓ, qc for the luma (Y) and the chroma (Cb and
Cr) channels. To steer the trade-off between the densities, we introduce
a luma factor f ∈ (0, 1) as in [258] which determines the ratio between
the budget for the luma and the chroma channels.

With different luma and chroma densities, the need for two dedic-
ated inpainting parameters σℓ and σc arises. For the anisotropic model,
we also introduce individual anisotropy parameters λℓ and λc.

For the LP mode, the steps 1–3 described above are repeated for
both luma and chroma channels and the corresponding parameters.

9.5 compression experiments

We test the codecs described above on the full Kodak image data-
base [115]. For each codec, we prescribe target compression ratios
between 20 : 1 and 150 : 1 in steps of 10. We compare the average
PSNR on the full database while averaging the achieved compression
ratios in each step.

quantitative analysis In a first experiment, we investigate the
benefits of the anisotropic over the isotropic model. In Figure 9.6, we
present four graphs comparing isotropic and anisotropic, each with
and without tonal optimisation, for all codec variants: a greyscale
version, RGB versions with scalar and vector quantisation, as well as
the LP mode variant. For the LP mode, we evaluate luma factors from
0.5 to 0.9 in steps of 0.1 and choose the best performing one for each
image and compression ratio.

Without tonal optimisation, the benefit of anisotropy is almost neg-
ligible. To some extent, we have already observed this in the pure
inpainting setting. However, in the compression context, this effect is
more severe since the set of possible grey values respectively colours is
drastically reduced. This heavily impacts the possible values for inter-
polation directions which are computed from the mask points, which
now reflect a small set of directional choices. As incorrect strongly an-

9.5 compression experiments 201

20 40 60 80 100

24

26

28

30

compression ratio X:1

PS
N

R

greyscale

isotropic
iso. + TO
anisotropic
aniso. + TO

20 40 60 80 100

24

26

28

30

compression ratio X:1

PS
N

R

RGB with scalar quantisation

isotropic
iso. + TO
anisotropic
aniso. + TO

20 40 60 80 100

24

26

28

30

compression ratio X:1

PS
N

R

RGB with vector quantisation

isotropic
iso. + TO
anisotropic
aniso. + TO

20 40 60 80 100 120

24

26

28

30

compression ratio X:1

PS
N

R

LP mode

isotropic
iso. + TO
anisotropic
aniso. + TO

Figure 9.6: Average reconstruction error (PSNR) versus average compression
ratio for all codec versions on the full Kodak database. Without
tonal optimisation, the anisotropic model does not improve recon-
structions significantly. With tonal optimisation, improvements
are significant except for the vector quantisation codec.

isotropic kernels produce worse results than mediocre isotropic ones,
no real benefit can be gained and the model resorts to an isotropic
choice.

With tonal optimisation, however, the results change drastically.
Note that the curves with tonal optimisation are shifted to the left,
since the tonal optimisation is not accounted for in the selection of
grid size and quantisation levels. Thus, tonal optimisation typically
increases the entropy of the mask data, lowering the compression
ratio.

In the greyscale case, the tonally optimised anisotropic codec shows
improvements over the tonally optimised isotropic one of up to 0.9 dB.
The higher the compression ratio, the smaller the improvement be-
comes. This is intuitive, since higher ratios imply stronger quantisation
and thus less flexibility for anisotropic kernels.

The results for the RGB codec with scalar quantisation are almost
identical, as it is the natural extension of the greyscale codec to colour
images.

Interestingly, the RGB codec with vector quantisation paints a dif-
ferent picture. Therein, the benefits of both tonal optimisation and
anisotropy are small compared to the other cases. This is a natural

202 inpainting with anisotropic shepard interpolation

original

isotropic, RGB scalar
ratio 72.7 : 1, PSNR 28.9 dB

anisotropic, RGB scalar,
ratio 73.4 : 1, PSNR 29.6 dB

isotropic, RGB vector
ratio 75.9 : 1, PSNR 29.5 dB

anisotropic, RGB vector
ratio 72.9 : 1, PSNR 30.0 dB

isotropic, LP mode, f = 0.7
ratio 76.9 : 1, PSNR 30.3 dB

anisotropic, LP mode, f = 0.7
ratio 73.0 : 1, PSNR 31.1 dB

Figure 9.7: Visual comparison of colour codec variants on the image kodim23
from the Kodak database. All images are tonally optimised. The
LP mode offers the best balance between colour and structure
reconstructions.

9.5 compression experiments 203

effect of vector quantisation: A uniform quantisation with q levels
allows for q3 possible colours for an RGB image, while a vector quant-
isation directly specifies q possible colours. Thus, the options for tonal
optimisation are limited even more, both concerning the mask data as
well as the interpolation directions.

The behaviour of the LP codecs is again closer to the RGB scalar case.
However, the shift in compression ratio through tonal optimisation
is stronger than in the other versions, indicating that more tonal
optimisation is performed.

qualitative analysis The different codec strategies are high-
lighted on the example image kodim23 in Figure 9.7. The RGB scalar
codec selects relatively coarse grid sizes to allow for a large colour set.
The coarse grid size blurs the image, and the uniform quantisation
introduces dithering-like artefacts. The anisotropic extension is able to
obtain sharper outlines in some parts of the image.

The RGB vector codec can select much finer grid sizes of in ex-
change for a smaller number of colours. The result of the coarse colour
selection is clearly visible in the form of dithered colour transitions.

The LP mode codec can focus on storing more mask points in the
luma channel with with less grey values, while coarsely sampling the
chroma channels, but allowing a larger variety of colours. From the
finer luma sampling, the anisotropic model can benefit and signific-
antly improve the result.

comparison of codec variants We can also interpret the
results of the colour experiments from a different perspective: Fig-
ure 9.8 compares the codec variants. For each setting of isotropic and
anisotropic, with and without tonal optimisation, we compare the
performance of RGB scalar, RGB vector, and LP mode codecs.

Without tonal optimisation, the isotropic and the anisotropic setting
are almost identical: The LP mode codec and the vector quantisation
codec perform on par, with the RGB scalar codec performing signi-
ficantly worse. Tonal optimisation improves both the LP mode codec
and the one with scalar quantisation. As already highlighted, the RGB
vector codec only improves slightly.

Thus, a central insight is the following: The more colours are avail-
able, the better the anisotropic model becomes. As a consequence,
we expect even more improvements when the tonal optimisation is
included within the grid size and quantisation optimisation: A larger
set of colours might be beneficial in a tonally optimised setting such
that it pays off to trade storage cost for better quality.

A comparison between our anisotropic codec and that of Mohideen
et al. [258] highlights the potential of anisotropic Shepard interpolation.
Figure 9.9 compares the two codecs with tonal optimisation for each
variant. As a transform-based competitor, we consider JPEG [278]. We

204 inpainting with anisotropic shepard interpolation

20 40 60 80 100

24

26

28

30

compression ratio X:1

PS
N

R

isotropic

RGB scalar
RGB vector
LP mode

20 40 60 80 100

24

26

28

30

compression ratio X:1

PS
N

R

anisotropic

RGB scalar
RGB vector
LP mode

20 40 60 80 100

24

26

28

30

compression ratio X:1

PS
N

R

isotropic + TO

RGB scalar
RGB vector
LP mode

20 40 60 80 100

24

26

28

30

compression ratio X:1
PS

N
R

anisotropic + TO

RGB scalar
RGB vector
LP mode

Figure 9.8: Comparison of codec variants for the colour version of the full
Kodak database. The anisotropic RGB scalar and LP codecs im-
prove significantly, with LP performing the best.

switch to MSE as a quality measure, as Mohideen et al. [258] provide
only MSE values. Lower MSE values denote a better quality.

Even with a more simplistic coding framework and optimisation
pipeline, our anisotropic models can outperform the isotropic ones
of Mohideen et al. [258] for all the RGB scalar and LP codec variants.
As the vector quantisation codec was relatively unaffected by the
anisotropic extension, it is not surprising that also in this comparison,
there is no clear favourite. The clear boost of the LP mode is what we
had hoped for: Higher mask densities in the luma channel allow for a
high adaptation of the anisotropic kernels.

What does this imply w.r.t. the goal of beating JPEG with Shepard
interpolation? In the best performing LP mode, we see that the simple
idea of anisotropic Shepard interpolation already halves the distance
in MSE to the JPEG results. Thus, anisotropic Shepard interpolation is
an important contribution towards simple yet efficient codecs that can
beat JPEG. Thus, it pays off to invest additional efforts into a more
sophisticated codec.

9.6 conclusions

A simple modification of the isotropic Shepard interpolation model
yields an anisotropic variant with better performance and only minor

9.6 conclusions 205

overhead. In the pure inpainting setting, remarkable improvements
can be achieved, especially for high mask densities.

Our experiments yield two central insights into the model: Structure-
adaptive weighting functions allow for overall better reconstructions,
and they can benefit more from tonal optimisation as interpolation
directions are implicitly optimised as well.

The anisotropic Shepard interpolation is especially appealing for a
compression context, as it does not need any additional information
besides the regular inpainting mask and the associated mask data.
Thus, it can create better reconstructions for the same storage cost. As
we have shown, the anisotropic model can help to decrease the gap
between Shepard codecs such as [258, 280] and its transform-based
competitor of JPEG.

This is not the end of the road: We think that improving the coding
aspect of our codec can improve the reconstructions even more, and
combining it with other ideas for improving Shepard interpolation
can lead to a codec which can outperform JPEG.

206 inpainting with anisotropic shepard interpolation

20 40 60 80 100

50

100

150

200

250

compression ratio X:1

M
SE

RGB scalar

anisotropic Shepard
Mohideen et al.
JPEG

20 40 60 80 100

50

100

150

200

250

compression ratio X:1

M
SE

RGB vector

anisotropic Shepard
Mohideen et al.
JPEG

20 40 60 80 100

50

100

150

200

250

compression ratio X:1

M
SE

LP mode

anisotropic Shepard
Mohideen et al.
JPEG

Figure 9.9: Comparison of our codec variants against the results of Mohideen
et al. [258]. Our anisotropic models outperform the competitors in
the RGB scalar and LP cases. Our anisotropic LP mode performs
best.

10
L E A R N I N G S PA R S E M A S K S F O R D I F F U S I O N
I N PA I N T I N G

The final technical contribution of this thesis combines several import-
ant aspects from the previous chapters. At the example of diffusion-
based inpainting, it unifies deep learning and classical methods in a
practical approach.

In the previous chapter, we worked with regular inpainting masks.
Freely optimised masks can boost the inpainting quality by a large
amount, but optimising these masks is a challenging combinatorial
problem. While there are theoretical results on optimal masks [39],
practical implementations are often not convincing albeit highly effi-
cient. On the other hand, stochastic mask optimisation strategies [246]
produce high quality masks, but are computationally expensive.

We combine efficiency and quality of mask optimisation for PDE-
based inpainting with the help of deep learning. To this end, we design
a hybrid architecture which, to the best of our knowledge, constitutes
the first instance of learned sparse masks for PDE-based inpainting.

We present a model for learning sparse inpainting masks for ho-
mogeneous, biharmonic, and edge-enhancing diffusion inpainting.
We employ two networks: one which generates a sparse inpainting
mask, and one which acts as a surrogate solver for the diffusion in-
painting PDE. By using different loss functions for the two networks,
we optimise both inpainting quality and fidelity to the inpainting
equation.

The use of a surrogate solver is a crucial novelty. It reproduces
results of a diffusion-based inpainting process without having to
perform backpropagation through iterations of a numerical solver.
This replicates the full inpainting pipeline to efficiently train a mask
optimisation model.

We then evaluate the quality of the learned masks in a learning-free
inpainting setting. Our model combines the speed of instantaneous
mask generation approaches [39] with the quality of stochastic optim-
isation [246]. Thus, we reach a new level in sparse mask optimisation
for diffusion-based inpainting.

related work Diffusion-based inpainting plays a vital role in
image and video compression [17, 135, 327], denoising [5], and many
more. A good inpainting mask is crucial for successful image in-
painting. Current approaches for the spatial optimisation of sparse
inpainting data in images can be classified in four categories.

207

208 learning sparse masks for diffusion inpainting

1. Analytic Approaches. Belhachmi et al. [39] have shown that in the
continuous setting, optimal masks for homogeneous diffusion
inpainting can be obtained from the Laplacian magnitude of the
image. In practice this strategy is very fast, allowing real-time
inpainting mask generation by dithering the Laplacian mag-
nitude. However, the reconstruction quality is lacking, mainly
due to limitations in the quality of the dithering operators [183,
246]. Moreover, analytic approaches for biharmonic and EED
inpainting are not available.

2. Nonsmooth Optimisation Strategies. Several works [50, 76, 183,
271] consider sophisticated nonsmooth optimisation approaches
that offer high quality, but do not allow to specify the desired
mask density in advance. Instead one influences it by varying a
regularisation parameter, which requires multiple program runs,
resulting in a slow runtime. Moreover, adapting the model to
different inpainting approaches is not trivial.

3. Sparsification Methods. They successively remove pixel data from
the image to create an adaptive inpainting mask. The probabil-
istic sparsification (PS) of Mainberger et al. [246] is an example
thereof; see Section 3.6.2. Sparsification strategies are generic as
they work with various inpainting operators such as diffusion-
based ones [183, 246] or interpolation on triangulations [97, 250].
Moreover, they allow to specify the desired mask density in ad-
vance. However, they are also computationally expensive as they
require many inpaintings to judge the importance of individual
data points to the reconstruction. This also makes their computa-
tion time dependent on the complexity of the inpainting operator.
Due to their simplicity and their broad applicability, sparsific-
ation approaches are the most widely used mask optimisation
strategies.

4. Densification. Densification strategies [77, 93, 208] start with
empty or very sparse masks and successively populate them.
This makes them reasonably efficient, while also yielding good
quality. They are fairly easy to implement and work well for
PDE-based [77, 93] and exemplar-based [208] inpainting operat-
ors. Still, they require multiple inpainting steps in the range of
10 to 100 to obtain a sufficiently good inpainting mask.

In order to escape from suboptimal local minima, the Categories 3
and 4 have been improved by NLPE [246] (see Section 3.6.2), at the
expense of additional inpaintings and runtime. Moreover, it is well-
known that optimising the grey or colour values of the mask pixels –
so-called tonal optimisation – can boost the quality even further [183,
246]. Also the approaches of Category 2 may involve tonal optimisation
implicitly or explicitly.

10.1 review : data optimisation for inpainting 209

Qualitatively, carefully tuned approaches of Categories 2–4 play
in a similar league, and are clearly ahead of Category 1. However,
their runtime is also substantially larger than Category 1, mainly
due to the many inpaintings that they require. Last but not least, all
aforementioned approaches are fully model-based, in contrast to most
recent approaches in image analysis that benefit from deep learning
ideas.

The goal of the present paper is to show that the incorporation of
deep learning can give us the best of two worlds: a real-time capability
similar to Category 1, and a quality similar to Categories 2–4. In
order to focus on the main ideas and to keep things simple, we do
not consider tonal optimisation, but is equally possible for our novel
approach.

Learning-based inpainting has also been successful in recent years.
Following the popular work of Xie et al. [397], several architectures
and strategies for inpainting have been proposed; see e.g. [176, 197,
237, 277, 321, 400, 403] However, inpainting from sparse data is rarely
considered. Vašata et al. [364] present sparse inpainting based on
Wasserstein generative adversarial networks. Similarly, Ulyanov et
al. [360] consider inpainting from sparse data without mask generation.
Dai et al. [91] present a trainable mask generation model from an
adaptive sampling viewpoint. Our approach is the first to combine
deep learning for mask optimisation for PDE-based inpainting in a
transparent and efficient way.

publication information The presented work is set to appear
as a conference publication of Alt et al. [9] at the 2022 Iberian Con-
ference on Pattern Recognition and Image Analysis. This chapter is
supplemented with additional experiments for biharmonic and EED
inpainting.

organisation of the chapter In Section 10.1, we briefly re-
view data optimisation strategies for diffusion-based inpainting. After-
wards in Section 10.2, we introduce our model for learning inpainting
masks. We evaluate the quality of the learned masks in Section 10.3
before presenting our conclusions in Section 10.4.

10.1 review : data optimisation for inpainting

As a reminder, diffusion inpainting restores missing information in a
continuous greyscale image f : Ω → R on some rectangular domain
Ω, where image data is only available on an inpainting mask K ⊂ Ω
by computing the reconstruction u as the solution to the PDE

(1 − c) Lu − c (u − f) = 0. (10.1)

210 learning sparse masks for diffusion inpainting

with reflecting boundary conditions. Most diffusion-based inpainting
models consider binary values for the confidence function c, however,
it is also possible to use non-binary confidence functions [185], which
we use to our advantage.

The differential operator L determines the type of inpainting: The
choice L = ∆ leads to homogeneous diffusion inpainting [195], bihar-
monic inpainting is achieved with L = −∆2, and L = ∇⊤(D(∇σu)∇u)
is EED inpainting [368, 390]; see also Sections 3.1.1 and 3.6.2. In the
latter, one typically uses a Charbonnier diffusivity with a contrast
parameter λ and a smoothing scale σ.

In practice, optimising the discrete binary mask c of the discrete
inpainting equation is crucial. This problem is constrained by a desired
mask density d which measures the percentage of mask pixels w.r.t. the
number of image pixels.

One strategy for mask optimisation in the homogeneous diffusion
case has been proposed by Belhachmi et al. [39]. They show that an
optimal mask in the continuous setting can be obtained from the res-
caled Laplacian magnitude of the image. However, transferring these
results to the discrete setting often suffers from suboptimal dithering
strategies. While being highly efficient, reconstruction quality is not
fully satisfying. Moreover, such an approach is not available for the
other inpainting operators.

Better quality can be achieved with the popular stochastic strategies
of Mainberger et al. [246]: Probabilistic sparsification (PS) and nonlocal
pixel exchange (NLPE) (see Section 3.6.2).

The use of PS and NLPE requires to solve the inpainting problem
numerous times, leading to slow mask optimisation. To avoid this
computational bottleneck, we want to reach the quality of stochastic
mask optimisation with a more efficient model based on deep learning.

10.2 sparse masks with surrogate inpainting

Our model consists of two equally shaped U-nets [306] with different
loss functions. By optimising both inpainting quality and fidelity to
the inpainting equation, we obtain masks with good reconstruction
quality for the inpainting problem at hand.

the mask network The mask network takes an original image f

and transforms it into a mask c. We denote the forward pass through
the mask network by M(·), i.e. the mask is computed as c = M(f).

The mask entries lie in the interval [0, 1]. Permitting non-binary
values allows for a differentiable network model. To obtain mask
points in the desired range, we apply a sigmoid function to the output
of the network. Moreover, the mask network is trained for a specific
mask density d. To this end, we rescale the outputs of the network

10.2
spa

r
se

m
a

sk
s

w
ith

su
r

r
o

g
a

te
in

pa
in

tin
g

211

original image f

mask
network

c = M(f)

non-binary mask c

inpainting
network

u = I(f , c)

reconstruction u

inpainting loss LI (u, f)

cf. Equation (10.2)

residual loss LR (u, f , c)

cf. Equation (10.5)

Figure 10.1: Overview of our model structure. Solid lines denote forward passes, dashed lines denote backpropagation.

212 learning sparse masks for diffusion inpainting

if they exceed the desired density. We do not require a lower bound,
since the loss function incites a sufficiently dense mask.

The mask network places the known data such that the inpaint-
ing error between the reconstruction u and the original image f is
minimised. This yields the inpainting loss

LI(u, f) =
1

nxny
∥u− f∥2

2 (10.2)

as its objective function. Its implicit dependency on the inpainting
mask links the learned masks to the reconstructions.

We found that the mask network tends to get stuck in local minima
with flat masks which are constant at every position, yielding a ran-
dom sampling. To avoid this, we add a regularisation term R(c) to
the inpainting loss LI(u, f). It penalises the inverse variance of the
mask via

R(c) =
ρ1

1 + σ2
c

ρ2
2

, (10.3)

The variance of a mask describes how strongly the confidence meas-
ures of the individual pixels differ from the mean probability. Thus,
the regulariser serves two purposes: First, it lifts the bad local minima
for flat masks by adding a strong penalty to the energy landscape.
Second, it promotes probabilities closer to zero and one, as this max-
imises the variance. The impact of the regularisation term is steered
by two positive regularisation parameters ρ1, ρ2.

the inpainting network The second network is called the
inpainting network. Its task is to create a reconstruction u which follows
a classical inpainting process. In Chapter 7 we have shown that U-nets
realise an efficient multigrid strategy at their core. Thus, we use a
U-net as a surrogate solver which reproduces the results of the PDE-
based inpainting. The inpainting network takes the original image f

and the mask c and creates a reconstruction u = I (f , c). This result
should solve the discrete version of the inpainting equation (10.1)
which reads

(I −C)A(u)u−C (u− f) = 0. (10.4)

Here, A(u) is a discrete implementation of the inpainting operator
L with reflecting boundary conditions, and C = diag(c) is a mat-
rix representation of the mask. To ensure that the reconstruction u

approximates a solution to this equation, we minimise its residual,
yielding the residual loss

LR(u, f , c) =
1

nxny
∥ (I −C)A(u)u−C (u− f) ∥2

2 . (10.5)

As the residual loss measures fidelity to the PDE-based process, an
optimal network approximates the PDE solution in an efficient way

10.3 experiments 213

that allows fast backpropagation. This is another instance of the deep
residual idea which we have established in Chapter 7 as an analogy to
deep energies [150].

Figure 10.1 presents an overview of the full model structure. Note
that the inpainting network receives both the mask and the original
image as an input. Thus, this network is not designed for standalone
inpainting. However, this allows the network to easily minimise the
residual loss by transforming the original into an accurate inpainting
result, given the mask as side information.

practical application After training the full pipeline in a joint
fashion, the mask network can be used to generate masks for diffusion
inpainting. To this end, we apply the mask network to an original
image and obtain a non-binary mask. This mask is then binarised: The
probability of a pixel belonging to a mask is given by its non-binary
value. At each position, we perform a weighted coin flip with that
probability. Afterwards, the binarised masks are fed into a numerical
solver of choice for the inpainting problem.

While binarising the mask is not necessary in this pure inpainting
framework, it is important for compression applications since storing
binary masks with arbitrary point distributions is already highly non-
trivial [259].

10.3 experiments

experimental setup We train both U-nets jointly with their
respective loss function on the BSDS500 dataset [20]. As a training set,
we use 200 cropped grey value images of size 256 × 256 with values
in the range [0, 255]. We do not use a validation set as the training
process is fully fixed.

Both U-nets employ 5 scales, with 3 layers per scale. On the finest
scale, they use 10 channels, and this number is doubled on each scale.
Thus, each U-net possesses around 9 × 105 parameters. We use the
Adam optimiser [212] with standard settings, a learning rate of 5 · 10−4,
and 4000 epochs. We train multiple instances of the model for densities
between 10% and 1% with several random initialisations.

The regularisation parameter ρ1 scales linearly with the density,
ranging from 10 to 25 for densities between 1% and 10%. This ensures
that the balance between regularisation term and loss is similar for all
densities. The parameter ρ2 is fixed to 0.1.

EED inpainting requires to provide the model parameters λ and σ.
However, we found that learning the parameters during the inpainting
is not trivial and suffers from easy minima in the sense that the
model chooses parameter combinations which yield e.g. homogeneous
diffusion inpainting. Thus, we settle for surrogate parameters by fixing
λ = 1 and choosing σ = 0.2

d adaptively with the mask density. We

214 learning sparse masks for diffusion inpainting

also set these parameters for the probabilistic strategies for a fair
comparison. While this does not produce optimal inpainting quality,
it allows to show that it is indeed possible to learn masks for EED
inpainting.

After training, we binarise the masks and use them with a conjugate
gradient solver for the inpainting problem to obtain a reconstruction.
Since we aim at the highest quality, we take the best result out of 30
samplings.

Analogously, we generate masks once with PS only, and once with
PS and additional NLPE. In the following, we denote the latter com-
bination by PS+NLPE. In our sparsification we use candidate fractions
p = 0.1 and q = 0.05, and we take the best result out of 5 runs. For
NLPE, we use 30 candidates of which 10 are exchanged. We run NLPE
for 10 cycles. In a single cycle, each mask point is exchanged once on
average.

Moreover, we compare our homogeneous diffusion results against
the strategy of Belhachmi et al. [39]. This approach is realised by
taking the Laplacian magnitude of the image, rescaling it to obtain a
desired density, and dithering the result with a binary Floyd–Steinberg
algorithm [126].

We compare our results on the five popular test images boat, house,
peppers [342], cameraman, and trui [402] since performing PS and NLPE
on a large database is infeasible. We measure the quality in terms of
peak signal-to-noise ratio (PSNR).

reconstruction quality Figure 10.2 shows a visual compar-
ison of optimised masks and the corresponding inpainting results
for the case of homogeneous diffusion inpainting. For all test cases,
we observe that our learned masks are structurally similar to those
obtained by PS with NLPE. This helps to create sharper contours,
whereas the inpainting results of Belhachmi et al. suffer from fuzzy
edges. The visual quality of the inpainting results for our model and
PS+NLPE is indeed competitive.

Figure 10.3 presents the results for biharmonic diffusion inpainting.
As no analytic method is available, we substitute the results by those
obtained by probabilistic sparsification only. The PS+NLPE masks
distribute points more evenly than those for homogeneous inpainting.
Interestingly, the difference between PS only and PS+NLPE can be-
come quite drastic, in particular for very sparse masks. As biharmonic
inpainting can produce over- and undershoots, large areas without
mask points can lead to heavy degradations.

We observed that learning masks for biharmonic diffusion is far
more difficult than for homogeneous diffusion inpainting. We conjec-
ture that the higher sensitivity of the operator w.r.t. individual mask
points complicates the network optimisation. The resulting masks
for high densities cluster more than the competing results, and the

10.3 experiments 215

inpainting consequently suffers from the over- and undershoots. Inter-
estingly, the extremely sparse mask in Figure 10.3a is quasi-random.
We presume that this is a local minimum which was easier to attain
than that of PS+NLPE.

For EED inpainting, we made similar observations as for biharmonic
diffusion. The model is harder to train and gets stuck in bad local
minima more often. Figure 10.4 shows that the learned masks are
competitive in the extremely sparse case, but cannot compete with
neither PS nor PS+NLPE in the cases with higher density. Nevertheless,
the coarse structure of the mask is similar. These results show that
our methodology is applicable to more complex inpainting operat-
ors, however, some optimisations in the specific architecture and its
training are warranted.

Figure 10.5 presents a comparison of the reconstruction quality
averaged over the test images for all inpainting operators. For homo-
geneous diffusion, our learned masks consequently outperform the
strategy of Belhachmi et al.. Moreover, our model is on par with PS
for densities smaller than 6%. For some extremely small densities it
even outperforms PS and is on par with PS+NLPE.

In the biharmonic diffusion case, our learned model is competitive
with PS. The nonmonotone graph results from failure cases on indi-
vidual images. Interestingly the trend for very sparse masks is the
same as for homogeneous diffusion, albeit not that pronounced. The
quality of PS+NLPE is out of reach.

This is even more the case for EED inpainting. Here, we are only
competitive with PS for very sparse masks, while our model quickly
falls of in comparison to PS and PS+NLPE for higher densities. It seems
that our model does not account for the specific scaling required for
EED.

These results are still promising: For applications such as inpainting-
based image compression, very sparse masks are more important and
more challenging [246, 327]. Therefore, our mask generation model
performs well for the practically relevant mask densities.

computational efficiency The big advantage of the learned
mask generation is its speed. As inpainting operations are the domin-
ant factor for computation time, we use the number of inpaintings as
a measure for efficiency. In comparison, the forward pass of the mask
network is negligible.

Figure 10.6 visualises the average number of inpaintings required to
obtain masks of a specific density for the test set. For this comparison
we choose homogeneous diffusion inpainting, however the number
of inpaintings is independent of the operator at hand. To generate a
mask, both our model and that of Belhachmi et al. do not require any
inpainting operations. Thus, the efficiency of these mask generation
strategies does not depend on the density.

216 learning sparse masks for diffusion inpainting

original Belhachmi et al. PS + NLPE our model

(a) homogeneous diffusion on house with 3% density

original Belhachmi et al. PS + NLPE our model

(b) homogeneous diffusion on trui with 5% density

original Belhachmi et al. PS + NLPE our model

(c) homogeneous diffusion on peppers with 8% density

Figure 10.2: Homogeneous inpainting results for different mask densities.
Mask points are shown in black, and mask images are framed
for better visibility.

10.3 experiments 217

original PS PS + NLPE our model

(a) biharmonic diffusion on house with 3% density

original PS PS + NLPE our model

(b) biharmonic diffusion on trui with 5% density

original PS PS + NLPE our model

(c) biharmonic diffusion on peppers with 8% density

Figure 10.3: Biharmonic inpainting results for different mask densities. Mask
points are shown in black, and mask images are framed for
better visibility.

218 learning sparse masks for diffusion inpainting

original PS PS + NLPE our model

(a) EED on house with 3% density

original PS PS + NLPE our model

(b) EED on trui with 5% density

original PS PS + NLPE our model

(c) EED on peppers with 8% density

Figure 10.4: EED inpainting results for different mask densities. Mask points
are shown in black, and mask images are framed for better
visibility.

10.3 experiments 219

2% 4% 6% 8% 10%

10

15

20

25

30

35

density

PS
N

R

homogeneous diffusion

Belhachmi et al.
PS
PS + NLPE
our learned masks

2% 4% 6% 8% 10%

10

15

20

25

30

35

density

PS
N

R

biharmonic diffusion

PS
PS + NLPE
our learned masks

2% 4% 6% 8% 10%

10

15

20

25

30

35

density

PS
N

R

EED

PS
PS + NLPE
our learned masks

Figure 10.5: Comparison of average inpainting quality on the test images
for three inpainting operators. For homogeneous diffusion, he
learned masks consistently outperform those of Belhachmi et
al. and can compete with masks generated by PS. For very
sparse masks, the learned masks for homogeneous diffusion can
compete with PS+NLPE. For biharmonic inpainting, this trend
continues, however the margin between probabilistic strategies
and our learned model increases. For EED, only very sparse
learned masks are competitive.

220 learning sparse masks for diffusion inpainting

0% 2% 4% 6% 8% 10%
0

10

100

1000

10000

density
nu

m
be

r
of

in
pa

in
ti

ng
s

efficiency comparison

Belhachmi et al.
PS
PS + NLPE
our learned masks

Figure 10.6: Comparison of efficiency in terms of the number of inpaintings
for each density. Both our method and that of Belhachmi et al.
generate masks without computing an inpainting. The stochastic
optimisation strategies compute up to thousands of inpaintings.

For PS, lower densities require more inpainting operations. Adding
NLPE requires even more inpainting operations depending on the
number of cycles and the mask density. Both strategies trade compu-
tational efficiency for inpainting quality.

For example, a single sparsification run with homogeneous diffusion
for a 3% mask on the cameraman image with realistic parameter settings
requires 700 steps. On an Intel Core i7-7700K CPU @ 4.20GHz, this
amounts to 58 seconds of runtime. The subsequent NLPE optimisation
requires another 2000 steps, resulting in more than 3 minutes of
additional runtime. For the more complex operators of biharmonic
diffusion and EED this process can be orders of magnitude slower.
In contrast, the strategy of Belhachmi et al. does not require any
inpainting, and a mask can be generated in only 24 milliseconds.

Our model requires only 85 milliseconds for passing a single image
through the mask network on the CPU. Thus, it plays in the same
league as the strategy of Belhachmi et al., while being on par with
the stochastic optimisation in terms of quality. This allows instantan-
eous high quality mask generation. As a consequence, our learned
model can serve as a highly efficient replacement of stochastic mask
optimisation in the case of homogeneous diffusion.

Moreover, our model can produce masks instantaneously for all
inpainting operators, while the analytic strategy of Belhachmi et al. is
only available for homogeneous diffusion inpainting. For biharmonic
diffusion and EED inpainting, a combination of instantaneous mask
generation with additional NLPE may be a good compromise to
accelerate the mask optimisation process.

10.4 conclusions 221

10.4 conclusions

We have proposed the first approach of sparse mask learning for
diffusion-based inpainting. It fuses ideas from deep learning with
classical homogeneous diffusion inpainting. The key of this strategy
is a combination of an inpainting loss for the mask generator and a
residual loss for the surrogate inpainting network. Its results are com-
petitive with stochastic mask optimisation for homogeneous diffusion
inpainting, while being up to four orders of magnitude faster. This
constitutes a new milestone in mask optimisation for diffusion-based
inpainting.

Moreover, our model relies on our perspective to treat neural net-
works as numerical solvers. The use of PDE residuals for solving the
inpainting equation with a surrogate model is the key to circumvent-
ing backpropagation through a classical numerical solver, yielding an
efficient learning strategy. Thus, we see that our theoretical considera-
tions from Part II are also of practical relevance.

Improving the model architecture and its hyperparameters is essen-
tial for stabilising the optimisation process, and it may lead to better
results for the more complex inpainting operators of biharmonic dif-
fusion and EED. Moreover, our methodology has the potential to
optimise every part of the inpainting equation while simultaneously
solving it. This includes learning the EED parameters as well as
providing a tonally optimised version of the input image, given that
the optimisation process is still well-behaved.

11
C O N C L U S I O N S A N D O U T L O O K

11.1 conclusions

We have shown that connecting and combining mathematically well-
founded models and concepts from deep learning can yield both
valuable theoretical insights as well as practical improvements. We
were able to identify design criteria for neural network components
that fulfil various mathematical guarantees, and with their help create
advanced models for practical applications such as denoising and
inpainting.

In the first part of the thesis, we have improved models relying
on wavelet shrinkage and anisotropic diffusion by means of learning
with additional model reduction. Chapter 4 presented an approach
to design scale-adaptive wavelet shrinkage functions with the help of
their connection to diffusion filters. Therein, the amount of shrinkage
on each scale was defined by a trainable parameter set. We have
identified a smooth relation between the parameters and were able to
drastically reduce the parameter set to a practically feasible minimal
set, without fundamentally sacrificing denoising performance.

In the same way, Chapter 5 extended this approach to anisotropic dif-
fusion filters. Relying on integrodifferential equations, we were able to
come up with integrodifferential anisotropic diffusion as an extension
of edge-enhancing diffusion. By accumulating diffusion processes and
structural information over multiple image scales, the proposed model
can denoise images more effectively. The methodology remained un-
changed: A small trainable set of parameters helps to adapt the model
to the new configuration, while a manually inferred reduction leaves
us with a minimal parameter set. This model reduction strategy is of
general nature and can be applied in a straightforward way.

The second part is the heart of this thesis. Therein, we have ex-
tensively investigated the connections between diffusion, wavelets,
variational methods, and specific neural network architectures. While
Chapter 6 started with simple one-dimensional models with no learn-
ing involved, Chapter 7 extended our investigations to more gen-
eral, trainable diffusion filters. Finally, Chapter 8 considered the two-
dimensional setting and the newly arising concepts such as rotation
invariance. Our core finding was that by regarding these architectures
as numerical solvers, one can define criteria for network building
blocks which are stable, well-posed, and rotationally invariant by
design. These criteria include a symmetric filter structure and ac-
tivation functions which coincide with diffusion flux functions that

223

224 conclusions and outlook

can couple multiple network channels. Moreover, we have identified
several popular numerical algorithms for PDEs with their network
counterparts.

Our decision of translating concepts from the traditional mathemat-
ical models towards the world of neural networks was deliberate. It is
motivated from the fact that the opposite way of translation is much
more challenging, if not infeasible. Thus, our findings are predom-
inantly to be understood as one-way connections. Nevertheless, they
allow some conjectures in the other direction. While it is obvious that
fully fledged neural networks perform very complex computations,
our findings suggest that at their core, they are founded on the same
basic concepts as their numerical counterparts. The many parallels
that can be observed in the histories of both neural network design
and numerical algorithms for PDEs suggests that our interpretations
are plausible.

The final part of the thesis dealt with improvements for image
inpainting and inpainting-based image compression by means of hy-
brid models. The first hybrid model in Chapter 9 combined Shepard
interpolation, an efficient image inpainting strategy, with concepts
from edge-enhancing diffusion inpainting. This allowed us to come
up with anisotropic Shepard interpolation which offers a good com-
promise between computational efficiency and quality of inpainting
results. We have shown that this model is able to significantly advance
the compression performance of previous codecs relying on Shepard
interpolation on the way towards beating JPEG with simple codecs.

Finally, Chapter 10 returned to our primary focus by combining
diffusion-based inpainting and deep learning. By using PDE residuals
within neural loss functions, we solved an inpainting problem with
a surrogate network, while another one learned the corresponding
inpainting masks. By attributing different losses to the networks, it was
possible to efficiently learn a mask generating network for diffusion-
based inpainting. This is a stark improvement over existing data
optimisation strategies as our strategy does not require to perform any
inpainting once the mask generator is fully trained. The conclusion in
this chapter is of more general nature: When using neural networks in
their full form and as a black box, then model-driven loss functions
are an elegant way to control and predict the behaviour of the neural
network. Prescribing a mathematical model as a loss is fully model-
driven and reduces the neural network to a surrogate solver, and thus
optimally decouples it from the model.

We have provided three strategies for bridging the gap between
model- and data-driven approaches from different viewpoints: math-
ematical modelling, numerical analysis, and practical applications. We
hope that our findings pave the way towards a better understanding
of neural networks, and to a unification of mathematical models and
deep learning.

11.2 outlook 225

11.2 outlook

The model reduction strategies that we have presented in Part I are
of general nature, but also remain hand-crafted: We have inspected
the trainable parameters manually and came up with suitable rela-
tions that compromise approximation quality and physical plausibility.
Automating this process would provide a general framework that can
be applied to various similar models. All that is required is to decide
on one or multiple modelling dimensions such as scale or time, equip
them with a discrete set of parameters and a smoothness condition,
and finally train and automatically reduce the resulting parameter set.

Moreover, this would ease the application of e.g. the integrodifferen-
tial diffusion model for inpainting. As we have seen in our extensions
of Chapter 5, without further adaptations this model is not yet outper-
forming edge-enhancing diffusion for inpainting.

Also our findings in Part II are not the end of the road. In the same
systematic fashion one can analyse further numerical algorithms and
their neural counterparts. This can only be beneficial: If a correspond-
ing architecture exists one can gain insights from the newly found
links, and if no such architecture is available it opens the door for com-
ing up with new designs with potentially advantageous properties.
In any case, enriching the dictionary between PDEs and CNNs will
strengthen the theoretical understanding of the latter and help to find
compromises between mathematical guarantees and performance.

In addition, our experimental evaluations in this part are simplistic
for the sake of gaining fundamental insights. Nevertheless, they
provide a solid foundation for extending our findings to more complex
networks and applications that are more typical for neural networks.
We think that an essential question in this context is how one should
choose the balance between stability and performance. It is likely that
this choice strongly depends on the task at hand and the modelling
goals, yet it should be thoroughly considered.

Finally, the empirical success of using PDE residuals in loss func-
tions warrants a closer look. In combination with deep energies, they
allow to train networks to efficiently yield approximative solutions
to mathematical models. It alleviates the need for data, and allows to
use the network as a black box while leaving the mathematical model
untouched. Strengthening the understanding of this concept and evalu-
ating it in further practical settings promises to yield valuable insights
into the synergy between neural networks and mathematical models.

This ties into our visions for the future: At some point, fully under-
standing the power of neural networks will be inevitable for further
scientific progress, as one cannot and should not only rely on more
data and faster hardware. This thesis provides one of many pieces in
the big puzzle of this task from the viewpoint of mathematical models
for image processing.

A
R O TAT I O N A L LY I N VA R I A N T WAV E L E T
S H R I N K A G E

In Chapter 4 we have used the rotationally invariant shrinkage rule of
Mrázek and Weickert [263] (cf. Equation (4.13)) which reads

S







wx

wy

wxy





 =

(
1 − 4τg

(
w2

x + w2
y + 2 w2

xy

))



wx

wy

wxy


 . (A.1)

It connects the shrinkage to a diffusion process with time step size τ

and diffusivity g. The three directional wavelet coefficients wx, wy, wxy

are coupled within the diffusivity argument to ensure a rotationally
invariant process.

In the original paper [263], this rule contains two free parameters c
and q and can be expressed as

S







wx

wy

wxy





 =




wx

wy

wxy


− 4τg

(
w2

x + w2
y + c w2

xy

)



wx

wy

q wxy


 . (A.2)

The parameter c ∈ [0, 2] steers the contribution of the diagonal wavelet
shrinkage coefficients wxy to the diffusivity argument, and the choice
of q ∈ [0, 1] steers the contribution of axial and diagonal discretisations
of the diffusion process. As a best practice choice, Mrázek and Weickert
recommend to choose q = 1

2 and c = 2.
However, the existing connections between wavelet shrinkage and

diffusion [263], our considerations on flux functions, and the numerical
advances of Weickert et al. [379] raise the question whether above
shrinkage rule could employ only a single free parameter.

We claim that a shrinkage rule with a single free parameter γ

S







wx

wy

wxy





 =




wx

wy

wxy


− 4τg

(
w2

x + w2
y + γ w2

xy

)



wx

wy√
γ wxy


 (A.3)

together with a shift-invariant Haar wavelet shrinkage on the finest
scale is equivalent to a nonlinear isotropic diffusion process which
is discretised with the approach of Weickert et al. [379] with a free
parameter α = 2−γ

4 .
In our proof we closely follow the argumentation of Didas et al. [99].

We consider the shift-invariant Haar wavelet shrinkage as outlined
in Chapter 4. A discrete image f can be perfectly reconstructed by

227

228 rotationally invariant wavelet shrinkage

simply transforming it into the wavelet basis and back again without
performing any shrinkage:

f =
1
4LQ

(L)⊤Q(L)f +
L

∑
ℓ=1

1
4ℓ

Q
(ℓ)⊤
H Q

(ℓ)
H f . (A.4)

Here, we have abbreviated the highpass filters Q
(ℓ)
x ,Q(ℓ)

y , and Q
(ℓ)
xy by

stacking them into a single highpass matrix Q
(ℓ)
H . The matrices are

defined as discussed in Chapter 4. The rescaling of 1
4ℓ arises from the

shift-invariant wavelet transformation.
If we apply scale-dependent shrinkage functions S(ℓ) to the wavelet

coefficients, we obtain a modified image u:

u =
1
4LQ

(L)⊤Q(L)f +
L

∑
ℓ=1

1
4ℓ

Q
(ℓ)⊤
H S(ℓ)

(
Q

(ℓ)
H f

)
. (A.5)

Taking the difference of the modified image (A.5) and the perfect
reconstruction (A.4) yields

u− f =
L

∑
ℓ=1

1
4ℓ

Q
(ℓ)⊤
H

(
S(ℓ)

(
Q

(ℓ)
H f

)
−Q

(ℓ)
H f

)
(A.6)

Interpreting the input image f as an evolving image at time step k and
the modified image u as an evolving image at time step k + 1 gives

uk+1 − uk =
L

∑
ℓ=1

1
4ℓ

Q
(ℓ)⊤
H

(
S(ℓ)

(
Q

(ℓ)
H uk

)
−Q

(ℓ)
H uk

)
. (A.7)

If we now plug in our proposed shrinkage rule (A.3) into this expres-
sion, we obtain an explicit scheme of a nonlinear isotropic diffusion
process

uk+1 − uk

τ
= −

L

∑
ℓ=1

1
4ℓ−1Q

(ℓ)⊤
H

(
g
(∣∣∣

√
ΓQ

(ℓ)
H uk

∣∣∣
2
)√

ΓQ
(ℓ)
H uk

)
, (A.8)

where
√

Γ denotes a rescaling of only the diagonal wavelet coefficients
with the root of the free parameter

√
γ. The squared magnitude within

the diffusivity argument is to be interpreted position-wise, i.e.
(∣∣∣

√
ΓQ

(ℓ)
H uk

∣∣∣
2
)

i,j
=
(

w(ℓ)
x

)2

i,j
+
(

w(ℓ)
y

)2

i,j
+ γ

(
w(ℓ)

xy

)2

i,j
. (A.9)

In light of our findings in Part II of this thesis, expression (A.8) also
fits the bigger picture better than the original shrinkage rule of Mrázek
and Weickert [263]. Rewriting the bracketed term as a flux

Φ
(√

ΓQ
(ℓ)
H uk

)
= g

(∣∣∣
√

ΓQ
(ℓ)
H uk

∣∣∣
2
) √

ΓQ
(ℓ)
H uk (A.10)

shows that from the viewpoint of a continuous flux function, the
argument of the diffusivity and the term that it is multiplied with

rotationally invariant wavelet shrinkage 229

should be exactly the same. While this is not mandatory, it helps to
easily reduce the amount of free parameters.

Let us now analyse the diffusion process only on the finest scale
ℓ = 1. We need to show two things: First, the argument of the diffus-
ivity function must be the same approximation as obtained with the
approximation of Weickert et al. [379]. Secondly, the full discretisation
of the right hand side of (A.8) must yield the isotropic stencil for the
divergence term of the diffusion process according to [379].

Let us first inspect the diffusivity argument on the finest scale ℓ = 1.
It is easy to check that at a fixed off-grid position (i + 1

2 , j + 1
2) we

have

(wx)
2
i+ 1

2 ,j+ 1
2
=

(
1
2

(
+

))2

, (A.11)

(
wy
)2

i+ 1
2 ,j+ 1

2
=

(
1
2

(
+

))2

, (A.12)

(
wxy
)2

i+ 1
2 ,j+ 1

2
=

(
1
2

(
−

))2

=

(
1
2

(
−

))2

(A.13)

=
1
2

((
1
2

(
−

))2

+

(
1
2

(
−

))2
)

.

Here we make use of the abbreviations defined in Section 3.1.2.
Moreover, we omit the superscript denoting the scale for the sake
of readability.

After tedious but straightforward calculations, one can show that
the diffusivity argument equals

(
(wx)

2 +
(
wy
)2

+ γ
(
wxy
)2
)

i+ 1
2 ,j+ 1

2

=
2 + γ

8

(2
+

2)
+

2 − γ

4
·

+
2 + γ

8

(2
+

2)
+

2 − γ

4
· .

(A.14)

With our proposed choice α = 2−γ
4 , this is the exact same gradient

approximation as in the diffusion case (cf. Equations (3.48) and (3.49),
as well as [379]).

Moreover, in a similar manner, the right hand side of (A.8) for a
pixel position i, j can be condensed into the stencil

1
2h2

(1 − γ
2) g−+

γ
2 (g−+ + g++) (1 − γ

2) g++

γ
2 (g−− + g−+)

−
(
1 + γ

2

) (
g−− + g+−

+g−+ + g++

) γ
2 (g+− + g++)

(1 − γ
2) g−−

γ
2 (g−− + g+−) (1 − γ

2) g+−

. (A.15)

230 rotationally invariant wavelet shrinkage

Here, we have used shorthand notations such as g++ = gi+ 1
2 ,j+ 1

2
for

the sake of readability.
With the relation α = 2−γ

4 , this is indeed the same stencil as in the
isotropic diffusion case (cf. (3.51) and [379]).

Thus, we conclude that wavelet shrinkage on a single scale and
nonlinear isotropic diffusion are equivalent, if shrinkage function and
diffusivity are chosen according to (A.3).

This provides a one-to-one mapping between the rotationally in-
variant wavelet shrinkage discretisation of Mrázek and Weickert [263]
and that of Weickert et al. [379] for diffusion. Nevertheless, we do not
claim that the shrinkage rule with two independent parameters cannot
provide better rotation invariance properties in practical examples. In
that case, it may be worthwhile to introduce an equivalent, second
parameter in the diffusion discretisation of Weickert et al. [379]. How-
ever, this comes at the cost of losing the energy-based derivation as the
diffusivity argument and the divergence term discretisation employ
different discretisations in that case.

B
S TA B I L I T Y O F D U F O RT– F R A N K E L S C H E M E S

In this section we extend the stability proof for linear Du Fort–Frankel
schemes of [156] to the nonlinear setting. The following proof can be
found in [11] and has been contributed by Dr. Matthias Augustin. We
present it for the sake of completeness.

First we rewrite the scheme (7.17) as a multi-step method, obtaining

(
uk+1

uk

)
=




4τα
1+2ταI − 2τ

1+2ταA
(
uk) 1−2τα

1+2ταI

I 0



(

uk

uk−1

)
. (B.1)

Here, we have abbreviated A(uk) = K⊤G(uk)K.
To analyse the stability of the Du Fort–Frankel scheme, we have to

show that all eigenvalues of the matrix of the multistep method (B.1)
have an absolute value less than or equal to one. Note that this matrix
is not symmetric such that it might have complex eigenvalues.

Let us first define as short-hand notations

Q :=
4τα

1 + 2τα
I − 2τ

1 + 2τα
A
(
uk
)

,

B :=


Q 1−2τα

1+2ταI

I 0


 .

(B.2)

We start with the naive approach to compute eigenvalues of B:
ν ∈ C is an eigenvalue of B if

det(B − νI) = det




Q− νI 1−2τα

1+2ταI

I −νI




 = 0 . (B.3)

As B − νI is a block matrix containing square blocks of the same
shape where the lower two blocks commute, we have

det(B − νI) = det
(
(Q− νI) (−νI)− 1 − 2τα

1 + 2τα
I

)

= det
(

ν2I − νQ− 1 − 2τα

1 + 2τα
I

)
.

(B.4)

To proceed from here, it is reasonable to involve the eigenvalues
of the matrix Q. As Q is real-valued and symmetric, there exist an
orthogonal matrix V of eigenvectors of Q and a diagonal matrix Γ

with the eigenvalues γ of Q on its diagonal such that

Q = V ΓV T. (B.5)

231

232 stability of du fort–frankel schemes

As V is an orthogonal matrix, it holds that

I = V V T. (B.6)

Plugging both of these relations into (B.3) yields

det(B − νI) = det
(

ν2V V T − νV ΓV T − 1 − 2τα

1 + 2τα
V V T

)

= det
(
V

(
ν2I − νΓ − 1 − 2τα

1 + 2τα
I

)
V T
)

= det(V)det
(

ν2I − νΓ − 1 − 2τα

1 + 2τα
I

)
det
(
V T
)

= det
(

ν2I − νΓ − 1 − 2τα

1 + 2τα
I

)
,

(B.7)

since the determinants of the orthogonal matrices V and V T are both
1. The remaining determinant is concerned with a diagonal matrix.
Thus, it is equal to the product of the diagonal elements, i.e.

det(B − νI) =
N

∏
j=1

(
ν2 − ν γj −

1 − 2τα

1 + 2τα

)
. (B.8)

For ν to be an eigenvalue of B, we need that this product vanishes.
This is exactly the case if one or more factors in the product vanish.
Hence, we get that for a fixed eigenvalue γ of Q, an eigenvalue ν of
B satisfies

ν =
γ

2
±
√

γ2

4
+

1 − 2τα

1 + 2τα
. (B.9)

For stability of (B.1), we need that |ν| ≤ 1 for all solutions ν for all
eigenvalues γ of Q. To proceed further, we consider the discriminant
γ2

4 + 1−2τα
1+2τα . Since we know that Q is real-valued and symmetric, it

follows that γ is a real number. Thus, γ2 is positive. We also know
that τ and α are positive, such that

−1 <
1 − 2τα

1 + 2τα
< 1 . (B.10)

Therefore, it is possible for the discriminant to have negative values,
which results in complex eigenvalues ν. Let us therefore distinguish
the three cases of negative discriminant, vanishing discriminant, and
positive discriminant. We will see that the last one is the only case
which introduces a lower bound on α for unconditional stability.

vanishing discriminant. First, we consider a vanishing dis-
criminant, which can only happen if 2τα ≥ 1. This yields

γ = ± 2

√
2τα − 1
2τα + 1

. (B.11)

stability of du fort–frankel schemes 233

Thus, the eigenvalues of B are given by

ν =
γ

2
= ±

√
2τα − 1
2τα + 1

. (B.12)

Since the fraction takes values between zero and one, the same is true
for the square root. Therefore, we have |ν| < 1.

negative discriminant. If the discriminant is negative, the
corresponding values of ν are complex and we can write

ν =
γ

2
± i

√
−γ2

4
− 1 − 2τα

1 + 2τα
. (B.13)

Then we get for the squared absolute value of ν

|ν|2 =
γ2

4
+

(
−γ2

4
− 1 − 2τα

1 + 2τα

)
=

2τα − 1
2τα + 1

. (B.14)

Surprisingly, this does not depend on γ and we recover once more the
condition

−1 <
2τα − 1
2τα + 1

< 1 . (B.15)

Thus, we again have |ν| < 1.

positive discriminant. In this case, the eigenvalues ν are real-
valued. Thus, we get the condition

−1 <
γ

2
±
√

γ2

4
+

1 − 2τα

1 + 2τα
< 1 . (B.16)

If τ > 0 and α > 0, this system has the following solutions for γ:

|γ| < 4τα

1 + 2τα
, if 0 ≤ 1 − 2τα

1 + 2τα
< 1 ,

√
8τα − 4
2τα + 1

≤ |γ| < 4τα

1 + 2τα
, if − 1 <

1 − 2τα

1 + 2τα
< 0 .

(B.17)

If we treat γ as a complex number for the moment, the first condition
means that γ has to be inside a disc of radius 4τα

1+2τα around the origin
and the second condition means that γ has to be inside that disc, but

outside or on the boundary of a second disk of radius
√

8τα−4
2τα+1 . Hence,

the second condition is more restrictive.
It remains to determine conditions on τ and α such that (B.17) is

always satisfied for all eigenvalues γ of the matrix Q. As the matrix
A(uk) is real-valued and symmetric, we can diagonalise it in the same
fashion as Q: There exist an orthogonal matrix W and a diagonal
matrix Λ with the eigenvalues λ on its diagonal such that

A(uk) = WΛW⊤. (B.18)

234 stability of du fort–frankel schemes

With the help of this representation, we can write

Q =
4τα

1 + 2τα
I − 2τ

1 + 2τα
A
(
uk
)

=
4τα

1 + 2τα
WW T − 2τ

1 + 2τα
WΛW T

= W

(
4τα

1 + 2τα
I − 2τ

1 + 2τα
Λ

)
W T.

(B.19)

Hence, the eigenvalues of Q are given by

γ =
4τα

1 + 2τα
− 2τ

1 + 2τα
λ , (B.20)

where λ is an eigenvalue of A(uk).
With this formula, the first case of (B.17) reduces to

0 < λ < 4α . (B.21)

This condition is similar to the stability condition of the explicit
scheme, however now for α instead of 1

τ . The estimate on the left-
hand side is always fulfilled if A(uk) is positive definite. For now, we
assume that A(uk) is positive definite and consider the case of a zero
eigenvalue afterwards.

The inequality (B.21) has to hold for every eigenvalue of A(uk). If
A(uk) is positive definite, we can replace λ by the spectral radius
ρ(A(uk)) as an upper bound. Hence, we arrive at

α >
ρ
(
A(uk)

)

4
. (B.22)

This is in line with the result that has been derived for the linear case
[156].

For the second case in (B.17), plugging in (B.20) and simplifying
yields

0 < λ ≤ 2α −
√

4α2 − 1
τ2 or

2α +

√
4α2 − 1

τ2 ≤ λ < 4α .

(B.23)

As we are in the case in which −1 < 1−2τα
1+2τα < 0, the square root is a

nonnegative real number.
Moreover, we have to investigate what happens if

− 1 ≤ 1 − 2τα

1 + 2τα
< 0 and

2α −
√

4α2τ2 − 1
τ2 < λ < 2α +

√
4α2τ2 − 1

τ2 .
(B.24)

With some tedious but straight-forward computations, one can show
that this case corresponds exactly to the case with a negative discrim-
inant, which did not introduce any new stability conditions.

stability of du fort–frankel schemes 235

Lastly, we consider the case where A(uk) is only positive semidefin-
ite. If 2τα < 1, then λ = 0 lies in the range given for λ in (B.24). For
this case, we have already shown that |ν| < 1 and the scheme is stable.

If 2τα > 1, we obtain from (B.20):

γ =
4τα

1 + 2τα
. (B.25)

We can plug this value of γ into (B.11) to see that ν = 1 is always a
solution in this case. We have to ensure that all other solutions for ν

fulfil |ν| < 1. The other solution of (B.11) for λ = 0 is

ν =
2τα − 1
2τα + 1

, (B.26)

which yields |ν| < 1 since τ > 0 and α > 0. All other eigenvalues of
B have an absolute value of less than one by the considerations above.
Thus, we can conclude that also in this case, the Du Fort–Frankel
scheme is stable.

Consequently, the only stability condition on α is the one in (B.22).
In a similar manner as for the symmetric ResNet, we can transform
this condition into an a priori constraint

α ≥ L
4

. (B.27)

This constraint helps us to stabilise the Du Fort–Frankel networks in
the same way as the symmetric ResNet.

C
S TA B I L I T Y O F M U LT I S C A L E A R C H I T E C T U R E S

In Chapter 7, we have explicitly proven the Euclidean stability of
generalised one-dimensional diffusion blocks and resulting network
architectures. In the following, we generalise this proof to the ResNeXt
extensions proposed in Chapter 8.

Theorem 5 (Euclidean Stability of Symmetric ResNeXts). Consider a
ResNeXt chaining generalised multiscale diffusion blocks of the unifying
form (8.34)

uk+1 = uk − τ
L

∑
ℓ=1

ωℓ K
⊤
ℓ Φ

(
uk,Kℓu

k
)

. (C.1)

with a coupling activation function τΦ and convolutions Kℓ for ℓ =

1, . . . , L. Furthermore, we assume that the activation function has Lipschitz
constant P. Then the ResNeXt is well-posed and stable in the Euclidean norm,
if the time step size τ is bounded by

τ ≤ 2
P ∑L

ℓ=1 ωℓ∥Kℓ∥2
2

. (C.2)

Here, ∥ · ∥2 denotes the spectral norm induced by the Euclidean norm.

Proof. As in the one-dimensional setting, the application of the activ-
ation function in each channel can be rewritten by a multiplication
with diagonal matrices Gℓ, containing diffusivity values on their diag-
onal. As the diffusivities are smooth, well-posedness follows from the
continuity of the operator (I − τ ∑L

ℓ=1 ωℓK
⊤
ℓ GℓKℓ) [369].

In the following, we show that the stability requirement (C.2) guar-
antees that this scheme constitutes a contractive mapping which in
turn yields Euclidean stability. The explicit scheme (C.1) is a contrac-
tion mapping if the eigenvalues of the operator lie within the interval
[−1, 1]. To this end, we now bound the eigenvalues of the operator.

The nonnegative diagonal matrices Gℓ are positive semi-definite,
since the diffusivity is nonnegative. The symmetric multiplication with
Kℓ does not change this. Thus, each matrix K⊤

ℓ GℓKℓ is positive semi-
definite. As a consequence, we can simply estimate the eigenvalues of
each summand to obtain the eigenvalues of the full summation.

The maximal eigenvalue of each diffusivity matrix Gℓ is the su-
premum of the diffusivity g, which in turn is bounded by the Lipschitz
constant P of Φ:

P = sup
s

∣∣Φ′(s)
∣∣ = sup

s

∣∣g(s2) + 2s2g′(s2)
∣∣ ≥ sup

s

∣∣g(s2)
∣∣ . (C.3)

As a consequence the eigenvalues of K⊤
ℓ GℓKℓ lie within the interval[

0, P ∥Kℓ∥2
2
]
.

237

238 stability of multiscale architectures

Then the eigenvalues of the full operator (I − τ ∑L
ℓ=1 ωℓK

⊤
ℓ GℓKℓ)

lie within
[
1 − τP ∑L

ℓ=1 ωℓ∥Kℓ∥2
2, 1
]

and the condition

1 − τP
L

∑
ℓ=1

ωℓ∥Kℓ∥2
2 ≥ −1 (C.4)

yields the bound (C.2).

As for the stability result of Theorem 4 in the one-dimensional set-
ting, this proof holds independently of the form of the matrices Kℓ.
The central structural requirement is the symmetric convolution struc-
ture W2,ℓ = −W⊤

1,ℓ on each scale.
Moreover, the only requirement for the activation function is that

it constitutes a nonnegative rescaling of its input. This is the case for
all three models considered, since they use nonnegative diffusivities.
However, this also includes e.g. the ReLU function, which rescales
positive arguments with one and negative ones with zero.

This proof can also be extended further to activations which are
applied independently for each channel. In that case, the Lipschitz
constant P is the upper bound of all Lipschitz constants Pℓ of the activ-
ations Φℓ. This includes our integrodifferential models of Chapter 5.

The time step size bound is governed by two effects. A finer sampling
of scales for a fixed largest scale decreases ωℓ and increases the num-
ber of summation terms. However, we find that ωℓ decreases more
quickly than the sum increases. Thus, a finer sampling of scales drives
the time step size limit towards an upper bound. This is a numerical
effect.

On the other hand, adding additional scales beyond the current
largest one decreases the time step size as expected, since both the
summation and the spectral radius of the corresponding filters in-
creases. This is an effect of the model itself.

It brings forth an interesting question: Is it worthwhile introducing
more coarse scales at the cost of a smaller time step size, or are multiple
iterations of few scales with larger time steps more beneficial? With
the help of our interpretations, one can relate this question to the
debate of breadth versus width in the neural network literature; see
e.g. [405]. Detailed practical evaluations of this trade-off in future work
may be insightful not only for our diffusion models, but also for the
resulting network architectures.

D
C O N T R I B U T I O N S A N D P U B L I C AT I O N S

d.1 further contributions

The contributions that have been discussed in this thesis only cover
my first-authored publications. This section briefly discusses several
other projects that I was involved in as a co-author.

• We have presented the concept of using PDE residuals in neural
surrogate solvers in Chapters 7 and 10. In combination with
deep energies [150], this allows to solve any well-behaved PDE-
or energy-based model with a neural surrogate. We evaluate the
potential of this idea in the work of Schrader et al. [333]. Therein,
we solve challenging limit cases for inpainting with Euler’s
elastica [251] with the help of neural methods. The resulting
surrogates solve the inpainting problems with high accuracy
and efficiency, without having to rely on complex discretisations
and hand-tuning of numerical solvers.

• For inpainting-based image compression, EED is still the state-
of-the-art inpainting operator. However, it is not well-suited for
inpainting textured image areas. Transform-based codecs such as
JPEG [278] excel in exactly these cases. This was the motivation to
come up with an hybrid block-based codec called B-EED by An-
dris et al. [19] which generalised probabilistic sparsification and
nonlocal pixel exchange to blocks of pixels. Remaining blocks are
compressed with JPEG, and missing blocks are inpainted with
EED. The B-EED codec can compete with the state-of-the-art
R-EED-LP codec [327], while being much more efficient due to
the block optimisation strategies.

• The regular grid codec with joint inpainting and prediction
(RJIP) of Peter [280] uses highly efficient Shepard interpolation
for inpainting-based compression. This was the basis for several
extensions. In the work of Mohideen et al. [258], we extended
the RJIP codec to colour images and introduced more efficient
optimisation techniques. Moreover, our anisotropic Shepard in-
terpolation model introduced in Chapter 9 is one of the two
pillars of the tree-based anisotropic Shepard codec of Mohideen
et al., for which a preprint is currently being prepared. Therein,
anisotropy and tree-based mask optimisation are combined with
the efficiency of Shepard interpolation to design a codec that
balances quality and efficiency.

239

240 contributions and publications

• Chapter 10 presents a model for learning masks that are suitable
for diffusion inpainting. Therein, we supplement our conference
publication [9] which only focused on homogeneous diffusion
inpainting with an extension on biharmonic and EED inpainting.
An orthogonal extension considers not only the automatic selec-
tion of mask pixel positions, but also an optimised colour value
at that position. This additional tonal optimisation can improve
the inpainting quality drastically [183, 246]. As for the spatial
positions, tonal optimisation is a complex problem. We present
a deep learning based solution in the work of Peter et al. [283]
as an extension of our conference publication [9]. Therein, we
combine spatial and tonal optimisation for homogeneous diffu-
sion inpainting in a deep learning framework. This yields results
which are competitive to the state of the art, while also being
several orders of magnitude faster.

d.2 list of publications

journal publications

• T. Alt, K. Schrader, J. Weickert, P. Peter and M. Augustin: Design-
ing rotationally invariant neural networks from PDEs and vari-
ational methods, Research in the Mathematical Sciences, Vol. 9,
No. 3, Article no. 52, Sept. 2022

• T. Alt, K. Schrader, M. Augustin, P. Peter and J. Weickert: Con-
nections between numerical algorithms for PDEs and neural
networks, Journal of Mathematical Imaging and Vision, Online first,
June 2022

conference publications

• K. Schrader, T. Alt, J. Weickert and M. Ertel: CNN-based Euler’s
elastica inpainting with deep energy and deep image prior, Proc.
10th European Workshop on Visual Information Processing, Lisbon,
Portugal, July 2022, IEEE Computer Society Press

• T. Alt, P. Peter and J. Weickert: Learning sparse masks for
diffusion-based image inpainting, In A. J. Pinho, P. Georgieva,
L. F. Teixeira and J. A. Sánchez (Eds.): Pattern Recognition and
Image Analysis, Lecture Notes in Computer Science, Vol. 13256,
528–539, Springer, Cham, May 2022

• T. Alt and J. Weickert: Learning integrodifferential models for im-
age denoising, Proc. 2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2045–2049, Toronto, Canada,
June 2021, IEEE Computer Society Press

• S. Andris, J. Weickert, T. Alt and P. Peter: JPEG meets PDE-based
image compression, Proc. 35th Picture Coding Symposium, Bristol,
UK, June 2021, IEEE Computer Society Press

D.2 list of publications 241

• T. Alt, P. Peter, J. Weickert and K. Schrader: Translating numer-
ical concepts for PDEs into neural architectures, In A. Elmoataz,
J. Fadili, Y. Quéau, J. Rabin and L. Simon (Eds.): Scale Space and
Variational Methods in Computer Vision, Lecture Notes in Com-
puter Science, Vol. 12679, 294–306, Springer, Cham, 2021

• T. Alt and J. Weickert: Learning a generic adaptive wavelet
shrinkage function for denoising, Proc. 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2018–2022,
Barcelona, Spain, May 2020, IEEE Computer Society Press

technical reports

• P. Peter, K. Schrader, T. Alt and J. Weickert: Deep spatial
and tonal optimisation for homogeneous diffusion inpainting,
arXiv:2208.14371v2 [cs.LG], Sept. 2022

• R. M. K. Mohideen, P. Peter, T. Alt, J. Weickert and A. Scheer:
Compressing colour images with joint inpainting and prediction,
arXiv:2010.09866 [eess.IV], Oct. 2020

• T. Alt, J. Weickert and P. Peter: Translating diffusion,
wavelets, and regularisation into residual networks,
arXiv:2002.02753v3 [cs.LG], June 2020

theses

• T. Alt: Coupled optical flow, Bachelor’s Thesis in Computer Science,
Saarland University, Saarbrücken, Germany, Aug. 2016

E
B I B L I O G R A P H Y

[1] M. Abadi et al.: TensorFlow: large-scale machine learning on
heterogeneous systems, 2015, Available at https : / / www .

tensorflow.org/, last visited March 30, 2022 (cited on pp. 54,
60).

[2] R. Acar and C. R. Vogel: Analysis of bounded variation penalty
methods for ill–posed problems, Inverse Problems, Vol. 10, 1217–
1229, 1994 (cited on p. 19).

[3] T. Acar and M. Gökmen: Image coding using weak membrane
model of images, In A. K. Katsaggelos (Ed.): Visual Communica-
tions and Image Processing ’94, Proceedings of SPIE, Vol. 2308,
1221–1230, SPIE Press, Bellingham, 1994 (cited on p. 68).

[4] R. Achanta, N. Arvanitopoulos and S. Süsstrunk: Extreme
image completion, Proc. 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing, 1333–1337, New Orleans,
LA, Mar. 2017, IEEE Computer Society Press (cited on pp. 67,
187).

[5] R. D. Adam, P. Peter and J. Weickert: Denoising by inpainting,
In F. Lauze, Y. Dong and A. B. Dahl (Eds.): Scale Space and Vari-
ational Methods in Computer Vision, Lecture Notes in Computer
Science, Vol. 10302, 121–132, Springer, Cham, 2017 (cited on
pp. 67, 207).

[6] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt and J. M.
Ogden: Pyramid methods in image processing, RCA Engineer,
Vol. 29, No. 6, 33–41, 1984 (cited on p. 41).

[7] A. Adler, Y. Hel-Or and M. Elad: A weighted discriminative ap-
proach for image denoising with overcomplete representations,
Proc. 2010 IEEE International Conference on Acoustics, Speech and
Signal Processing, 782–785, Dallas, TX, Mar. 2010, IEEE Com-
puter Society Press (cited on p. 74).

[8] M. Aharon, M. Elad and A. Bruckstein: K-SVD: an algorithm for
designing overcomplete dictionaries for sparse representation,
IEEE Transactions on Signal Processing, Vol. 54, No. 11, 4311–4322,
Nov. 2006 (cited on p. 65).

[9] T. Alt, P. Peter and J. Weickert: Learning sparse masks for
diffusion-based image inpainting, In A. J. Pinho, P. Georgieva,
L. F. Teixeira and J. A. Sánchez (Eds.): Pattern Recognition and
Image Analysis, Lecture Notes in Computer Science, Vol. 13256,
528–539, Springer, Cham, 2022 (cited on pp. 49, 209, 240).

243

https://www.tensorflow.org/
https://www.tensorflow.org/

244 bibliography

[10] T. Alt, P. Peter, J. Weickert and K. Schrader: Translating numer-
ical concepts for PDEs into neural architectures, In A. Elmoataz,
J. Fadili, Y. Quéau, J. Rabin and L. Simon (Eds.): Scale Space
and Variational Methods in Computer Vision, Lecture Notes in
Computer Science, Vol. 12679, 294–306, Springer, Cham, 2021
(cited on pp. 49, 131, 144, 146, 166).

[11] T. Alt, K. Schrader, M. Augustin, P. Peter and J. Weickert: Con-
nections between numerical algorithms for PDEs and neural
networks, Journal of Mathematical Imaging and Vision, Online
first, June 2022 (cited on pp. 49, 131, 231).

[12] T. Alt, K. Schrader, J. Weickert, P. Peter and M. Augustin:
Designing rotationally invariant neural networks from PDEs
and variational methods, Russian Mathematical Surveys, Vol. 9,
No. 3, Article no. 52, Sept. 2022 (cited on p. 163).

[13] T. Alt and J. Weickert: Learning a generic adaptive wavelet
shrinkage function for denoising, Proc. 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2018–2022,
Barcelona, Spain, May 2020, IEEE Computer Society Press (cited
on pp. 74, 92).

[14] T. Alt and J. Weickert: Learning integrodifferential models
for image denoising, Proc. 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2045–2049, Toronto,
Canada, June 2021, IEEE Computer Society Press (cited on
pp. 92, 96, 104, 172, 177).

[15] T. Alt, J. Weickert and P. Peter: Translating diffu-
sion, wavelets, and regularisation into residual networks,
arXiv:2002.02753v3 [cs.LG], June 2020 (cited on pp. 49, 114).

[16] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón: Min-
imizing total variation flow, Differential and Integral Equations,
Vol. 14, No. 3, 321–360, Mar. 2001 (cited on pp. 19, 65, 123).

[17] S. Andris, P. Peter, R. M. K. Mohideen, J. Weickert and S. Hoff-
mann: Inpainting-based video compression in FullHD, In A.
Elmoataz, J. Fadili, Y. Quéau, J. Rabin and L. Simon (Eds.): Scale
Space and Variational Methods in Computer Vision, Lecture Notes
in Computer Science, Vol. 12679, 425–436, Springer, Cham, 2021
(cited on pp. 67, 207).

[18] S. Andris, P. Peter and J. Weickert: A proof-of-concept frame-
work for PDE-based video compression, Proc. 32nd Picture
Coding Symposium, Nuremberg, Germany, Dec. 2016 (cited on
p. 67).

[19] S. Andris, J. Weickert, T. Alt and P. Peter: JPEG meets PDE-
based image compression, Proc. 35th Picture Coding Symposium,
Bristol, UK, June 2021, IEEE Computer Society Press (cited on
pp. 68, 239).

bibliography 245

[20] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik: Contour detec-
tion and hierarchical image segmentation, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 33, No. 5, 898–916,
Aug. 2011 (cited on pp. 82, 96, 213).

[21] P. Arias, G. Facciolo, V. Caselles and G. Sapiro: A variational
framework for exemplar-based image inpainting, International
Journal of Computer Vision, Vol. 93, No. 3, 319–347, July 2011
(cited on p. 37).

[22] M. Arjovsky, S. Chintala and L. Bottou: Wasserstein gener-
ative adversarial networks, Proc. 34th International Conference
on Machine Learning, D. Precup and Y. W. Teh (Ed.), Vol. 70,
Proceedings of Machine Learning Research, 214–223, Sydney,
Australia, Aug. 2017 (cited on pp. 60, 63).

[23] S. Arridge, P. Maas, O. Öktem and C.-B. Schönlieb: Solving
inverse problems using data-driven models, Acta Numerica,
Vol. 28, 1–174, May 2019 (cited on p. 63).

[24] Association for Computing Machinery: Fathers of the deep
learning revolution receive ACM A. M. Turing award, Mar.
2019, Available at https://www.acm.org/media-center/2019/
march/turing-award-2018, last visited March 30, 2022 (cited
on pp. 58, 60).

[25] P. Athavale and E. Tadmor: Integro-differential equations based
on (BV, L1) image decomposition, SIAM Journal on Imaging
Sciences, Vol. 4, No. 1, 300–312, Mar. 2011 (cited on p. 92).

[26] G. Aubert, R. Deriche and P. Kornprobst: Computing optical
flow via variational techniques, SIAM Journal on Applied Math-
ematics, Vol. 60, No. 1, 156–182, 1999 (cited on p. 37).

[27] G. Aubert and P. Kornprobst: Mathematical Problems in Image
Processing: Partial Differential Equations and the Calculus of
Variations, Applied Mathematical Sciences, Vol. 147, Springer,
New York, 2002 (cited on pp. 2, 6, 15, 36, 37).

[28] T. Avant and K. A. Morgansen: Analytical bounds
on the local Lipschitz constants of ReLU networks,
arXiv:2104.14672v1 [cs.LG], Apr. 2021 (cited on p. 64).

[29] M. Bäker: Another look at neural multigrid, International Journal
of Modern Physics C, Vol. 8, No. 2, 191–205, Apr. 1997 (cited on
p. 131).

[30] M. Bäker, G. Mack and M. Speh: Multigrid meets neural nets,
Nuclear Physics B - Proceedings Supplements, Vol. 30, 269–272,
Mar. 1993 (cited on p. 131).

https://www.acm.org/media-center/2019/march/turing-award-2018
https://www.acm.org/media-center/2019/march/turing-award-2018

246 bibliography

[31] C. Ballester, V. Caselles, J. Verdera, M. Bertalmío and G. Sapiro:
A variational model for filling-in gray level and color images,
Proc. 18th International Conference on Computer Vision, Vol. 1,
10–16, Vancouver, Canada, July 2001, IEEE Computer Society
Press (cited on p. 37).

[32] S. Barbeiro and D. Lobo: Learning stable nonlinear cross-
diffusion models for image restoration, Journal of Mathematical
Imaging and Vision, Vol. 62, 223–237, Apr. 2020 (cited on p. 92).

[33] T. Barbu: Feature keypoint-based image compression technique
using a well-posed nonlinear fourth-order PDE-based model,
Mathematics, Vol. 8, No. 6, Article no. 930, June 2020 (cited on
p. 22).

[34] S. Battiato, G. Gallo and F. Stanco: Smart interpolation by
anisotropic diffusion, Proc. Twelvth International Conference on
Image Analysis and Processing, 572–577, Montova, Italy, Sept.
2003, IEEE Computer Society Press (cited on p. 67).

[35] A. G. Baydin, B. A. Pearlmutter, A. A. Radul and J. M. Siskind:
Automatic differentiation in machine learning: a survey, Journal
of Machine Learning Research, Vol. 18, No. 153, 1–43, 2017 (cited
on p. 54).

[36] A. Beck and M. Teboulle: Fast iterative shrinkage-thresholding
algorithm for linear inverse problems, SIAM Journal on Imaging
Sciences, Vol. 2, 183–202, 2009 (cited on p. 19).

[37] J. Behrmann, S. Dittmer, P. Fernsel and P. Maass: Analysis of
invariance and robustness via invertibility of ReLU-networks,
arXiv:1806.09730v2 [cs.LG], June 2018 (cited on p. 114).

[38] A. Belahmidi and F. Guichard: A partial differential equation
approach to image zoom, Proc. 2004 IEEE International Confer-
ence on Image Processing, Vol. 1, 649–652, Singapore, Oct. 2004,
IEEE Computer Society Press (cited on p. 67).

[39] Z. Belhachmi, D. Bucur, B. Burgeth and J. Weickert: How to
choose interpolation data in images, SIAM Journal on Applied
Mathematics, Vol. 70, No. 1, 333–352, 2009 (cited on pp. 68, 207,
208, 210, 214).

[40] M. Belkin, D. Hsu, S. Ma and S. Mandal: Reconciling modern
machine-learning practice and the classical bias–variance trade-
off, Proceedings of the National Academy of Sciences, Vol. 116,
No. 32, 15849–15854, Aug. 2019 (cited on pp. 2, 61).

[41] I. Ben-Yair, G. B. Shalom, M. Eliasof and E. Treister: Quantized
convolutional neural networks through the lens of partial dif-
ferential equations, Russian Mathematical Surveys, Vol. 9, No. 4,
Article no. 58, Sept. 2022 (cited on p. 63).

bibliography 247

[42] Y. Bengio, P. Simard and P. Frasconi: Learning long-term de-
pendencies with gradient descent is difficult, IEEE Transactions
on Neural Networks, Vol. 5, No. 2, 157–166, Mar. 1994 (cited on
pp. 49, 53).

[43] M. Benning, E. Celledoni, M. J. Erhardt, B. Owren and C.-B.
Schönlieb: Deep learning as optimal control problems: models
and numerical methods, IFAC-PapersOnline, Vol. 54, No. 9, 620–
623, 2021 (cited on p. 130).

[44] L. Bergerhoff, M. Cardénas, J. Weickert and M. Welk: Stable
backward diffusion models that minimise convex energies,
Journal of Mathematical Imaging and Vision, Vol. 62, No. 6-7, 941–
960, July 2020 (cited on pp. 21, 74).

[45] M. Bertalmío, V. Caselles, S. Masnou and G. Sapiro: Inpainting,
In K. Ikeuchi (Ed.): Computer Vision: A Reference Guide, 401–416,
Springer, New York, 2014 (cited on p. 67).

[46] M. Bertalmío, G. Sapiro, V. Caselles and C. Ballester: Image
inpainting, Proc. SIGGRAPH 2000, 417–424, New Orleans, LI,
July 2000 (cited on pp. 15, 67).

[47] D. Bertoin, J. Bolte, S. Gerchinovitz and E. Pauwels: Numer-
ical influence of ReLU′(0) on backpropagation, Proc. 35th In-
ternational Conference on Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang and J. W.
Vaughan (Ed.), Vol. 34, Advances in Neural Information Pro-
cessing Systems, 468–479, Virtual, Dec. 2021 (cited on p. 54).

[48] K. Bodduna, J. Weickert and M. Cárdenas: Multi-frame super-
resolution from noisy data, In A. Elmoataz, J. Fadili, Y. Quéau, J.
Rabin and L. Simon (Eds.): Scale Space and Variational Methods in
Computer Vision, Lecture Notes in Computer Science, Vol. 12679,
565–576, Springer, Cham, 2021 (cited on p. 163).

[49] B. Bohn, M. Griebel and D. Kannan: Deep neural networks
and PIDE discretizations, SIAM Journal on Mathematics of Data
Science, Vol. 4, No. 3, 1145–1170, Aug. 2022 (cited on p. 62).

[50] S. Bonettini, I. Loris, F. Porta, M. Prato and S. Rebegoldi: On the
convergence of a linesearch based proximal-gradient method
for nonconvex optimization, Inverse Problems, Vol. 33, No. 5,
Article No. 055005, Mar. 2017 (cited on pp. 68, 208).

[51] Y.-L. Boureau, J. Ponce and Y. LeCun: A theoretical analysis
of feature pooling in visual recognition, Proc. 27th International
Conference on Machine Learning, J. Fürnkranz and T. Joachims
(Ed.), 111–118, Haifa, Israel, June 2010 (cited on p. 46).

[52] A. Bourquard and M. Unser: Anisotropic interpolation of
sparse generalized image samples, IEEE Transactions on Image
Processing, Vol. 22, No. 2, 459–472, 2013 (cited on p. 67).

248 bibliography

[53] A. Brandt: Multi-level adaptive solutions to boundary-value
problems, Mathematics of Computation, Vol. 31, No. 138, 333–390,
Apr. 1977 (cited on pp. 35, 129, 130, 142).

[54] W. L. Briggs, V. E. Henson and S. F. McCormick: A Multigrid
Tutorial, Second, SIAM, Philadelphia, 2000 (cited on pp. 35,
129, 130, 142).

[55] E.-M. Brinkmann, M. Burger and I. Grah: Regularization with
sparse vector fields: from image compression to TV-type recon-
struction, In J.-F. Aujol, M. Nikolova and N. Papadakis (Eds.):
Scale Space and Variational Methods in Computer Vision, Lecture
Notes in Computer Science, Vol. 9087, 191–202, Springer, Berlin,
2015 (cited on p. 68).

[56] C. Brito-Loeza and K. Chen: Fast numerical algorithms for
Euler’s Elastica inpainting model, International Journal of Modern
Mathematics, Vol. 5, No. 2, 157–182, 2010 (cited on p. 67).

[57] C. Brito-Loeza and K. Chen: Multigrid algorithm for high order
denoising, SIAM Journal on Imaging Sciences, Vol. 3, No. 3, 363–
389, 2010 (cited on p. 142).

[58] T. Brox, A. Bruhn, N. Papenberg and J. Weickert: High accuracy
optical flow estimation based on a theory for warping, In T.
Pajdla and J. Matas (Eds.): Computer Vision – ECCV 2004, Part IV,
Lecture Notes in Computer Science, Vol. 3024, 25–36, Springer,
Berlin, 2004 (cited on p. 37).

[59] A. Bruhn, J. Weickert, T. Kohlberger and C. Schnörr: A
multigrid platform for real-time motion computation with
discontinuity-preserving variational methods, International
Journal of Computer Vision, Vol. 70, No. 3, 257–277, Dec. 2006
(cited on p. 142).

[60] J. Bruna and S. Mallat: Invariant scattering convolution net-
works, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 35, No. 8, 1872–1886, Aug. 2013 (cited on p. 63).

[61] A. Buades, B. Coll and J.-M. Morel: A non-local algorithm for
image denoising, Proc. 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Vol. 2, 60–65, San
Diego, CA, June 2005, IEEE Computer Society Press (cited on
p. 65).

[62] L. Bungert, R. Raab, T. Roith, L. Schwinn and D. Tenbrinck:
CLIP: Cheap Lipschitz training of neural networks, In A. El-
moataz, J. Fadili, Y. Quéau, J. Rabin and L. Simon (Eds.): Scale
Space and Variational Methods in Computer Vision, Lecture Notes
in Computer Science, Vol. 12679, 307–319, Springer, Cham, 2021
(cited on pp. 64, 137).

bibliography 249

[63] M. Cárdenas, J. Weickert and S. Schäffer: A linear scale-space
theory for continuous nonlocal evolutions, In J.-F. Aujol, M.
Nikolova and N. Papadakis (Eds.): Scale Space and Variational
Methods in Computer Vision, Lecture Notes in Computer Science,
Vol. 9087, 103–114, Springer, Berlin, 2015 (cited on p. 92).

[64] S. Carlsson: Sketch based coding of grey level images, Signal
Processing, Vol. 15, 57–83, 1988 (cited on pp. 67, 68).

[65] F. Catté, P.-L. Lions, J.-M. Morel and T. Coll: Image selective
smoothing and edge detection by nonlinear diffusion, SIAM
Journal on Numerical Analysis, Vol. 32, 1895–1909, 1992 (cited on
pp. 21, 23, 92–94, 101).

[66] A. Chambolle: Total variation minimization and a class of
binary MRF models, In A. Rangarajan, B. C. Vemuri and A. L.
Yuille (Eds.): Energy Minimization Methods in Computer Vision
and Pattern Recognition – EMMCVPR 2005, Lecture Notes in
Computer Science, Vol. 3757, 136–152, Springer, Berlin, 2005
(cited on p. 19).

[67] T. F. Chan, S. Esedoglu and F. E. Park: A fourth order dual
method for staircase reduction in texture extraction and image
restoration problems, Proc. 17th IEEE International Conference
on Image Processing, 4137–4140, Hong Kong, Sept. 2010, IEEE
Computer Society Press (cited on p. 22).

[68] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert and E.
Holtham: Reversible architectures for arbitrarily deep resid-
ual neural networks, Proc. 32nd AAAI Conference on Artificial
Intelligence, 2811–2818, New Orleans, LA, Feb. 2018 (cited on
p. 114).

[69] S. G. Chang, B. Yu and M. Vetterli: Adaptive wavelet threshold-
ing for image denoising and compression, IEEE Transactions on
Image Processing, Vol. 9, No. 9, 1532–1546, Sept. 2002 (cited on
p. 74).

[70] P. Charbonnier, L. Blanc-Féraud, G. Aubert and M. Barlaud:
Two deterministic half-quadratic regularization algorithms for
computed imaging, Proc. 1994 IEEE International Conference on
Image Processing, Vol. 2, 168–172, Austin, TX, Nov. 1994, IEEE
Computer Society Press (cited on pp. 19, 37, 104, 123, 148, 156).

[71] K. Chellapilla, S. Puri and P. Simard: High performance convo-
lutional neural networks for document processing, Proc. 10th
International Workshop on Frontiers in Handwriting Recognition,
Rennes, France, Oct. 2006 (cited on p. 59).

[72] A. Chen and G. Lin: Robust data-driven discovery of par-
tial differential equations with time-dependent coefficients,
arXiv:2102.01432v1 [stat.ML], Feb. 2021 (cited on p. 62).

250 bibliography

[73] R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud:
Neural ordinary differential equations, Proc. 32nd International
Conference on Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and
R. Garnett (Ed.), Vol. 31, Advances in Neural Information Pro-
cessing Systems, 6571–6583, Montréal, Canada, Dec. 2018 (cited
on pp. 2, 49, 62).

[74] Y. Chen, Z. X. Lyu, X. Kang and Z. J. Wang: A rotation-invariant
convolutional neural network for image enhancement forensics,
Proc. 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2111–2115, Calgary, Canada, Apr. 2018, IEEE
Computer Society Press (cited on pp. 64, 162).

[75] Y. Chen and T. Pock: Trainable nonlinear reaction diffusion:
a flexible framework for fast and effective image restoration,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 39, No. 6, 1256–1272, Aug. 2016 (cited on pp. 2, 48, 62, 63,
65, 74, 92, 118, 130, 141, 176).

[76] Y. Chen, R. Ranftl and T. Pock: A bi-level view of inpainting-
based image compression, Proc. 19th Computer Vision Winter
Workshop, Z. Kúkelová and J. Heller (Ed.), Křtiny, Czech Repub-
lic, Feb. 2014 (cited on pp. 67, 68, 208).

[77] V. Chizhov and J. Weickert: Efficient data optimisation for
harmonic inpainting with finite elements, In N. Tsapatsoulis,
A. Panayides, T. Theocharides, A. Lanitis, C.S. Pattichis and
M. Vento (Eds.): Computer Analysis of Images and Patterns. Part
2. Lecture Notes in Computer Science, Vol. 13053, 432–441,
Springer, Cham, 2021 (cited on pp. 67, 68, 208).

[78] D. Ciresan, A. Giusti, L. M. Gambardella and J. Schmidhuber:
Deep neural networks segment neuronal membranes in elec-
tron microsopy images, Proc. 26th International Conference on
Neural Information Processing Systems, P. L. Bartlett, F. C. N.
Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger (Ed.),
Vol. 25, Advances in Neural Information Processing Systems,
2852–2860, Lake Tahoe, NV, Dec. 2012 (cited on p. 48).

[79] D. Ciresan, U. Meier, L. M. Gambardella and J. Schmidhuber:
Deep big simple neural nets for handwritten digit recognition,
12, Vol. 22, No. 12, 3207–3220, Nov. 2010 (cited on pp. 58, 59).

[80] D. Ciresan, U. Meier, J. Masci, L. M. Gambardella and J.
Schmidhuber: Flexible, high performance convolutional neural
networks for image classification, Proc. 22nd International Joint
Conference on Artificial Intelligence, T. Walsh (Ed.), 1237–1242,
Barcelona, Spain, July 2011 (cited on pp. 58, 60).

bibliography 251

[81] D. Ciresan, U. Meier, J. Masci and J. Schmidhuber: A committee
of neural networks for traffic sign classification, Proc. 2011
International Joint Conference on Neural Networks, T. Walsh (Ed.),
1918–1921, San Jose, CA, July 2011, IEEE Computer Society
Press (cited on p. 60).

[82] A.-S. Cohen, R. Cont, A. Rossier and R. Xu: Scaling properties
of deep residual networks, Proc. 38th International Conference on
Machine Learning, Vol. 139, Proceedings of Machine Learning
Research, 2039–2048, Virtual, July 2021 (cited on pp. 49, 62).

[83] T. Cohen, M. Geiger, J. Koehler and M. Welling: Spherical
CNNs, Proc. 6th International Conference on Learning Representa-
tions, Vancouver, Canada, Apr. 2018 (cited on p. 162).

[84] T. Cohen and M. Welling: Group equivariant convolutional
networks, Proc. 33rd International Conference on Machine Learning,
M. F. Balcan and K. Q. Weinberger (Ed.), Vol. 48, Proceedings
of Machine Learning Research, 2990–2999, New York City, NY,
June 2016 (cited on pp. 64, 162).

[85] R. R. Coifman and D. Donoho: Translation invariant denoising,
In A. Antoine and G. Oppenheim (Eds.): Wavelets in Statistics,
125–150, Springer, New York, 1995 (cited on pp. 40, 65, 76).

[86] P. L. Combettes and J.-C. Pesquet: Deep neural network struc-
tures solving variational inequalities, Set-Valued and Variational
Analysis, Vol. 28, No. 3, 491–518, Sept. 2020 (cited on p. 62).

[87] A. Criminisi, P. Pérez and K. Toyama: Region filling and object
removal by exemplar-based image inpainting, IEEE Transactions
on Image Processing, Vol. 13, No. 9, 1200–1212, Sept. 2004 (cited
on p. 67).

[88] E. Cuesta-Montero and J. Finat: Image processing by means of
a linear integro-differential equation, Proc. Third IASTED Inter-
national Conference on Visualization, Imaging and Image Processing,
438–442, Benalmadena, Spain, Sept. 2003, ACTA Press (cited
on p. 92).

[89] G. Cybenko: Approximation by superpositions of a sigmoidal
function, Mathematics of Control, Signals and Systems, Vol. 2, 303–
314, 1989 (cited on p. 64).

[90] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian: Image de-
noising by sparse 3D transform-domain collaborative filtering,
IEEE Transactions on Image Processing, Vol. 16, No. 8, 2080–2095,
Aug. 2007 (cited on p. 65).

[91] Q. Dai, H. Chopp, E. Pouyet, O. Cossairt, M. Walton and A. K.
Katsaggelos: Adaptive image sampling using deep learning
and its application on X-Ray fluorescence image reconstruction,
IEEE Transactions on Multimedia, Vol. 22, No. 10, 2564–2578, Dec.
2019 (cited on pp. 49, 209).

252 bibliography

[92] E. D’Angelo, L. Jacques, A. Alahi and P. Vandergheynst: From
bits to images: inversion of local binary descriptors, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 36, No. 5,
874–887, 2014 (cited on p. 68).

[93] V. Daropoulos, M. Augustin and J. Weickert: Sparse inpainting
with smoothed particle hydrodynamics, SIAM Journal on Ap-
plied Mathematics, Vol. 14, No. 4, 1669–1704, Nov. 2021 (cited on
pp. 68, 208).

[94] I. Daubechies: Ten Lectures on Wavelets, SIAM, Philadelphia,
1992 (cited on p. 39).

[95] I. Daubechies, R. DeVore, S. Foucart, B. Hanin and G. Pet-
rova: Nonlinear approximation and (deep) ReLU networks,
Constructive Approximation, Vol. 55, 127–172, Apr. 2022 (cited
on p. 64).

[96] P. De Felice, C. Marangi, G. Nardulli, G. Pasquariello and L.
Tedesco: Dynamics of neural networks with non-monotone
activation function, Network: Computation in Neural Systems,
Vol. 4, No. 1, 1–9, 1993 (cited on pp. 114, 123, 131).

[97] L. Demaret, N. Dyn and A. Iske: Image compression by linear
splines over adaptive triangulations, Signal Processing, Vol. 86,
No. 7, 1604–1616, 2006 (cited on pp. 68, 208).

[98] S. Di Zenzo: A note on the gradient of a multi-image, Computer
Vision, Graphics and Image Processing, Vol. 33, 116–125, 1986
(cited on pp. 95, 169, 190).

[99] S. Didas, G. Steidl and J. Weickert: Discrete multiscale wavelet
shrinkage and integrodifferential equations, In P. Schelkens,
T. Ebrahimi, G. Christobal and F. Truchetet (Eds.): Optical and
Digital Image Processing – Photonics Europe, Proceedings of SPIE,
Vol. 7000, SPIE Press, Bellingham, 2008 (cited on p. 227).

[100] S. Didas and J. Weickert: Integrodifferential equations for con-
tinuous multiscale wavelet shrinkage, Inverse Problems and Ima-
ging, Vol. 1, No. 1, 47–62, Feb. 2007 (cited on pp. 92, 172).

[101] S. Didas, J. Weickert and B. Burgeth: Properties of higher order
nonlinear diffusion filtering, Journal of Mathematical Imaging and
Vision, Vol. 35, 208–226, Nov. 2009 (cited on pp. 134, 165).

[102] S. Dieleman, J. De Fauw and K. Kavukcuoglu: Exploiting cyclic
symmetry in convolutional neural networks, Proc. 33rd Inter-
national Conference on Machine Learning, Vol. 48, Proceedings of
Machine Learning Research, 1889–1898, New York, NY, June
2016 (cited on pp. 64, 162).

[103] R. Distasi, M. Nappi and S. Vitulano: Image compression by
B-tree triangular coding, IEEE Transactions on Communications,
Vol. 45, No. 9, 1095–1100, Sept. 1997 (cited on p. 67).

bibliography 253

[104] S. Dittmer, T. Kluth, P. Maass and D. O. Baguer: Regularization
by architecture: a deep prior approach for inverse problems,
Journal of Mathematical Imaging and Vision, Vol. 62, 456–470, Apr.
2020 (cited on p. 63).

[105] B. Dong, Q. Jiang and Z. Shen: Image restoration: wavelet frame
shrinkage, nonlinear evolution PDEs, and beyond, Multiscale
Modeling and Simulation, Vol. 15, No. 1, 606–660, 2017 (cited on
p. 119).

[106] H. Dong, G. Yang, F. Liu, Y. Mo and Y. Guo: Automatic brain
tumor detection and segmentation using U-Net based fully con-
volutional networks, In M. Valdés Hernández and V. González-
Castro (Eds.): Medical Image Understanding and Analysis – MIUA
2017, Communications in Computer and Information Science,
Vol. 723, 506–517, Springer, Cham, 2017 (cited on pp. 48, 49).

[107] D. L. Donoho: De-noising by soft thresholding, IEEE Transac-
tions on Information Theory, Vol. 41, 613–627, May 1995 (cited on
pp. 40, 65, 74, 77, 116, 123).

[108] D. L. Donoho and I. M. Johnstone: Ideal spatial adaptation
by wavelet shrinkage, Biometrica, Vol. 81, No. 3, 425–455, 1994
(cited on pp. 2, 15, 38, 73).

[109] Y. Du and I. Mordatch: Implicit generation and modeling with
energy based models, Proc. 33rd International Conference on
Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett (Ed.),
Vol. 32, Advances in Neural Information Processing Systems,
3603–3613, Vancouver, Canada, Dec. 2019 (cited on p. 63).

[110] E. C. Du Fort and S. P. Frankel: Stability conditions in the
numerical treatment of parabolic differential equations, Math-
ematical Tables and Other Aids to Computation, Vol. 7, 135–152,
1953 (cited on pp. 129, 130, 137, 138).

[111] J. Duchi, E. Hazan and Y. Singer: Adaptive subgradient meth-
ods for online learning and stochastic optimization, Journal of
Machine Learning Research, Vol. 12, 2121–2159, July 2011 (cited
on p. 56).

[112] R. Duits, B. Smets, E. Bekkers and J. Portegies: Equivariant
deep learning via morphological and linear scale space PDEs
on the space of positions and orientations, In A. Elmoataz,
J. Fadili, Y. Quéau, J. Rabin and L. Simon (Eds.): Scale Space
and Variational Methods in Computer Vision, Lecture Notes in
Computer Science, Vol. 12679, 27–39, Springer, Cham, 2021
(cited on pp. 64, 114, 162).

[113] W. E: A proposal on machine learning via dynamical systems,
Communications in Mathematics and Statistics, Vol. 5, 1–11, Mar.
2017 (cited on p. 114).

254 bibliography

[114] W. E, J. Han and A. Jentzen: Algorithms for solving high dimen-
sional PDEs: from nonlinear Monte Carlo to machine learning,
Nonlinearity, Vol. 35, No. 1, Article No. 278, Dec. 2021 (cited on
p. 62).

[115] Eastman Kodak Company: Kodak true color image suite, 1999,
Available at http://r0k.us/graphics/kodak/, last visited
March 30, 2022 (cited on pp. 193, 200).

[116] R. Eldan and O. Shamir: The power of depth for feedforward
neural networks, Proc. 29th Conference on Learning Theory, V.
Feldman, A. Rakhlin and O. Shamir (Ed.), 907–940, New York,
NY, June 2016 (cited on p. 64).

[117] M. Eliasof, J. Ephrath, R. Ruthotto and E. Treister:
Mgic: multigrid-in-channels neural network architectures,
arXiv:2011.09128v2 [cs.CV], Nov. 2020 (cited on p. 131).

[118] M. Eliasof, E. Haber and E. Treister: PDE-GCN novel architec-
tures for graph neural networks motivated by partial differ-
ential equations, Proc. 35th International Conference on Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y.
Dauphin, P.S. Liang and J. W. Vaughan (Ed.), Vol. 34, Advances
in Neural Information Processing Systems, 3836–3849, Virtual,
Dec. 2021 (cited on p. 63).

[119] S. Esedoglu: An analysis of the Perona–Malik scheme, Com-
munications on Pure and Applied Mathematics, Vol. 54, No. 12,
1442–1487, May 2001 (cited on p. 21).

[120] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno and D. Song: Robust physical-world
attacks on deep learning visual classification, Proc. 2018 IEEE
Conference on Computer Vision and Pattern Recognition, 1625–1634,
Salt Lake City, UT, June 2018, IEEE Computer Society Press
(cited on p. 1).

[121] R. Fablet, L. Drumetz and F. Rousseau: End-to-end learning of
variational models and solvers for the resolution of interpola-
tion problems, Proc. 2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2360–2364, Toronto, Canada,
June 2021, IEEE Computer Society Press (cited on p. 63).

[122] G. Facciolo, P. Arias, V. Caselles and G. Sapiro: Exemplar-based
interpolation of sparsely sampled images, In D. Cremers, Y.
Boykov, A. Blake and F. R. Schmidt (Eds.): Energy Minimisation
Methods in Computer Vision and Pattern Recognition, Lecture
Notes in Computer Science, Vol. 5681, 331–344, Springer, Berlin,
2009 (cited on p. 67).

http://r0k.us/graphics/kodak/

bibliography 255

[123] B. Fasel and D. Gatica-Perez: Rotation-invariant neoperceptron,
Proc. 18th International Conference on Pattern Recognition, Vol. 3,
336–339, Hong Kong, Aug. 2006, IEEE Computer Society Press
(cited on pp. 64, 162).

[124] W. Feng, P. Qiao, X. Xi and Y. Chen: Image denoising via
multiscale nonlinear diffusion models, SIAM Journal on Imaging
Sciences, Vol. 10, No. 3, 1234–1257, 2017 (cited on p. 176).

[125] A. Fick: Ueber Diffusion, Annalen der Physik, Vol. 170, No. 1,
59–86, Apr. 1855 (cited on p. 16).

[126] R. W. Floyd and L. Steinberg: An adaptive algorithm for spatial
grey scale, Proceedings of the Society of Information Display, Vol. 17,
75–77, 1976 (cited on p. 214).

[127] W. Förstner and E. Gülch: A fast operator for detection and
precise location of distinct points, corners and centres of cir-
cular features, Proc. ISPRS Intercommission Conference on Fast
Processing of Photogrammetric Data, 281–305, Interlaken, Switzer-
land, June 1987 (cited on pp. 92, 93, 164).

[128] R. Franke and G. Nielson: Smooth interpolation of large sets of
scattered data, Numerical Methods in Engineering, Vol. 15, No. 11,
1691–1704, Nov. 1980 (cited on p. 186).

[129] W. T. Freeman and E. H. Adelson: The design and use of steer-
able filters, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 13, No. 9, 891–906, Sept. 1991 (cited on p. 162).

[130] D. S. Fritsch: A medial description of greyscale image structure
by gradient-limited diffusion, In R. A. Robb (Ed.): Visualization
in Biomedical Computing ’92, Proceedings of SPIE, Vol. 1808,
105–117, SPIE Press, Bellingham, 1992 (cited on p. 21).

[131] S. Fujieda, K. Takayama and T. Hachisuka: Wavelet convolu-
tional neural networks, arXiv:1805.08620v1 [cs.CV], May 2018
(cited on p. 63).

[132] K. Fukushima: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in posi-
tion, Biological Cybernetics, Vol. 36, 193–202, 1980 (cited on pp. 1,
44, 58, 59).

[133] K. Fukushima: Artificial vision by multi-layered neural net-
works: neocognitron and its advances, Neural Networks, Vol. 37,
103–119, Jan. 2013 (cited on p. 59).

[134] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev and H.-P.
Seidel: Towards PDE-based image compression, In N. Paragios,
O. Faugeras, T. Chan and C. Schnörr (Eds.): Variational, Geo-
metric and Level-Set Methods in Computer Vision, Lecture Notes
in Computer Science, Vol. 3752, 37–48, Springer, Berlin, 2005
(cited on p. 67).

256 bibliography

[135] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev and H.-P.
Seidel: Image compression with anisotropic diffusion, Journal
of Mathematical Imaging and Vision, Vol. 31, No. 2–3, 255–269,
July 2008 (cited on pp. 15, 23, 67, 156, 187, 207).

[136] H.-Y. Gao: Wavelet shrinkage denoising using the non-negative
garrote, Journal of Computational and Graphical Statistics, Vol. 7,
No. 4, 469–488, Dec. 1998 (cited on pp. 74, 77, 123).

[137] I. M. Gelfand and S. V. Fomin: Calculus of Variations, Dover,
New York, 2000 (cited on pp. 6, 36, 37).

[138] S. Geman and D. Geman: Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 6, 721–741, 1984
(cited on p. 123).

[139] R. Gens and P. Domingos: Deep symmetry networks, Proc. 28th
International Conference on Neural Information Processing Systems,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence and K.
Q. Weinberger (Ed.), Vol. 27, Advances in Neural Information
Processing Systems, 2537–2545, Montréal, Canada, Dec. 2014
(cited on pp. 64, 162).

[140] M. Genzel, J. Macdonald and M. März: Solving inverse prob-
lems with deep neural networks – robustness included?, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 45,
No. 1, 1119–1134, Feb. 2022 (cited on pp. 2, 64).

[141] G. Gerig, O. Kübler, R. Kikinis and F. A. Jolesz: Nonlinear
anisotropic filtering of MRI data, IEEE Transactions on Medical
Imaging, Vol. 11, 221–232, 1992 (cited on pp. 169, 177).

[142] F. A. Gers, J. Schmidhuber and F. Cummins: Learning to forget:
continual prediction with LSTM, Neural Computation, Vol. 12,
No. 10, 2451–2471, 2000 (cited on pp. 47, 59).

[143] S. Gerschgorin: Fehlerabschätzung für das Differenzenver-
fahren zur Lösung Partieller Differentialgleichungen, Zeitschrift
für Angewandte Mathematik und Mechanik, Vol. 10, 373–382, 1930
(cited on pp. 10, 96, 136).

[144] A. Gersho and M. R. Gray: Vector Quantization and Signal
Compression, The Springer International Series in Engineering
and Computer Science, Vol. 159, Springer, New York, 1992
(cited on p. 200).

[145] P. Getreuer, P. Milanfar and X. Luo: Solving image PDEs with
a shallow network, arXiv:2110.08327v1 [cs.CV], Oct. 2021 (cited
on p. 62).

[146] G. Gilboa and S. Osher: Nonlocal operators with applications
to image processing, Multiscale Modeling and Simulation, Vol. 7,
1005–1028, Nov. 2008 (cited on p. 92).

bibliography 257

[147] G. Gilboa, N. A. Sochen and Y. Y. Zeevi: Forward-and-backward
diffusion processes for adaptive image enhancement and de-
noising, IEEE Transactions on Image Processing, Vol. 11, No. 7,
689–703, Nov. 2002 (cited on pp. 21, 74).

[148] G. Gilboa, Y. Zeevi and N. Sochen: Image enhancement seg-
mentation and denoising by time dependent nonlinear diffu-
sion processes, Proc. 2001 IEEE International Conference on Image
Processing, Vol. 3, 134–137, Thessaloniki, Greece, Oct. 2001, IEEE
Computer Society Press (cited on p. 151).

[149] X. Glorot and Y. Bengio: Understanding the difficulty of train-
ing deep feedforward neural networks, Proc. Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, 249–256,
Sardinia, Italy, May 2010 (cited on pp. 43, 60).

[150] A. Golts, D. Freedman and M. Elad: Deep energy: task driven
training of deep neural networks, IEEE Journal of Selected Topics
in Signal Processing, Vol. 15, No. 2, 324–338, Feb. 2021 (cited on
pp. 63, 156, 213, 239).

[151] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville and Y.
Bengio: Maxout networks, Proc. 30th International Conference on
Machine Learning, S. Dasgupta and D. McAllester (Ed.), Vol. 28,
Proceedings of Machine Learning Research, 1319–1327, Atlanta,
GA, June 2013 (cited on pp. 130, 176).

[152] I. J. Goodfellow, Y. Bengio and A. Courville: Deep Learning,
MIT Press, Cambridge, MA, 2016 (cited on pp. 1, 15, 41, 57, 59,
60).

[153] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. C. Courville and Y. Bengio: Generative
adversarial nets, Proc. 28th International Conference on Neural
Information Processing Systems, Z. Ghahramani, M. Welling, C.
Cortes, N. D. Lawrence and K. Q. Weinberger (Ed.), Vol. 27,
Advances in Neural Information Processing Systems, 2672–
2680, Montréal, Canada, Dec. 2014 (cited on pp. 58, 60).

[154] I. J. Goodfellow, J. Shlens and C. Szegedy: Explaining and har-
nessing adversarial examples, Proc. 3rd International Conference
on Learning Representations, Y. Bengio and Y. LeCun (Ed.), San
Diego, CA, May 2015 (cited on pp. 1, 61).

[155] Google Corporation: Google scholar metrics: top cited public-
ations over the last five years, Available at https://scholar.
google.com/citations?view_op=top_venues, Last visited
November 2, 2021 (cited on p. 60).

[156] D. Gottlieb and B. Gustafsson: Generalized Du Fort–Frankel
methods for parabolic initial-boundary value problems, SIAM
Journal on Numerical Analysis, Vol. 13, No. 1, 129–144, Mar. 1976
(cited on pp. 138, 231, 234).

https://scholar.google.com/citations?view_op=top_venues
https://scholar.google.com/citations?view_op=top_venues

258 bibliography

[157] H. Gouk, E. Frank, B. Pfahringer and M. J. Cree: Regularisation
of neural networks by enforcing Lipschitz continuity, Machine
Learning, Vol. 110, 393–416, Feb. 2021 (cited on pp. 64, 137).

[158] T. Grandits and T. Pock: Optimizing wavelet bases for sparser
representations, In M. Pelillo and E. Hancock (Eds.): Energy
Minimisation Methods in Computer Vision and Pattern Recogni-
tion, Lecture Notes in Computer Science, Vol. 10746, 249–262,
Springer, Cham, 2018 (cited on p. 74).

[159] D. Greenfeld, M. Galun, R. Kimmel, I. Yavneh and R. Basri:
Learning to optimize multigrid PDE solvers, Proc. 36th Inter-
national Conference on Machine Learning, K. Chaudhuri and R.
Salakhutdinov (Ed.), Vol. 97, Proceedings of Machine Learn-
ing Research, 2415–2423, Long Beach, CA, June 2019 (cited on
pp. 131, 143).

[160] S. Grewenig, J. Weickert and A. Bruhn: From box filtering to fast
explicit diffusion, In M. Goesele, S. Roth, A. Kuijper, B. Schiele
and K. Schindler (Eds.): Pattern Recognition, Lecture Notes in
Computer Science, Vol. 6376, 533–542, Springer, Berlin, 2010
(cited on p. 33).

[161] S. Gu and R. Timofte: A brief review of image denoising al-
gorithms and beyond, In S. Escalera, S. Ayache, J. Wan, M.
Madadi, U. Güçlü and X. Baró (Eds.): Inpainting and Denois-
ing Challenges, The Springer Series on Challenges in Machine
Learning, 1–21, Springer, Cham, 2019 (cited on p. 65).

[162] C. Guillemot and O. Le Meur: Image inpainting: overview and
recent advances, IEEE Signal Processing Magazine, Vol. 31, No. 1,
127–144, 2014 (cited on p. 67).

[163] S. Günther, L. Ruthotto, J. B. Schroder, E. C. Cyr and N. R.
Gauger: Layer-parallel training of deep residual neural net-
works, SIAM Journal on Mathematics of Data Science, Vol. 2, No. 1,
1–23, Feb. 2020 (cited on p. 131).

[164] J. Gusak, A. Katrutsa, T. Daulbaev, A. Cichocki and I. Osele-
dets: Meta-solver for neural ordinary differential equations,
arXiv:2103.08561v1 [cs.LG], Mar. 2021 (cited on pp. 49, 62).

[165] A. Haar: Zur Theorie der orthogonalen Funktionensysteme,
Mathematische Annalen, Vol. 69, 331–371, 1910 (cited on pp. 2,
15, 39).

[166] E. Haber, K. Lensink, E. Treister and L. Ruthotto: IMEXnet — a
forward stable deep neural network, Proc. 36th International Con-
ference on Machine Learning, K. Chaudhuri and R. Salakhutdinov
(Ed.), Vol. 97, Proceedings of Machine Learning Research, 2525–
2534, Long Beach, CA, June 2019 (cited on pp. 62, 130).

bibliography 259

[167] E. Haber and L. Ruthotto: Stable architectures for deep neural
networks, Inverse Problems, Vol. 34, No. 1, Article no. 014004,
Dec. 2017 (cited on pp. 1, 2, 49, 62, 114, 130).

[168] W. Hackbusch: Multigrid Methods and Applications, Springer,
New York, 1985 (cited on pp. 35, 142).

[169] J. Hadamard: Mémoire sur le problème d’analyse relatif à
l’équilibre des plaques élastiques encastrées, Mémoires presentés
par divers savants étrangers à l’Académie des Sciences de l’Institut
de France, Vol. 33, No. 4, 1908 (cited on p. 11).

[170] D. Hafner, P. Ochs, J. Weickert, M. Reißel and S. Grewenig: FSI
schemes: fast semi-iterative solvers for PDEs and optimisation
methods, In B. Rosenhahn and B. Andres (Eds.): Pattern Recog-
nition, Lecture Notes in Computer Science, Vol. 9796, 91–102,
Springer, Cham, 2016 (cited on pp. 33, 34, 105, 129, 130, 138,
139).

[171] D. Hartmann, C. Lessig, N. Margenberg and T. Richter: A
neural network multigrid solver for the Navier-Stokes equa-
tions, Journal of Computational Physics, Vol. 460, Article No.
110983, July 2022 (cited on p. 131).

[172] J. He and J. Xu: MgNet: a unified framework of multigrid
and convolutional neural network, Science China Mathematics,
Vol. 62, 1331–1354, May 2019 (cited on p. 131).

[173] K. He, X. Zhang, S. Ren and J. Sun: Deep residual learning
for image recognition, Proc. 2016 IEEE Conference on Computer
Vision and Pattern Recognition, 770–778, Las Vegas, NV, June
2016, IEEE Computer Society Press (cited on pp. 48, 58, 60, 116,
136, 137, 148).

[174] D. O. Hebb: The Organization of Behavior, Wiley, New York,
1949 (cited on pp. 57, 58).

[175] Y. Hel-Or and D. Shaked: A discriminative approach for wavelet
denoising, IEEE Transactions on Image Processing, Vol. 17, No. 4,
443–457, Mar. 2008 (cited on pp. 40, 74, 86).

[176] L. Helminger, M. Bernasconi, A. Djelouah, M. Gross and C.
Schroers: Generic image restoration with flow based priors,
Proc. 2021 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, 334–343, Virtual, June 2021,
IEEE Computer Society Press (cited on pp. 67, 209).

[177] G. Hinton: Neural networks for machine learning: lecture
6, Available at https : / / www . cs . toronto . edu / ~hinton /

coursera/lecture6/lec6.pdf, last visited March 30, 2022
(cited on p. 56).

[178] G. E. Hinton: Training products of experts by minimizing con-
trastive divergence, Neural Computation, Vol. 14, No. 8, 1771–
1800, Aug. 2002 (cited on p. 63).

https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf

260 bibliography

[179] G. E. Hinton, S. Osindero and Y.-W. Teh: A fast learning al-
gorithm for deep belief nets, Science, Vol. 18, No. 7, 1527–1554,
July 2006 (cited on p. 59).

[180] G. E. Hinton and R. Salakhutdinov: Reducing the dimension-
ality of data with neural networks, Science, Vol. 313, No. 5786,
504–507, July 2006 (cited on pp. 58, 59).

[181] S. Hochreiter: Untersuchungen zu dynamischen neuronalen
Netzen, Diploma Thesis, Institut für Informatik, Technische Uni-
versität München, Germany, 1991 (cited on pp. 49, 53, 58, 59).

[182] S. Hochreiter and J. Schmidhuber: Long short-term memory,
Neural Computation, Vol. 9, No. 8, 1735–1780, Nov. 1997 (cited
on pp. 47, 58, 59).

[183] L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. H.
Tang, S. Setzer, D. Johannsen, F. Neumann and B. Doerr: Op-
timising spatial and tonal data for PDE-based inpainting, In
M. Bergounioux, G. Peyré, C. Schnörr, J.-P. Caillau and T.
Haberkorn (Eds.): Variational Methods in Imaging and Geometric
Control, Radon Series on Computational and Applied Mathem-
atics, Vol. 18, 35–83, De Gruyter, Berlin, 2017 (cited on pp. 68,
191, 208, 240).

[184] L. Hoeltgen, S. Setzer and J. Weickert: An optimal control
approach to find sparse data for Laplace interpolation, In A.
Heyden, F. Kahl, C. Olsson, M. Oskarsson and X.-C. Tai (Eds.):
Energy Minimisation Methods in Computer Vision and Pattern
Recognition, Lecture Notes in Computer Science, Vol. 8081, 151–
164, Springer, Berlin, 2013 (cited on p. 68).

[185] L. Hoeltgen and J. Weickert: Why does non-binary mask optim-
isation work for diffusion-based image compression?, In X.-C.
Tai, E. Bae, T. F. Chan, S. Y. Leung and M. Lysaker (Eds.): Energy
Minimisation Methods in Computer Vision and Pattern Recognition,
Lecture Notes in Computer Science, Vol. 8932, 85–98, Springer,
Berlin, 2015 (cited on p. 210).

[186] S. Hoffmann, M. Mainberger, J. Weickert and M. Puhl: Com-
pression of depth maps with segment-based homogeneous dif-
fusion, In A. Kuijper, K. Bredies, T. Pock and H. Bischof (Eds.):
Scale Space and Variational Methods in Computer Vision, Lecture
Notes in Computer Science, Vol. 7893, 319–330, Springer, Berlin,
2013 (cited on p. 67).

[187] M. Holschneider, R. Kronland-Martinet, J. Morlet and P. Tcham-
itchian: A real-time algorithm for signal analysis with the help
of the wavelet transform, In J. M. Combes, A. Grossman and
P. Tchamitchian (Eds.): Wavelets: Time-Frequency Methods and
Phase Space, 286–297, Springer, Berlin, 1989 (cited on pp. 41,
76).

bibliography 261

[188] J. J. Hopfield: Neural networks and physical systems with
emergent collective computational abilities, Proceedings of the
National Academy of Sciences, Vol. 79, No. 8, 2554–2558, Apr.
1982 (cited on pp. 47, 58, 59, 141).

[189] B. Horn and B. Schunck: Determining optical flow, Artificial
Intelligence, Vol. 17, 185–203, 1981 (cited on p. 37).

[190] K. Hornik, M. Stinchcombe and H. White: Multilayer feedfor-
ward networks are universal approximators, Neural Networks,
Vol. 2, No. 5, 359–366, 1989 (cited on pp. 64, 123).

[191] G. Huang, Z. Liu, L. van der Maaten and K. Q. Weinberger:
Densely connected convolutional networks, Proc. 2017 IEEE
Conference on Computer Vision and Pattern Recognition, 4700–
4708, Honolulu, HI, July 2017, IEEE Computer Society Press
(cited on pp. 58, 60, 137, 141).

[192] D. H. Hubel and T. N. Wiesel: Receptive fields of single neur-
ones in the cat’s striate cortex, Journal of Physiology, Vol. 148,
No. 3, 574–591, Oct. 1959 (cited on pp. 1, 59).

[193] P. J. Huber: Robust regression: asymptotics, conjectures and
Monte Carlo, The Annals of Statistics, Vol. 1, No. 5, 799–821,
Sept. 1973 (cited on p. 123).

[194] T. Iijima: Basic theory of pattern observation, In: Papers of Tech-
nical Group on Automata and Automatic Control, In Japanese:
IECE, Japan, 1959 (cited on p. 18).

[195] T. Iijima: Basic theory on normalization of pattern (in case of
typical one-dimensional pattern), Bulletin of the Electrotechnical
Laboratory, Vol. 26, In Japanese, 368–388, 1962 (cited on pp. 2,
15, 18, 115, 123, 150, 188, 210).

[196] T. Iijima: Basic theory on normalization of two-dimensional
visual pattern, Studies on Information and Control (IECE, Japan),
No. 1, Pattern Recognition Issue. In Japanese, 15–22, 1963 (cited
on p. 18).

[197] S. Iizuka, E. Simo-Serra and H. Ishikawa: Globally and locally
consistent image completion, ACM Transactions on Graphics,
Vol. 36, No. 4, Article No. 107, July 2017 (cited on pp. 67, 209).

[198] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T.
Brox: FlowNet 2.0: evolution of optical flow estimation with
deep networks, Proc. 2017 IEEE Conference on Computer Vision
and Pattern Recognition, 2462–2470, Honolulu, HI, July 2017,
IEEE Computer Society Press (cited on p. 48).

[199] S. Ioffe and C. Szegedy: Batch normalization: accelerating deep
network training by reducing internal covariate shift, Proc. 32nd
International Conference on Machine Learning, F. Bach and D. Blei
(Ed.), Vol. 37, Proceedings of Machine Learning Research, 448–
456, Lille, France, July 2015 (cited on p. 54).

262 bibliography

[200] A. G. Ivakhnenko: The group method of data handling — a
rival of the method of stochastic approximation, Soviet Auto-
matic Control, Vol. 13, No. 3, 43–55, 1968 (cited on pp. 57, 58).

[201] E. Jenner and M. Weiler: Steerable partial differential operators
for equivariant neural networks, Proc. 10th International Con-
ference on Learning Representations, Virtual, Apr. 2022 (cited on
p. 176).

[202] Y. Jia, C. Huang and T. Darrell: Beyond spatial pyramids: re-
ceptive field learning for pooled image features, Proc. 2012 IEEE
Conference on Computer Vision and Pattern Recognition, 3370–3377,
Providence, RI, July 2012, IEEE Computer Society Press (cited
on p. 49).

[203] F. Jost, P. Peter and J. Weickert: Compressing flow fields with
edge-aware homogeneous diffusion inpainting, Proc. 2020 In-
ternational Conference on Acoustics, Speech, and Signal Processing,
2198–2202, Barcelona, Spain, May 2020, IEEE Computer Society
Press (cited on p. 67).

[204] F. Jost, P. Peter and J. Weickert: Compressing piecewise smooth
images with the Mumford–Shah cartoon model, Proc. 28th
European Signal Processing Conference, 511–515, Amsterdam,
Netherlands, Jan. 2021 (cited on p. 67).

[205] I. Jumakulyyev and T. Schultz: Fourth-order anisotropic diffu-
sion for inpainting and image compression, In E. Özarslan, T.
Schultz, E. Zhang and A. Fuster (Eds.): Anisotropy Across Fields
and Scales, Mathematics and Visualization, 99–124, Springer,
Cham, 2021 (cited on pp. 22, 24).

[206] J. Jumper et al.: Highly accurate protein structure prediction
with AlphaFold, Nature, Vol. 596, 583–589, July 2021 (cited on
pp. 58, 61).

[207] N. Kämper and J. Weickert: Domain decomposition al-
gorithms for real-time homogeneous diffusion inpainting in
4K, Proc. 2022 IEEE International Conference on Acoustics, Speech
and Signal Processing, to appear, Singapore, May 2022, IEEE
Computer Society Press (cited on p. 67).

[208] L. Karos, P. Bheed, P. Peter and J. Weickert: Optimising data
for exemplar-based inpainting, In J. Blanc-Talon, D. Helbert, W.
Philips, D. Popescu and P. Scheunders (Eds.): Advanced Concepts
for Intelligent Vision Systems, Lecture Notes in Computer Science,
Vol. 11182, 547–558, Springer, Cham, 2018 (cited on pp. 67, 68,
208).

[209] A. Katrutsa, T. Daulbaev and I. Oseledets: Black-box learning
of multigrid parameters, Journal of Computational and Applied
Mathematics, Vol. 368, Article No. 112524, Apr. 2020 (cited on
pp. 49, 131, 143).

bibliography 263

[210] S. L. Keeling and R. Stollberger: Nonlinear anisotropic diffusion
filters for wide range edge sharpening, Inverse Problems, Vol. 18,
175–190, Jan. 2002 (cited on p. 123).

[211] S. Kichenassamy: The Perona–Malik paradox, SIAM Journal on
Applied Mathematics, Vol. 57, 1343–1372, 1997 (cited on p. 21).

[212] D. P. Kingma and J. Ba: Adam: A method for stochastic optim-
ization, Proc. 3rd International Conference on Learning Represent-
ations, San Diego, CA, May 2015 (cited on pp. 56, 58, 60, 149,
157, 179, 213).

[213] D. P. Kingma and M. Welling: An introduction to variational
autoencoders, Foundations and Trends in Machine Learning, No. 4,
307–392, Dec. 2018 (cited on p. 60).

[214] I. Kligvasser, T. R. Shaham and T. Michaeli: XUnit: learning
a spatial activation function for efficient image restoration,
Proc. 2018 IEEE Conference on Computer Vision and Pattern Recog-
nition, 2433–2442, Salt Lake City, UT, June 2018, IEEE Computer
Society Press (cited on p. 114).

[215] H. Knutsson and C.-F. Westin: Normalized and differential
convolution, Proc. 1993 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 515–523, New York,
NY, June 1993, IEEE Computer Society Press (cited on p. 186).

[216] E. Kobler, A. Effland, K. Kunisch and T. Pock: Total deep
variation for linear inverse problems, Proc. 2020 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition,
7549–7558, Seattle, WA, June 2020, IEEE Computer Society
Press (cited on p. 63).

[217] E. Kobler, T. Klatzer, K. Hammernik and T. Pock: Variational
networks: connecting variational methods and deep learning, In
V. Roth and T. Vetter (Eds.): Pattern Recognition, Lecture Notes
in Computer Science, Vol. 10496, 281–293, Springer, Cham, 2017
(cited on pp. 48, 63, 120).

[218] M. J. Kochenderfer and T. A. Wheeler: Algorithms for Op-
timization, MIT Press, Cambridge, MA, 2019 (cited on pp. 54,
56).

[219] H. Köstler, M. Stürmer, C. Freundl and U. Rüde: PDE based
video compression in real time, Technical Report No. 07-11,
Lehrstuhl für Informatik 10, Univ. Erlangen–Nürnberg, Ger-
many, 2007 (cited on pp. 67, 142).

[220] A. Krizhevsky, I. Sutskever and G. E. Hinton: Imagenet clas-
sification with deep convolutional neural networks, Proc. 26th
International Conference on Neural Information Processing Systems,
P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou and
K. Q. Weinberger (Ed.), Vol. 25, Advances in Neural Informa-

264 bibliography

tion Processing Systems, 1106–1114, Lake Tahoe, NV, Dec. 2012
(cited on pp. 41, 48, 58, 60).

[221] D. Laptev, N. Savinov, J. M. Buhmann and M. Pollefeys: TI-
POOLING: transformation-invariant pooling for feature learn-
ing in convolutional neural networks, Proc. 2016 IEEE Conference
on Computer Vision and Pattern Recognition, 289–297, Las Vegas,
NV, June 2016, IEEE Computer Society Press (cited on pp. 64,
162).

[222] Y. LeCun: Une procédure d’apprentissage pour réseau à seuil
asymétrique, Proc. Cognitiva 85, 599–604, Paris, France, 1985
(cited on p. 59).

[223] Y. LeCun, Y. Bengio and G. Hinton: Deep learning, Nature,
Vol. 521, 436–444, May 2015 (cited on pp. 1, 15, 41).

[224] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard and L. D. Jackel: Back-propagation applied to
handwritten zip code recognition, Neural Computation, Vol. 1,
No. 4, 541–551, 1989 (cited on pp. 58, 59).

[225] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-based
learning applied to document recognition, Proceedings of the
IEEE, Vol. 86, No. 11, 2278–2324, Nov. 1998 (cited on pp. 1, 15,
41, 44, 59).

[226] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato and F. J. Huang: A
tutorial on energy-based learning, Predicting Structured Data, G.
Bakir, T. Hofman, B. Schölkopf, A. Smola and B. Taskar (Ed.),
191–246, Cambridge, MA, 2007, MIT Press (cited on p. 63).

[227] K. Leino, Z. Wang and M. Fredrikson: Globally-robust neural
networks, Proc. 38th International Conference on Machine Learning,
Vol. 139, Proceedings of Machine Learning Research, 6212–6222,
Virtual, July 2021 (cited on p. 64).

[228] R. J. LeVeque: Finite Difference Methods for Ordinary and
Partial Differential Equations, SIAM, Philadelphia, 2007 (cited
on p. 25).

[229] M. Li, L. He and Z. Lin: Implicit Euler skip connections: Enhan-
cing adversarial robustness via numerical stability, Proc. 37th
International Conference on Machine Learning, H. Daumé III and
A. Singh (Ed.), Vol. 119, Proceedings of Machine Learning Re-
search, 5874–5883, Vienna, Austria, July 2020 (cited on pp. 1,
62, 130, 137).

[230] X. Li and M. T. Orchard: Spatially adaptive image denoising
under overcomplete expansion, Proc. 2000 International Confer-
ence on Image Processing, Vol. 3, 300–303, Vancouver, Canada,
Sept. 2000 (cited on p. 74).

[231] Z. Li and Z. Shi: Deep residual learning and PDEs on manifolds,
arXiv:1708.05115v3 [cs:IT], Jan. 2018 (cited on pp. 63, 114).

bibliography 265

[232] Z. Li, X. Zhang, R. Zhu, Z. Zhang and Z. Weng: Integrating
data-to-data correlation into inverse distance weighting, Com-
putational Geosciences, Vol. 24, No. 1, 203–216, Nov. 2019 (cited
on p. 186).

[233] H. W. Lin, M. Tegmark and D. Rolnick: Why does deep and
cheap learning work so well?, Journal of Statistical Physics,
Vol. 168, No. 6, 1223–1247, Sept. 2017 (cited on p. 64).

[234] S. Linnainmaa: The representation of the cumulative round-
ing error of an algorithm as a Taylor expansion of the local
rounding errors, Master’s Thesis, Department of Computer Science,
University of Helsinki, Finland, 1970 (cited on p. 59).

[235] S. Linnainmaa: Taylor expansion of the accumulated rounding
error, BIT Numerical Mathematics, Vol. 16, No. 2, 146–160, June
1976 (cited on p. 59).

[236] D. C. Liu and J. Nocedal: On the limited memory BFGS method
for large scale optimization, Mathematical Programming, Vol. 45,
No. 1–3, 503–528, Aug. 1989 (cited on pp. 56, 81).

[237] H. Liu, B. Jiang, Y. Xiao and C. Yang: Coherent semantic at-
tention for image inpainting, Proc. 2019 IEEE International Con-
ference on Computer Vision, 4170–4179, Seoul, Korea, Oct. 2017,
IEEE Computer Society Press (cited on pp. 67, 209).

[238] Z. Long, Y. Lu and B. Dong: PDE-net 2.0: learning PDEs from
data with a numeric-symbolic hybrid deep network, Journal
of Computational Physics, Vol. 399, No. 2197, Article no. 108925,
Dec. 2019 (cited on pp. 2, 62, 92).

[239] J. M. Lorenzi, T. Stecher, K. Reuter and S. Matera: Local-metrics
error-based Shepard interpolation as surrogate for highly non-
linear material models in high dimensions, Journal of Chemical
Physics, Vol. 147, No. 16, Article no. 164106, Oct. 2017 (cited on
p. 186).

[240] Y. Lu, A. Zhong, Q. Li and B. Dong: Beyond finite layer neural
networks: bridging deep architectures and numerical differ-
ential equations, Proc. 35th International Conference on Machine
Learning, J. Dy and A. Krause (Ed.), Vol. 80, Proceedings of
Machine Learning Research, 3276–3285, Stockholm, Sweden,
July 2018 (cited on pp. 62, 114, 130, 137, 139, 151).

[241] Z. Luo, Z. Sun, W. Zhou, Z. Wu and S. Kamata: Rethinking
ResNets: improved stacking strategies with high-order schemes
for image classification, Complex & Intelligent Systems, Vol. 8,
3395–3407, Feb. 2022 (cited on p. 62).

266 bibliography

[242] M. Lysaker, A. Lundervold and X.-C. Tai: Noise removal using
fourth-order partial differential equations with applications to
medical magnetic resonance images in space and time, IEEE
Transactions on Image Processing, Vol. 12, No. 12, 1579–1590, Dec.
2003 (cited on pp. 22, 165, 167, 177).

[243] J. Ma and G. Plonka: Combined curvelet shrinkage and nonlin-
ear anisotropic diffusion, IEEE Transactions on Image Processing,
Vol. 16, No. 9, 2198–2206, Aug. 2007 (cited on p. 119).

[244] M. Mahoney: Adaptive weighing of context models for lossless
data compression, Technical Report No. CS-2005-16, Florida
Institute of Technology, Melbourne, Florida, Dec. 2005 (cited
on p. 198).

[245] M. Mainberger, A. Bruhn, J. Weickert and S. Forchhammer:
Edge-based compression of cartoon-like images with homogen-
eous diffusion, Pattern Recognition, Vol. 44, No. 9, 1859–1873,
Sept. 2011 (cited on p. 67).

[246] M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, D. Jo-
hannsen, F. Neumann and B. Doerr: Optimising spatial and
tonal data for homogeneous diffusion inpainting, In A. M.
Bruckstein, B. ter Haar Romeny, A. M. Bronstein and M. M.
Bronstein (Eds.): Scale Space and Variational Methods in Computer
Vision, Lecture Notes in Computer Science, Vol. 6667, 26–37,
Springer, Berlin, 2012 (cited on pp. 68, 107, 142, 207, 208, 210,
215, 240).

[247] F. Malgouyres and F. Guichard: Edge direction preserving
image zooming: a mathematical and numerical analysis, SIAM
Journal on Numerical Analysis, Vol. 39, No. 1, 1–37, 2001 (cited
on p. 67).

[248] S. Mallat: A Wavelet Tour of Signal Processing, Second, Aca-
demic Press, San Diego, 1999 (cited on pp. 2, 15, 39, 65, 74, 77,
116, 123).

[249] D. Marcos, M. Volpi and D. Tuia: Learning rotation invari-
ant convolutional filters for texture classification, Proc. 23rd
International Conference on Pattern Recognition, Vol. 2, 2012–2017,
Cancun, Mexico, Dec. 2016 (cited on pp. 64, 162).

[250] D. Marwood, P. Massimino, M. Covell and S. Baluja: Rep-
resenting images in 200 bytes: compression via triangulation,
Proc 2018 IEEE International Conference on Image Processing, 405–
409, Athens, Greece, Oct. 2018, IEEE Computer Society Press
(cited on pp. 68, 208).

[251] S. Masnou and J.-M. Morel: Level lines based disocclusion,
Proc. 1998 IEEE International Conference on Image Processing,
Vol. 3, 259–263, Chicago, IL, Oct. 1998, IEEE Computer So-
ciety Press (cited on pp. 15, 67, 239).

bibliography 267

[252] M. T. McCann, K. H. Jin and M. Unser: Convolutional neural
networks for inverse problems in imaging: a review, IEEE Signal
Processing Magazine, Vol. 34, No. 6, 85–95, Nov. 2017 (cited on
p. 63).

[253] W. S. McCulloch and W. Pitts: A logical calculus of the ideas
immanent in nervous activity, The Bulletin of Mathematical Bio-
physics, Vol. 5, 115–133, 1943 (cited on pp. 1, 43, 57, 58).

[254] I. Meilijson and E. Ruppin: Optimal signalling in attractor
neural networks, Proc. 7th International Conference on Neural In-
formation Processing Systems, G. Tesauro, D.S. Touretzky and T.K.
Leen (Ed.), Vol. 7, Advances in Neural Information Processing
Systems, 485–492, Denver, CO, Dec. 1994 (cited on pp. 114, 123,
131).

[255] R. E. Mickens: Nonstandard Finite Difference Models of Dif-
ferential Equations, World Scientific, Singapore, 1994 (cited on
p. 29).

[256] M. L. Minsky and S. A. Papert: Perceptrons, MIT Press, Cam-
bridge, MA, 1969 (cited on pp. 57, 58).

[257] D. Misra: Mish: A self regularized non-monotonic activation
function, Proc. 31st British Machine Vision Conference 2020, Vir-
tual, Sept. 2020 (cited on p. 130).

[258] R. M. K. Mohideen, P. Peter, T. Alt, J. Weickert and A. Scheer:
Compressing colour images with joint inpainting and predic-
tion, arXiv:2010.09866 [eess.IV], Oct. 2020 (cited on pp. 67, 187,
190, 192, 198, 200, 203–206, 239).

[259] R. M. K. Mohideen, P. Peter and J. Weickert: A systematic
evaluation of coding strategies for sparse binary images, Signal
Processing: Image Communication, Vol. 99, Article no. 116424,
Nov. 2021 (cited on p. 213).

[260] V. Monga, Y. Li and Y. C. Eldar: Algorithm unrolling: inter-
pretable, efficient deep learning for signal and image pro-
cessing, IEEE Signal Processing Magazine, Vol. 38, No. 2, 18–
44, Feb. 2021 (cited on pp. 48, 63, 120).

[261] J.-M. Morel and S. Solimini: Segmentation of images by vari-
ational methods: a constructive approach, Revista Matematica
de la Universidad Complutense de Madrid, Vol. 1, 169–182, 1988
(cited on p. 37).

[262] P. Mrázek and J. Weickert: Rotationally invariant wavelet
shrinkage, In B. Michaelis and G. Krell (Eds.): Pattern Re-
cognition, Lecture Notes in Computer Science, Vol. 2781, 156–
163, Springer, Berlin, 2003 (cited on pp. 63, 162).

268 bibliography

[263] P. Mrázek and J. Weickert: From two-dimensional nonlinear
diffusion to coupled Haar wavelet shrinkage, Journal of Visual
Communication and Image Representation, Vol. 18, No. 2, 162–175,
Apr. 2007 (cited on pp. 63, 74, 79, 227, 228, 230).

[264] P. Mrázek, J. Weickert and G. Steidl: Diffusion-inspired shrink-
age functions and stability results for wavelet denoising, Inter-
national Journal of Computer Vision, Vol. 64, 171–186, Sept. 2005
(cited on pp. 41, 63, 114, 119).

[265] D. Mumford and J. Shah: Optimal approximation of piecewise
smooth functions and associated variational problems, Commu-
nications on Pure and Applied Mathematics, Vol. 42, 577–685, 1989
(cited on p. 37).

[266] V. Nair and G. E. Hinton: Rectified linear units improve restric-
ted Boltzmann machines, Proc. 27th International Conference on
Machine Learning, J. Fürnkranz and T. Joachims (Ed.), 807–814,
Haifa, Israel, June 2010 (cited on pp. 43, 58, 60, 122, 123, 148).

[267] Y. Nesterov: A method for solving the convex programming
problem with convergence rate O(1/k2), Soviet Mathematics
Doklady, Vol. 4, 1035–1038, 1963 (cited on pp. 55, 139).

[268] A. Newell, K. Yang and J. Deng: Stacked hourglass networks
for human pose estimation, In B. Leibe, J. Matas, N. Sebe and
M. Welling (Eds.): Computer Vision – ECCV 2016, Lecture Notes
in Computer Science, Vol. 9912, 483–499, Springer, Cham, 2016
(cited on pp. 49, 51, 147, 158).

[269] W. J. Niessen, B. M. ter Haar Romeny, L. M. Florack and M. A.
Viergever: A general framework for geometry-driven evolution
equations, International Journal of Computer Vision, Vol. 21, No. 3,
187–205, Feb. 1997 (cited on pp. 21, 92).

[270] J. Nocedal and S. J. Wright: Numerical Optimization, Springer,
New York, 2006 (cited on pp. 54, 56).

[271] P. Ochs, Y. Chen, T. Brox and T. Pock: IPiano: inertial proximal
algorithm for nonconvex optimization, SIAM Journal on Imaging
Sciences, Vol. 7, 1388–1419, 2014 (cited on pp. 68, 208).

[272] P. Ochs, T. Meinhardt, L. Leal-Taixe and M. Möller: Lifting
layers: analysis and applications, In V. Ferrari, M. Herbert,
C. Sminchisescu and Y. Weiss (Eds.): Computer Vision – ECCV
2018, Lecture Notes in Computer Science, Vol. 11205, 53–68,
Springer, Cham, 2018 (cited on pp. 130, 176).

[273] K.-S. Oh and K. Jung: GPU implementation of neural networks,
Pattern Recognition, Vol. 37, No. 6, 1311–1314, June 2004 (cited
on p. 59).

bibliography 269

[274] K. Ott, P. Katiyar, P. Hennig and M. Tiemann: ResNet after all?
Neural ODEs and their numerical solution, Proc. 9th Interna-
tional Conference on Learning Representations, Vienna, Austria,
May 2021 (cited on pp. 49, 62).

[275] S. Ouala, A. Pascual and R. Fablet: Residual integration neural
network, Proc. 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing, 3622–3626, Brighton, UK, May 2019,
IEEE Computer Society Press (cited on pp. 130, 137, 139).

[276] R. Parhi and R. D. Nowak: Banach space representer theor-
ems for neural networks and ridge splines, Journal of Machine
Learning Research, Vol. 22, 1–40, Feb. 2021 (cited on p. 64).

[277] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell and A. A. Efros:
Context encoders: feature learning by inpainting, Proc. 2016
IEEE Conference on Computer Vision and Pattern Recognition, 2536–
2544, Las Vegas, NV, June 2016, IEEE Computer Society Press
(cited on pp. 67, 209).

[278] W. B. Pennebaker and J. L. Mitchell: JPEG: Still Image Data
Compression Standard, Springer, New York, 1992 (cited on
pp. 203, 239).

[279] P. Perona and J. Malik: Scale space and edge detection using
anisotropic diffusion, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 12, 629–639, July 1990 (cited on pp. 2,
15, 18, 19, 23, 65, 80, 92, 93, 104, 115, 123, 132, 148, 164, 177, 178,
188).

[280] P. Peter: Fast inpainting-based compression: combining
shepard interpolation with joint inpainting and prediction,
Proc. 26th IEEE International Conference on Image Processing, 3557–
3561, Taipei, Taiwan, Sept. 2019, IEEE Computer Society Press
(cited on pp. 67, 185–187, 191, 192, 198, 205, 239).

[281] P. Peter, S. Hoffmann, F. Nedwed, L. Hoeltgen and J. Weickert:
Evaluating the true potential of diffusion-based inpainting in
a compression context, Signal Processing: Image Communication,
Vol. 46, 40–53, Aug. 2016 (cited on p. 190).

[282] P. Peter, L. Kaufhold and J. Weickert: Turning diffusion-based
image colorization into efficient color compression, IEEE Trans-
actions on Image Processing, Vol. 26, No. 2, 860–869, Feb. 2017
(cited on pp. 21, 22, 24, 67).

[283] P. Peter, K. Schrader, T. Alt and J. Weickert: Deep spatial
and tonal optimisation for homogeneous diffusion inpainting,
arXiv:2208.14371v2 [cs.LG], Sept. 2022 (cited on p. 240).

270 bibliography

[284] P. Peter and J. Weickert: Justifying tensor-driven diffusion from
structure-adaptive statistics of natural images, In X.-C. Tai,
E. Bae, T. F. Chan, S. Y. Leung and M. Lysaker (Eds.): Energy
Minimisation Methods in Computer Vision and Pattern Recogni-
tion, Lecture Notes in Computer Science, Vol. 8932, 263–277,
Springer, Berlin, 2015 (cited on p. 95).

[285] T. Pinetz, E. Kobler, T. Pock and A. Effland: Shared prior learn-
ing of energy-based models for image reconstruction, SIAM
Journal on Imaging Sciences, Vol. 14, No. 4, 1706–1748, Nov. 2021
(cited on p. 63).

[286] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda and Q. Liao:
Why and when can deep - but not shallow - networks avoid
the curse of dimensionality: a review, International Journal of
Automation and Computing, Vol. 14, No. 5, 503–519, Oct. 2017
(cited on p. 64).

[287] B. T. Polyak: Some methods of speeding up the convergence of
iteration methods, USSR Computational Mathematics and Math-
ematical Physics, Vol. 4, No. 5, 1–17, 1964 (cited on pp. 55, 139).

[288] J. Portilla, V. Strela, M. J. Wainwright and E. P. Simoncelli: Im-
age denoising using scale mixtures of Gaussians in the wavelet
domain, IEEE Transactions on Image Processing, Vol. 12, No. 11,
1338–1351, Nov. 2003 (cited on p. 74).

[289] A. Poulenard, M.-J. Rakotosaona, Y. Ponty and M. Ovsjanikov:
Effective rotation-invariant point CNN with spherical harmon-
ics kernels, Proc. 2019 International Conference on 3D Vision, 47–
56, Quebec City, Canada, Sept. 2019, IEEE Computer Society
Press (cited on p. 162).

[290] J. Prost, A. Houdard, A. Almansa and N. Papadakis: Learning
local regularization for variational image restoration, In A.
Elmoataz, J. Fadili, Y. Quéau, J. Rabin and L. Simon (Eds.): Scale
Space and Variational Methods in Computer Vision, Lecture Notes
in Computer Science, Vol. 12679, 358–370, Springer, Cham, 2021
(cited on p. 63).

[291] C. Rackauckas, Y. Ma, J. Martensen, C. Warnter, K. Zubov,
R. Supekar, D. Skinner, A. Ramadhan and A. Edelman: Uni-
versal differential equations for scientific machine learning,
arXiv:2001.04385v3 [cs.LG], Aug. 2020 (cited on pp. 62, 92).

[292] E. Radmoser, O. Scherzer and J. Weickert: Scale-space proper-
ties of nonstationary iterative regularization methods, Journal
of Visual Communication and Image Representation, Vol. 11, No. 2,
96–114, June 2000 (cited on p. 120).

bibliography 271

[293] M. Raissi, P. Perdikaris and G. E. Karniadakis: Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations, Journal of Computational Physics,
Vol. 378, 686–707, Feb. 2019 (cited on p. 62).

[294] P. Ramachandran, B. Zoph and Q. V. Le: Searching for activa-
tion functions, arXiv:1710.05941v2 [cs.NE], Oct. 2017 (cited on
p. 130).

[295] Z. Ramzi, J.-L. Starck, T. Moreau and P. Ciuciu: Wavelets in the
deep learning era, Proc. 28th European Signal Processing Confer-
ence, 1417–1421, Amsterdam, Netherlands, Jan. 2021 (cited on
p. 63).

[296] M. Ranzato, C. S. Poultney, S. Chopra and Y. LeCun: Efficient
learning of sparse representations with an energy-based model,
Proc. 20th International Conference on Neural Information Pro-
cessing Systems, B. Schölkopf, J. C. Platt and T. Hofmann (Ed.),
Vol. 19, Advances in Neural Information Processing Systems,
1137–1144, Vancouver, Canada, Dec. 2006, MIT Press (cited on
pp. 58, 59).

[297] V. Ratner and Y. Y. Zeevi: The dynamics of image processing
viewed as damped elastic deformation, Proc. 17th European
Signal Processing Conference, 45–49, Glasgow, UK, Aug. 2009,
IEEE Computer Society Press (cited on p. 138).

[298] J. S. J. Ren, L. Xu and W. Sun: Shepard convolutional neural
networks, Proc. 29th International Conference on Neural Informa-
tion Processing Systems, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama and R. Garnett (Ed.), Vol. 28, Advances in Neural
Information Processing Systems, 901–909, Montréal, Canada,
Dec. 2015 (cited on p. 67).

[299] R. J. Renka: Multivariate interpolation of large sets of scattered
data, ACM Transactions on Mathematical Software, Vol. 14, No. 2,
139–148, June 1988 (cited on p. 186).

[300] E. Ringaby, O. Friman and. P.-E. Forssén, T. O. Opsahl, T. V.
Haavardsholm and I. Kasen: Anisotropic scattered data inter-
polation for pushbroom image rectification, IEEE Transactions
on Image Processing, Vol. 23, No. 5, 2302–2314, Apr. 2014 (cited
on p. 186).

[301] H. Robbins and S. Monro: A stochastic approximation method,
Annals of Mathematical Statistics, Vol. 22, No. 3, 400–407, 1951
(cited on p. 55).

[302] M. X. B. Rodriguez, A. Gruson, L. F. Polanía, S. Fujieda, F. P.
Ortiz, K. Takayama and T. Hachisuka: Deep adaptive wavelet
network, Proc. IEEE Winter Conference on Applications of Com-
puter Vision, Snowmass, CO, Mar. 2020 (cited on p. 63).

272 bibliography

[303] D. Rolnick and M. Tegmark: The power of deeper networks for
expressing natural functions, Proc. 6th International Conference
on Learning Representations, Vancouver, Canada, Apr. 2018 (cited
on p. 2).

[304] Y. Romano, A. Aberdam, J. Sulam and M. Elad: Adversarial
noise attacks of deep learning architectures: stability analysis
via sparse-modeled signals, Journal of Mathematical Imaging and
Vision, Vol. 62, 313–327, Apr. 2020 (cited on pp. 1, 114).

[305] Y. Romano, M. Elad and P. Milanfar: The little engine that could:
regularization by denoising (RED), SIAM Journal on Imaging
Sciences, Vol. 10, No. 4, 1804–1844, Oct. 2017 (cited on p. 63).

[306] O. Ronneberger, P. Fischer and T. Brox: U-net: convolutional
networks for biomedical image segmentation, In N. Navab,
J. Hornegger, W. Wells and A. Frangi (Eds.): Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015, Lec-
ture Notes in Computer Science, Vol. 9351, 234–241, Springer,
Cham, 2015 (cited on pp. 48, 49, 51, 58, 60, 130, 131, 142, 147,
210).

[307] F. Rosenblatt: The perceptron: a probabilistic model for inform-
ation storage and organization in the brain, Psychological Review,
Vol. 65, No. 6, 386–408, 1958 (cited on pp. 43, 57, 58).

[308] S. Roth and M. J. Black: Fields of experts: a framework for
learning image priors, Proc. 2005 IEEE Conference on Computer
Vision and Pattern Recognition, Vol. 2, 860–867, San Diego, CA,
June 2005, IEEE Computer Society Press (cited on pp. 65, 82).

[309] F. Rousseau, L. Drumetz and R. Fablet: Residual networks as
flows of diffeomorphisms, Journal of Mathematical Imaging and
Vision, Vol. 62, 365–375, Apr. 2020 (cited on pp. 114, 130, 135).

[310] A. Roussos and P. Maragos: Vector-valued image interpolation
by an anisotropic diffusion-projection PDE, In F. Sgallari, F.
Murli and N. Paragios (Eds.): Scale Space and Variational Meth-
ods in Computer Vision, Lecture Notes in Computer Science,
Vol. 4485, 104–115, Springer, Berlin, 2007 (cited on p. 94).

[311] A. Roussos and P. Maragos: Tensor-based image diffusions
derived from generalizations of the total variation and Beltrami
functionals, Proc. 2010 IEEE International Conference on Image
Processing, 4141–4144, Hong Kong, Sept. 2010, IEEE Computer
Society Press (cited on p. 24).

[312] S. Ruder: An overview of gradient descent optimization al-
gorithms, arXiv:1609.04747v2 [cs.LG], June 2017 (cited on pp. 54,
56).

[313] L. I. Rudin, S. Osher and E. Fatemi: Nonlinear total variation
based noise removal algorithms, Physica D, Vol. 60, No. 1–4,
259–268, Nov. 1992 (cited on pp. 19, 37, 65, 123).

bibliography 273

[314] S. H. Rudy, S. L. Brunton, J. L. Proctor and J. N. Kutz: Data-
driven discovery of partial differential equations, Science Ad-
vances, Vol. 3, No. 4, Article no. e1602614, 2017 (cited on p. 62).

[315] D. Ruiz-Balet and E. Zuazua: Neural ODE con-
trol for classification, approximation and transport,
arXiv:2104.05278v1 [math.OC], Apr. 2021 (cited on p. 62).

[316] D. E. Rumelhart, G. E. Hinton and R. J. Williams: Learning
representations by back-propagating errors, Nature, Vol. 323,
No. 9, 533–536, Oct. 1986 (cited on pp. 47, 51, 58, 59).

[317] D. E. Rumelhart and J. L. McClelland: Parallel distributed
processing: Explorations in the Microstructure of Cognition,
MIT Press, Cambridge, MA, 1986 (cited on p. 139).

[318] O. Russakovsky et al.: ImageNet large scale visual recognition
challenge, International Journal of Computer Vision, Vol. 115, 211–
252, Apr. 2015 (cited on pp. 60, 157).

[319] L. Ruthotto and E. Haber: Deep neural networks motivated by
partial differential equations, Journal of Mathematical Imaging
and Vision, Vol. 62, 352–364, Apr. 2020 (cited on pp. 2, 49, 62,
114, 120, 130, 134–136, 151, 166).

[320] Y. Saad: Iterative Methods for Sparse Linear Systems, Second,
SIAM, Philadelphia, 2003 (cited on pp. 34, 142).

[321] M. Sagong, Y. Shin, S. Kim, S. Park and S. Ko: PEPSI: fast image
inpainting with parallel decoding network, Proc. 2019 IEEE
Conference on Computer Vision and Pattern Recognition, 11360–
11368, Long Beach, CA, June 2019 (cited on pp. 67, 209).

[322] H. Sak, A. W. Senior and F. Beaufays: Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling, Proc. 15th Annual Conference of the International Speech
Communication Association, H. Li, H. M. Meng, B. Ma, E. Chng
and L. Xie (Ed.), Singapore, Sept. 2014 (cited on p. 48).

[323] T. Salimans and D. P. Kingma: Weight normalization: a simple
reparameterization to accelerate training of deep neural net-
works, Proc. 30th International Conference on Neural Information
Processing Systems, D. D. Lee, M. Sugiyama, U. von Luxburg,
I. Guyon and R. Garnett (Ed.), Vol. 29, Advances in Neural In-
formation Processing Systems, 901–909, Barcelona, Spain, Dec.
2016 (cited on p. 137).

[324] H. Schaeffer: Learning partial differential equations via data
discovery and sparse optimization, Proceedings of the Royal Soci-
ety of London, Series A, Vol. 473, No. 2197, Article no. 20160446,
Jan. 2017 (cited on pp. 62, 92).

274 bibliography

[325] H. Scharr, M. J. Black and H. W. Haussecker: Image statistics
and anisotropic diffusion, Proc. Ninth International Conference on
Computer Vision, Vol. 1, 840–847, Nice, France, Oct. 2003, IEEE
Computer Society Press (cited on p. 24).

[326] O. Scherzer and J. Weickert: Relations between regularization
and diffusion filtering, Journal of Mathematical Imaging and Vis-
ion, Vol. 12, No. 1, 43–63, Feb. 2000 (cited on pp. 11, 21, 37, 92,
114, 119, 132, 164).

[327] C. Schmaltz, P. Peter, M. Mainberger, F. Ebel, J. Weickert and
A. Bruhn: Understanding, optimising, and extending data com-
pression with anisotropic diffusion, International Journal of Com-
puter Vision, Vol. 108, No. 3, 222–240, July 2014 (cited on pp. 15,
67, 187, 207, 215, 239).

[328] C. Schmaltz and J. Weickert: Video compression with 3-D pose
tracking, PDE-based image coding, and electrostatic halftoning,
In A. Pinz, T. Pock, H. Bischof and F. Leberl (Eds.): Pattern
Recognition, Lecture Notes in Computer Science, Vol. 7476, 438–
447, Springer, Berlin, 2012 (cited on p. 67).

[329] C. Schmaltz, J. Weickert and A. Bruhn: Beating the quality
of JPEG 2000 with anisotropic diffusion, In J. Denzler, G.
Notni and H. Süße (Eds.): Pattern Recognition, Lecture Notes in
Computer Science, Vol. 5748, 452–461, Springer, Berlin, 2009
(cited on pp. 15, 67).

[330] J. Schmidhuber: Deep learning in neural networks: an overview,
Neural Networks, Vol. 61, 85–117, Jan. 2015 (cited on pp. 1, 15,
41, 57, 60).

[331] U. Schmidt and S. Roth: Shrinkage fields for effective image
restoration, Proc. 2014 IEEE Conference on Computer Vision and
Pattern Recognition, 2774–2781, Columbus, OH, June 2014, IEEE
Computer Society Press (cited on pp. 65, 74, 92).

[332] I. J. Schoenberg: Über variationsvermindernde lineare Trans-
formationen, Mathematische Zeitschrift, Vol. 32, 321–328, 1930
(cited on p. 119).

[333] K. Schrader, T. Alt, J. Weickert and M. Ertel: CNN-based Euler’s
elastica inpainting with deep energy and deep image prior,
Proc. 10th European Workshop on Visual Information Processing,
Lisbon, Portugal, July 2022, IEEE Computer Society Press (cited
on p. 239).

[334] J. Shen and T. F. Chan: Mathematical models for local nontex-
ture inpaintings, SIAM Journal on Applied Mathematics, Vol. 62,
No. 3, 1019–1043, 2002 (cited on p. 67).

[335] J. Shen, S. H. Kang and T. F. Chan: Euler’s elastica and
curvature-based inpainting, SIAM Journal on Applied Mathemat-
ics, Vol. 63, No. 2, 564–592, 2002 (cited on p. 67).

bibliography 275

[336] D. Shepard: A two-dimensional interpolation function for
irregularly-spaced data, Proc. 23rd ACM National Conference,
517–524, Las Vegas, NV, Aug. 1968 (cited on pp. 67, 185–187).

[337] L. Sifre and S. Mallat: Rotation, scaling and deformation in-
variant scattering for texture discrimination, Proc. 2013 IEEE
Conference on Computer Vision and Pattern Recognition, 1233–1240,
Portland, OR, June 2013, IEEE Computer Society Press (cited
on pp. 64, 162).

[338] D. Silver et al.: Mastering the game of Go without human
knowledge, Nature, Vol. 550, 354–359, Oct. 2017 (cited on pp. 58,
60).

[339] P. Y. Simard, D. Steinkraus and J. C. Platt: Best practices for
convolutional neural networks applied to visual document
analysis, Proc. 7th International Conference on Document Analysis
and Recognition, 958–963, Edinburgh, Aug. 2003 (cited on pp. 64,
162).

[340] K. Simonyan and A. Zisserman: Very deep convolutional net-
works for large-scale image recognition, Proc. 3rd International
Conference on Learning Representations, Y. Bengio and Y. LeCun
(Ed.), San Diego, CA, May 2015 (cited on p. 60).

[341] B. Smolka: Combined forward and backward anisotropic dif-
fusion filtering of color images, In L. Van Gool (Ed.): Pattern
Recognition, Lecture Notes in Computer Science, Vol. 2449, 314–
320, Springer, Berlin, 2002 (cited on p. 80).

[342] University of Southern California: USC-SIPI image database,
1977, Available at https://sipi.usc.edu/database/database.
php, last visited March 30, 2022 (cited on pp. 24, 193, 214).

[343] J.-L. Starck, F. Murtagh, E. Candès and D. L. Donoho: Gray and
color image contrast enhancement by the curvelet transform,
IEEE Transactions on Image Processing, Vol. 12, No. 6, 706–717,
June 2003 (cited on p. 74).

[344] G. Steidl, J. Weickert, T. Brox, P. Mrázek and M. Welk: On
the equivalence of soft wavelet shrinkage, total variation dif-
fusion, total variation regularization, and SIDEs, SIAM Journal
on Numerical Analysis, Vol. 42, No. 2, 686–713, 2004 (cited on
p. 63).

[345] J. Sulam, A. Aberdam, A. Beck and M. Elad: On multi-layer
basis pursuit, efficient algorithms and convolutional neural
networks, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 42, No. 8, 1968–1980, Aug. 2019 (cited on pp. 48,
63, 120).

[346] J. Sun and Z. Xu: Color image denoising via discriminatively
learned iterative shrinkage, IEEE Transactions on Image Pro-
cessing, Vol. 24, No. 11, 4148–4159, June 2015 (cited on p. 74).

https://sipi.usc.edu/database/database.php
https://sipi.usc.edu/database/database.php

276 bibliography

[347] I. Sutskever, J. Martens, G. Dahl and G. Hinton: On the
importance of initialization and momentum in deep learn-
ing, Proc. 30th International Conference on Machine Learning, S.
Dasgupta and D. McAllester (Ed.), Vol. 28, Proceedings of Ma-
chine Learning Research, 1139–1147, Atlanta, GA, June 2013
(cited on pp. 49, 53, 139).

[348] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke and A. Rabinovich: Going deeper with
convolutions, Proc. 2015 IEEE Conference on Computer Vision and
Pattern Recognition, 1–9, Boston, MA, June 2015, IEEE Computer
Society Press (cited on pp. 48, 60).

[349] D. S. Taubman and M. W. Marcellin (Ed.): JPEG 2000: Image
Compression Fundamentals, Standards and Practice, Kluwer,
Boston, 2002 (cited on p. 67).

[350] Y. W. Teh, M. Welling, S. Osindero and G. E. Hinton: Energy-
based models for sparse overcomplete representations, Journal
of Machine Learning Research, Vol. 4, 1235–1260, Dec. 2003 (cited
on p. 63).

[351] M. Terris, A. Repetti, J.-C. Pesquet and Y. Wiaux: Building
firmly nonexpansive convolutional neural networks, Proc. 2020
IEEE International Conference on Acoustics, Speech and Signal
Processing, 8658–8662, Barcelona, Spain, May 2020 (cited on
p. 64).

[352] M. Thorpe and Y. van Gennip: Deep limits of residual neural
networks, Russian Mathematical Surveys, Vol. 10, No. 1, Article
no. 6, Dec. 2022 (cited on p. 114).

[353] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo and C.-W. Lin: Deep
learning on image denoising: an overview, Neural Networks,
Vol. 131, 251–275, Nov. 2020 (cited on p. 65).

[354] A. N. Tikhonov: Solution of incorrectly formulated problems
and the regularization method, Soviet Mathematics Doklady,
Vol. 4, 1035–1038, 1963 (cited on pp. 2, 15, 36, 116).

[355] C. Tomasi and R. Manduchi: Bilateral filtering for gray and
color images, Proc. Sixth International Conference on Computer
Vision, 839–846, Bombay, India, Jan. 1998, Narosa Publishing
House (cited on p. 65).

[356] M. Tomczak: Spatial interpolation and its uncertainty using
automated anisotropic inverse distance weighting (IDW) –
cross-validation/jackknife approach, Journal of Geographic In-
formation and Decision Analysis, Vol. 2, No. 2, 18–30, 1998 (cited
on p. 186).

[357] C. Tretter: Spectral Theory of Block Operator Matrices and
Applications, Imperial College Press, London, 2008 (cited on
p. 137).

bibliography 277

[358] D. Tschumperlé and R. Deriche: Vector-valued image regu-
larization with PDEs: a common framework for different ap-
plications, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 27, No. 4, 506–516, Apr. 2005 (cited on p. 24).

[359] A. Tuor, J. Drgona and D. Vrabie: Constrained neural
ordinary differential equations with stability guarantees,
arXiv:2004.10883v1 [eess.SY], Apr. 2020 (cited on p. 62).

[360] D. Ulyanov, A. Vedaldi and V. Lempitsky: Deep image prior,
Proc. 2018 IEEE Conference on Computer Vision and Pattern Recog-
nition, 9446–9454, Salt Lake City, UT, June 2018, IEEE Computer
Society Press (cited on pp. 63, 209).

[361] M. Unser: A representer theorem for deep neural networks,
Journal of Machine Learning Research, Vol. 20, No. 110, 1–30, July
2019 (cited on p. 114).

[362] P. J. van der Houwen and B. P. Sommeijer: On the internal
stability of explicit, m-stage Runge-Kutta methods for large
m-values, Zeitschrift für Angewandte Mathematik und Mechanik,
Vol. 60, No. 10, 479–485, 1980 (cited on p. 139).

[363] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.
N. Gomez, L. Kaiser and I. Polosukhin: Attention is all you
need, Proc. 31st International Conference on Neural Information
Processing Systems, I. Guyon, U. von Luxburg, S. Bengio, H. M.
Wallach, R. Fergus, S. V. N. Wishwanathan and R. Garnett (Ed.),
Vol. 30, Advances in Neural Information Processing Systems,
5998–6008, Long Beach, CA, Dec. 2017 (cited on pp. 58, 60).

[364] D. Vašata, T. Halama and M. Friedjungová: Image inpainting
using Wasserstein generative adversarial imputation network,
In I. Farkaš, P. Masulli, S. Otte and S. Wermter (Eds.): Artifi-
cial Neural Networks and Machine Learning – ICANN 2021, Lec-
ture Notes in Computer Science, Vol. 12892, 575–586, Springer,
Cham, 2021 (cited on p. 209).

[365] R. Vidal, J. Bruna, R. Giryes and S. Soatto: Mathematics of deep
learning, arXiv:1712.04741v1 [cs.LG], Dec. 2017 (cited on p. 62).

[366] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli: Image
quality assessment: from error visibility to structural similarity,
IEEE Transactions on Image Processing, Vol. 13, 600–612, Apr.
2004 (cited on p. 13).

[367] J. Weickert: Anisotropic diffusion filters for image processing
based quality control, In A. Fasano and M. Primicerio (Eds.):
Proc. Seventh European Conference on Mathematics in Industry,
355–362, Teubner, Stuttgart, 1994 (cited on p. 163).

[368] J. Weickert: Theoretical foundations of anisotropic diffusion in
image processing, Computing Supplement, Vol. 11, 221–236, 1996
(cited on pp. 22, 91–93, 101, 156, 163, 185, 210).

278 bibliography

[369] J. Weickert: Anisotropic Diffusion in Image Processing, Teubner,
Stuttgart, 1998 (cited on pp. 2, 15, 17, 23, 31, 32, 34, 65, 92, 95,
117, 134, 135, 168, 237).

[370] J. Weickert: Coherence-enhancing diffusion filtering, Interna-
tional Journal of Computer Vision, Vol. 31, No. 2/3, 111–127, Apr.
1999 (cited on p. 24).

[371] J. Weickert: Personal communication, 2018 (cited on p. 3).

[372] J. Weickert and B. Benhamouda: A semidiscrete nonlinear scale-
space theory and its relation to the Perona–Malik paradox, In F.
Solina, W. G. Kropatsch, R. Klette and R. Bajcsy (Eds.): Advances
in Computer Vision, 1–10, Springer, Wien, 1997 (cited on p. 123).

[373] J. Weickert and T. Brox: Diffusion and regularization of vector-
and matrix-valued images, In M. Z. Nashed and O. Scherzer
(Eds.): Inverse Problems, Image Analysis, and Medical Imaging,
Contemporary Mathematics, Vol. 313, 251–268, AMS, Provid-
ence, 2002 (cited on pp. 24, 94, 95, 169, 170, 177).

[374] J. Weickert, S. Grewenig, C. Schroers and A. Bruhn: Cyclic
schemes for PDE-based image analysis, International Journal of
Computer Vision, Vol. 118, No. 3, 275–299, July 2016 (cited on
p. 33).

[375] J. Weickert, S. Ishikawa and A. Imiya: Linear scale-space has
first been proposed in Japan, Journal of Mathematical Imaging
and Vision, Vol. 10, No. 3, 237–252, May 1999 (cited on p. 18).

[376] J. Weickert and C. Schnörr: A theoretical framework for convex
regularizers in PDE-based computation of image motion, Inter-
national Journal of Computer Vision, Vol. 45, No. 3, 245–264, Dec.
2001 (cited on p. 95).

[377] J. Weickert, G. Steidl, P. Mrázek, M. Welk and T. Brox: Diffusion
filters and wavelets: what can they learn from each other?,
In N. Paragios, Y. Chen and O. Faugeras (Eds.): Handbook of
Mathematical Models in Computer Vision, 3–16, Springer, New
York, 2006 (cited on p. 63).

[378] J. Weickert and M. Welk: Tensor field interpolation with PDEs,
In J. Weickert and H. Hagen (Eds.): Visualization and Processing
of Tensor Fields, 315–325, Springer, Berlin, 2006 (cited on pp. 15,
24, 67, 156).

[379] J. Weickert, M. Welk and M. Wickert: L2-stable nonstandard
finite differences for anisotropic diffusion, In A. Kuijper, K.
Bredies, T. Pock and H. Bischof (Eds.): Scale Space and Variational
Methods in Computer Vision, Lecture Notes in Computer Science,
Vol. 7893, 390–391, Springer, Berlin, 2013 (cited on pp. 29, 30,
32, 79, 105, 156, 164, 176, 178, 179, 227, 229, 230).

bibliography 279

[380] M. Weiler and G. Cesa: General E(2)-equivariant steerable
CNNs, Proc. 33rd International Conference on Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox and R. Garnett (Ed.), Vol. 32, Ad-
vances in Neural Information Processing Systems, 14334–14345,
Vancouver, Canada, Dec. 2019 (cited on p. 162).

[381] M. Weiler, M. Geiger, M. Welling, W. Boomsma and T. Co-
hen: 3D steerable CNNs: Learning rotationally equivariant fea-
tures in volumetric sdata, Proc. 32nd International Conference on
Neural Information Processing Systems, S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett (Ed.),
Vol. 31, Advances in Neural Information Processing Systems,
10402–10413, Montréal, Canada, Dec. 2018 (cited on p. 162).

[382] M. Weiler, F. A. Hamprecht and M. Storath: Learning steerable
filters for rotation equivariant CNNs, Proc. 2018 IEEE Conference
on Computer Vision and Pattern Recognition, 849–858, Salt Lake
City, UT, June 2018, IEEE Computer Society Press (cited on
pp. 64, 161–163).

[383] P. Weinzaepfel, H. Jégou and P. Pérez: Reconstructing an image
from its local descriptors, Proc. 2011 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 337–344,
Colorado Springs, CO, June 2011, IEEE Computer Society Press
(cited on p. 68).

[384] M. Welk: Diffusion, pre-smoothing and gradient descent, In
A. Elmoataz, J. Fadili, Y. Quéau, J. Rabin and L. Simon (Eds.):
Scale Space and Variational Methods in Computer Vision, Lecture
Notes in Computer Science, Vol. 12679, 78–90, Springer, Cham,
2021 (cited on pp. 21, 24, 168).

[385] M. Welk, G. Steidl and J. Weickert: Locally analytic schemes: a
link between diffusion filtering and wavelet shrinkage, Applied
and Computational Harmonic Analysis, Vol. 24, 195–224, 2008
(cited on p. 119).

[386] M. Welk, J. Weickert and G. Gilboa: A discrete theory and
efficient algorithms for forward-and-backward diffusion filter-
ing, Journal of Mathematical Imaging and Vision, Vol. 60, No. 9,
1399–1426, Nov. 2018 (cited on pp. 21, 74).

[387] M. Welk, J. Weickert and G. Steidl: From tensor-driven diffusion
to anisotropic wavelet shrinkage, In H. Bischof, A. Leonardis
and A. Pinz (Eds.): Computer Vision – ECCV 2006, Part I, Lecture
Notes in Computer Science, Vol. 3951, 391–403, Springer, Berlin,
2006 (cited on p. 92).

[388] J. Weng, N. Ahuja and T. S. Huang: Cresceptron: a self-
organizing neural network which grows adaptively, Proc. 1992
International Joint Conference on Neural Networks, Vol. 3, 576–581,

280 bibliography

Baltimore, MD, June 1992, IEEE Computer Society Press (cited
on p. 46).

[389] P. J. Werbos: Applications of advances in nonlinear sensitivity
analysis, In R. F. Drenick and F. Kozin (Eds.): System Modeling
and Optimization, Lecture Notes in Control and Information
Sciences, Vol. 38, 762–770, Springer, Berlin, Heidelberg, 1982
(cited on p. 59).

[390] P. J. Werbos: Backwards differentiation in AD and neural nets:
past links and new opportunities, In M. Bücker, G. Corliss,
U. Naumann, P. Hovland and B. Norris (Eds.): Automatic Dif-
ferentiation: Applications, Theory, and Implementations, Lecture
Notes in Computational Science and Engineering, Vol. 50, 15–
34, Springer, Berlin, Heidelberg, 2006 (cited on pp. 59, 210).

[391] E. T. Whittaker: A new method of graduation, Proceedings of the
Edinburgh Mathematical Society, Vol. 41, 65–75, 1923 (cited on
pp. 2, 15, 36, 116).

[392] T. Wiatowski and H. Bölcskei: A mathematical theory of deep
convolutional neural networks for feature extraction, IEEE
Transactions on Information Theory, Vol. 64, No. 3, 1845–1866,
Nov. 2017 (cited on p. 63).

[393] T. Williams and R. Li: Wavelet pooling for convolutional neural
networks, Proc. 6th International Conference on Learning Repres-
entations, Vancouver, Canada, Apr. 2018 (cited on p. 63).

[394] A. P. Witkin: Scale-space filtering, Proc. Eighth International Joint
Conference on Artificial Intelligence, Vol. 2, 945–951, Karlsruhe,
West Germany, Aug. 1983 (cited on p. 18).

[395] D. E. Worrall, S. J. Garbin, D. Turmukhambetov and G. J.
Brostow: Harmonic networks: deep translation and rotation
equivariance, Proc. 2017 IEEE Conference on Computer Vision and
Pattern Recognition, 5028–5037, Honolulu, HI, July 2017, IEEE
Computer Society Press (cited on pp. 64, 162).

[396] Y. Wu et al.: Google’s neural machine translation system:
bridging the gap between human and machine translation,
arXiv:1609.08144v2 [cs.CL], Oct. 2016 (cited on p. 48).

[397] J. Xie, L. Xu and E. Chen: Image denoising and inpainting
with deep neural networks, Proc. 26th International Conference
on Neural Information Processing Systems, P. L. Bartlett, F. C. N.
Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger (Ed.),
Vol. 25, Advances in Neural Information Processing Systems,
350–358, Lake Tahoe, NV, Dec. 2012 (cited on p. 209).

bibliography 281

[398] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He: Aggregated
residual transformations for deep neural networks, Proc. 2017
IEEE Conference on Computer Vision and Pattern Recognition, 1492–
1500, Honolulu, HI, July 2017, IEEE Computer Society Press
(cited on pp. 161, 174).

[399] H. Yan, J. Du, V. Tan and J. Feng: On robustness of neural
ordinary differential equations, Proc. 8th International Conference
on Learning Representations, Addis Ababa, Ethiopia, Apr. 2020
(cited on p. 62).

[400] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang and H. Li: High-
resolution image inpainting using multi-scale neural patch
synthesis, Proc. 2017 IEEE Conference on Computer Vision and
Pattern Recognition, 6721–6729, Honolulu, HI, July 2017 (cited
on pp. 67, 209).

[401] Y.-L. You and M. Kaveh: Fourth-order partial differential equa-
tions for noise removal, IEEE Transactions on Image Processing,
Vol. 9, No. 10, 1723–1730, Oct. 2000 (cited on pp. 22, 132, 165,
177).

[402] I. T. Young, J. J. Gerbrands and L. J. van Vliet: Fundamentals of
Image Processing, Delft University of Technology, 1995 (cited
on pp. 105, 193, 214).

[403] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu and T. S. Huang: Generative
image inpainting with contextual attention, Proc. 2018 IEEE
Conference on Computer Vision and Pattern Recognition, 5505–5514,
Salt Lake City, UT, June 2018 (cited on pp. 67, 209).

[404] X. Yuan, P. He, Q. Zhu and X. Li: Adversarial examples: attacks
and defenses for deep learning, IEEE Transactions on Neural
Networks and Learning Systems, Vol. 30, No. 9, 2805–2824, Sept.
2019 (cited on pp. 1, 61).

[405] S. Zagoruyko and N. Komodakis: Wide residual networks,
arXiv:1605.07146v4 [cs.CV], June 2017 (cited on p. 238).

[406] M. D. Zeiler and R. Fergus: Visualizing and understanding
convolutional networks, In D. Fleet, T. Pajdla, B. Schiele and T.
Tuytelaars (Eds.): Computer Vision – ECCV 2014, Lecture Notes
in Computer Science, Vol. 8689, 818–833, Springer, Berlin, 2014
(cited on pp. 42, 48, 60).

[407] G. Zhai and X. Min: Perceptual image quality assessment: A
survey, Science China Information Sciences, Vol. 63, Article no.
211301, Nov. 2020 (cited on p. 13).

[408] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals: Under-
standing deep learning (still) requires rethinking generalization,
Communications of the ACM, Vol. 64, No. 3, 107–115, Mar. 2021
(cited on p. 2).

282 bibliography

[409] H. Zhang, X. Gao, J. Unterman and T. Arodz: Approxima-
tion capabilities of neural ODEs and invertible residual net-
works, Proc. 37th International Conference on Machine Learning, H.
Daumé III and A. Singh (Ed.), Vol. 119, Proceedings of Machine
Learning Research, 11086–11095, Vienna, Austria, July 2020
(cited on p. 62).

[410] K. Zhang: Existence of infinitely many solutions for the one-
dimensional Perona–Malik model, Calculus of Variations and
Partial Differential Equations, Vol. 26, 171–199, Mar. 2006 (cited
on p. 21).

[411] K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang: Beyond a
Gaussian denoiser: residual learning of deep CNN for image
denoising, IEEE Transactions on Image Processing, Vol. 26, No. 7,
3142–3155, July 2017 (cited on p. 65).

[412] L. Zhang and H. Schaeffer: Forward stability of ResNet and
its variants, Journal of Mathematical Imaging and Vision, Vol. 62,
328–351, Apr. 2020 (cited on pp. 49, 114, 130, 134, 135, 166).

[413] R. Zhang, P. Isola, A. A. Efros, E. Shechtman and O. Wang:
The unreasonable effectiveness of deep features as a perceptual
metric, Proc. 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, 586–595, Salt Lake City, UT, June 2018, IEEE
Computer Society Press (cited on p. 13).

[414] X.-P. Zhang: Thresholding neural network for adaptive noise
reduction, IEEE Transactions on Neural Networks, Vol. 12, No. 3,
567–584, May 2001 (cited on p. 74).

[415] X.-P. Zhang and M. D. Desai: Nonlinear adaptive noise suppres-
sion based on wavelet transform, Proc. 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, Vol. 3, IEEE
Computer Society Press, 1589–1592, Seattle, WA, May 1998
(cited on p. 74).

[416] M. Zhu, B. Chang and C. Fu: Convolutional neural networks
combined with Runge-Kutta methods, Proc. 7th International
Conference on Learning Representations, New Orleans, LA, May
2019 (cited on pp. 130, 137, 139).

[417] M. Zhu, W. Min, Q. Wang, S. Zou and X. Chen: PFLU and
FPFLU: two novel non-monotonic activation functions in con-
volutional neural networks, Neurocomputing, Vol. 429, 110–117,
Mar. 2021 (cited on p. 130).

F
G L O S S A RY

Adam Adaptive Moment Estimation.

AI Artificial Intelligence.

BFB Balanced Forward-backward Diffusivity.

BSDS500 . . Berkeley Segmentation Database.

CG Conjugate Gradients.

CNN Convolutional Neural Network.

dB Decibels.

EED Edge-enhancing Anisotropic Diffusion.

FAB Forward-and-backward Diffusivity.

FAS Full Approximation Scheme.

FED Fast Explicit Diffusion.

FMG Full Multigrid Scheme.

FSI Fast Semi-iterative Scheme.

GPU Graphics Processing Unit.

IAD Integrodifferential Anisotropic Diffusion.

IID Integrodifferential Isotropic Diffusion.

JPEG Joint Photographic Experts Group.

JPEG2000 . . Joint Photographic Experts Group 2000.

L-BFGS . . . Limited Memory Broyden–Fletcher–Goldfarb–
Shanno Algorithm.

LP Luma Preference Mode.

LPAQ Light PAQ, compression algorithm.

LSTM Long Short Term Memory.

283

284 Glossary

MNIST . . . Modified National Institute of Standards and
Technology Database.

MSE Mean Square Error.

MS-EED . . Multiscale Edge-enhancing Anisotropic Diffu-
sion.

NLPE Non-local Pixel Exchange.

NODE . . . Neural Ordinary Differential Equation.

ODE Ordinary Differential Equation.

PDE Partial Differential Equation.

PS Probabilistic Sparsification.

PSNR Peak Signal-to-noise Ratio.

R-EED . . . Rectangular Subdivision with Edge-enhancing
Diffusion.

ReLU Rectified Linear Unit.

ResNet . . . Residual Network, specific neural network ar-
chitecture.

RGB Red-green-blue Colour Space.

RJIP Regular Joint Inpainting and Prediction.

RNN Recurrent Neural Network, specific neural net-
work architecture.

SymResNet Symemtric Residual Network, specific neural
network architecture.

TO Tonal Optimisation.

TV Total Variation.

U-net U-net, specific neural network architecture.

XOR Logical exclusive or operation.

YCbCr . . . Colour space with luma (Y) and chroma (Cb,Cr)
components

G
L I S T O F S Y M B O L S

∗ Convolution operator, defined in Equation (2.7).

|·| Absolute value or shorthand notation for Euc-
lidean norm.

∥v∥p General vector norm, index p denotes type of
norm. Defined in Equation (2.15).

∥A∥2 Spectral norm of a matrix, defined in Equa-
tions (2.20) and (2.21).

∥A∥F Frobenius norm of a matrix, defined in Equa-
tion (2.22).

⊥ Orthogonal vectors.

∥ Parallel vectors.

∇ Gradient operator, defined in Equation (2.2).

∇⊤, div . . . Divergence operator, defined in Equation (2.3).

∇⊥ Orthogonal gradient, introduced in Sec-
tion (3.1.1).

∇σ Regularised gradient operator, introduced in
Equation (3.17).

0 Vector filled with zeroes.

1 Vector filled with ones.

a Diffusion tensor entry, defined in Equation (3.2).

A Discrete differential operator.

b Diffusion tensor entry, defined in Equation (3.2).
Also used as bias variable in neural networks,
defined in Equation (3.92).

b Right-hand side of a linear system. Also used
for neural network bias vectors.

c Diffusion tensor entry, defined in Equation (3.2).
Also used as indicator function for continuous
inpainting masks.

c Discrete inpainting mask.

285

286 List of Symbols

C General set of neural network convolutions. Also
used as a diagonal matrix for inpainting masks.

d Inpainting mask density.

dx, dy Sampling distances for regular masks.

D Diffusion tensor as defined in Fick’s law (3.1).

D General data term or general differential oper-
ator.

D+
h ,D−

h . . . Forward and backward difference matrices with
grid size h.

e Standard unit vector of length one.

E(·) Variational energy functional, introduced in Sec-
tion 3.2.

f Continous noisy input image or signal for de-
noising, masked image or signal for inpainting.

f Discrete noisy input image or signal for denois-
ing, masked image or signal for inpainting.

F(·) Integrand of variational energy functional, intro-
duced in Section 3.2.

g(s2) Diffusivity function, introduced in Section 3.1.1.

gmax Maximum value of a diffusivity g.

G Diganoal diffusivity matrix.

G(x, y) . . . Two-dimensional Gaussian function.

h, hx, hy, H . Grid sizes of discrete signals and images, intro-
duced in Section 2.5.

H(u) Hessian matrix.

i, j Spatial indices for discrete signals and images.

I Identity matrix.

I Inpainting network in Chapter 10.

Id Identity function.

j Diffusion flux as defined in Fick’s law (3.1).

List of Symbols 287

J Structure tensor, defined in Equation 5.3. The
extension Jγ denotes the multiscale structure
tensor in Chapter 5.

k Time step index, introduced in Section 3.1.2.
Also used as a spatial index when i, j are in
use.

K Inpainting mask, domain of known data for in-
painting tasks. Also used for the total number
of time steps, and Kσ denotes a Gaussian with
standard deviation σ.

K Discrete filter matrices in diffusion models and
neural networks.

ℓ Scale index. Also used for fractional time steps.

L General differential operator or Lipschitz con-
stant of functions. Also used for total number of
scales and fractional time steps.

L Neural network loss function, introduced in Sec-
tion 3.4.3.

m Alternative notation for the number of explicit
diffusion steps. Also used as image channel in-
dex.

M Order of a differential equation or operator. Also
used for the number of image channels.

M Mask learning network in Chapter 10.

n, nx, ny . . . Number of sampling positions for discrete sig-
nals and images. The symbol n is alternatively
used to denote noise standard deviation in
Chapter 5 when σ is already in use.

n Outer normal vector at image boundary ∂Ω.
Also used to denote images or signals of pure
noise.

N General neural network in Section 3.4.3.

O(·) Landau notation, defined in Equation (2.10).

p, q Alternative spatial indices for discrete signals
and images. Also used as candidate pixel frac-
tions for probabilistic sparsification.

288 List of Symbols

P Lipschitz constant for multiscale models where
L is in use.

P Prolongation operator in a multigrid algorithm,
introduced in Section 7.4.

Q Undecimated Haar wavelet filters, defined in
Section 4.1. Also used as system matrix of expli-
cit schemes in Section 3.1.2.

Q Non-decimated Haar wavelet filter matrices in
Chapter 4.

r Discrete residual vector of a PDE, introduced in
Section 7.4.

R Restriction operator in a multigrid algorithm,
introduced in Section 7.4.

R General regularisation term.

S(s) Wavelet shrinkage function, introduced in Sec-
tion 3.3

S General discrete solver, introduced in Section 7.4.
Also used as vector-valued shrinkage function.

sgn Sign function.

sup Supremum operator.

T Stopping time of a diffusion process, introduced
in Section 3.1.2.

tr Trace operator.

u Continous denoised or inpainted output image
or signal. Evolving image or signal in diffusion
processes and neural networks.

u Discrete denoised or inpainted output image
or signal. Evolving image or signal in diffusion
processes and neural networks.

v Continous ground truth image or signal.

v Discrete ground truth image or signal.

v1, v2 Eigenvectors of the diffusion or structure tensor,
introduced in Section 3.1.1.

w(·) Weighting function for Shepard interpolation.

List of Symbols 289

w Neural network filter weights, introduced in
Section 3.4. Also wavelet coefficient vectors in
Chapter 4.

W Neural network filter matrices, introduced in
Section 3.4. Also used as non-decimated à trous
Haar wavelet filter matrices in Chapter 4.

x, y,x,y . . . Spatial variables in scalar and vector form. Also
used as general variables.

α Various definitions; see respective chapters.

β Various definitions; see respective chapters.

β1, β2 Momentum parameters of the Adam optimiser,
introduced in Section 3.4.3.

γ Various definitions; see respective chapters.

∂t, ∂x, ∂y . . . Partial derivatives, defined in Equation (2.1).

∂u Gâteaux derivative, defined in Equation (2.6).

∂v, ∂n Directional derivatives, defined in Equa-
tion (2.5).

∂Ω Boundary of signal or image domain Ω.

∆ Laplace operator, defined in Equation (2.4).

∆2 Biharmonic operator, introduced in Section 2.1.

ε Small numerical regularisation constant.

θ Rotation angle for anisotropic Shepard interpol-
ation in Chapter 9. Also used as super time step
size for FED (see Section 3.1.2) and as threshold
parameter for wavelet shrinkage functions (see
Section 3.3).

θ Set of trainable parameters, introduced in Sec-
tion 3.4.3.

ϑ Parameter update vector in momentum meth-
ods, introduced in Equation 3.106.

λ Contrast parameter for nonlinear diffusivities,
introduced in Section 3.1.1.

µ Mean value.

ν1, ν2 Eigenvalues of the diffusion or structure tensor,
introduced in Section 3.1.1.

290 List of Symbols

ρ Regularisation parameters.

ρ(A) Spectral radius of a matrix, defined in (2.25).

σ Standard deviation of a Gaussian. Presmooth-
ing parameter in the case of diffusion; see Sec-
tion 3.1.1 and Chapters 5 and 8. Alternatively
used as noise standard deviation in denoising
experiments.

τ Time step size of diffusion processes, introduced
in Section 3.1.2.

φ(s) Activation function in neural networks, intro-
duced in Equation 3.92.

Φ(s) Flux function, defined in Equation (3.14). Altern-
atively the scaling function for Wavelet shrink-
age, introduced in Section 3.3

Ψ(s2) Variational penaliser, introduced in Section 3.2.
Also used for the mother wavelet function intro-
duced in Section 3.3.

ω Weight for discrete multiscale models, intro-
duced in Section 5.2.

Ω Rectangular image domain or one-dimensional
signal domain.

H
L I S T O F F I G U R E S

2.1 Unit balls for selected vector norms 9
2.2 Continuous and discrete image examples 12

3.1 Diffusivities and associated flux functions 20
3.2 Visualisations of diffusion models 26
3.3 Mother wavelet and scaling function 40
3.4 ReLU activation . 43
3.5 Fully connected neural network 44
3.6 Convolutional neural network 45
3.7 Visualisation of a two-dimensional CNN 47
3.8 Visualisation of a U-net 50
3.9 Activations and derivatives 53
3.10 Historic timeline of artificial intelligence 58
3.11 Denoising with diffusion models 66
3.12 Inpainting without and with spatial optimisation . . . 69

4.1 Hard, soft, and garrote shrinkage functions 78
4.2 Effect of parameter choices on the FAB diffusivity . . 81
4.3 Trained shrinkage functions for σ = 25 84
4.4 Trained shrinkage functions for σ = 50 85
4.5 Contribution of scales to reconstruction quality 86
4.6 Relations between trained parameters and scale . . . 86
4.7 Relations between trained parameters and noise . . . 87
4.8 Comparison against classical shrinkage functions . . . 88
4.9 Visual comparison of reconstructions for σ = 25 . . . 89
4.10 Visual comparison of reconstructions for σ = 50 . . . 89

5.1 Learned weight and contrast parameters 98
5.2 Learned intermediate parameters 99
5.3 Ablation study over steps and scales 100
5.4 Denoising performance on peppers 102
5.5 Denoising performance on cameraman 102
5.6 Analysis of eigenvalues of diffusion tensors 103
5.7 Inpainting results on random mask 106
5.8 Inpainting results on optimised masks 107

6.1 One-dimensional diffusion block 118

7.1 Generalised one-dimensional diffusion block 133
7.2 Du Fort–Frankel block 139
7.3 FSI block . 140
7.4 Neural representations of implicit diffusion 141

291

292 list of figures

7.5 U-net and multigrid networks 145
7.6 Denoising quality of time constant networks with a

single channel . 152
7.7 Denoising quality of time dynamic networks with a

single channel . 153
7.8 Denoising quality of time dynamic networks with mul-

tiple channels . 154
7.9 Full multigrid strategy 157
7.10 EED inpainting with different networks 158

8.1 Generalised two-dimensional diffusion block 168
8.2 Fully coupled multi-channel diffusion block 172
8.3 Fully coupled multiscale diffusion block 175
8.4 Analysis of rotation invariance 179
8.5 Denoising results for differently rotated datasets . . . 180

9.1 Local adaptation of the weighting function. 189
9.2 Quality of anisotropic and isotropic Shepard interpol-

ation . 194
9.3 Anisotropic and isotropic Shepard interpolation on

kodim23 . 195
9.4 Anisotropic and isotropic Shepard interpolation on

grey and colour versions of peppers. 197
9.5 Effect of tonal optimisation 199
9.6 Average PSNR for all codec versions 201
9.7 Visual comparison of colour codec variants 202
9.8 Comparison of codec variants on colour images . . . 204
9.9 Comparison of our codec variants against the results

of Mohideen et al. 206

10.1 Overview of our model structure 211
10.2 Homogeneous diffusion inpainting results 216
10.3 Biharmonic diffusion inpainting results 217
10.4 EED inpainting results 218
10.5 Comparison of average inpainting quality 219
10.6 Comparison of efficiency 220

I
L I S T O F TA B L E S

3.1 Overview of popular diffusion models 24

5.1 Average PSNR on the test set 103

6.1 Dictionary of nonlinear modelling functions 121
6.2 Plots of functions resulting in monotone activation

functions . 124
6.3 Formulas for the function plots in Table 6.2 125
6.4 Plots of functions resulting in nonmonotone activation

functions . 126
6.5 Formulas for the function plots in Table 6.4 127

7.1 Overview of our connections between numerical and
neural concepts . 159

8.1 Diffusion models, variational energies, and network
architectures . 177

9.1 Comparison of PSNR values on selected images . . . 196

293

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Individual modifications to this style have been performed by Tobias
Alt, some of them based on adaptations that have been kindly provided
by Dr. Pascal Peter.

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

https://miede.de/postcards/

Thank you very much for your feedback and contribution.

https://bitbucket.org/amiede/classicthesis/
https://miede.de/postcards/

	Connecting mathematical models for image processing and neural networks
	Dedication
	Short Abstract
	Kurzzusammenfassung
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Organisation of the Thesis

	2 Mathematical Preliminaries
	2.1 Derivative Operators
	2.2 Convolution
	2.3 Taylor Expansion
	2.4 Norms
	2.5 Signals and Images
	2.6 Error Measures

	3 Related Work
	3.1 Diffusion
	3.2 Variational Methods
	3.3 Wavelet Shrinkage
	3.4 Deep Learning and Neural Networks
	3.5 Mathematical Foundations of Deep Learning
	3.6 Applications

	 Improving Mathematical Models through Learning
	4 Trainable Adaptive Wavelet Shrinkage
	4.1 Review: Shift-Invariant Wavelet Shrinkage
	4.2 Adaptive Wavelet Shrinkage
	4.3 Experiments
	4.4 Conclusions

	5 Trainable Integrodifferential Diffusion
	5.1 Useful Reformulation of EED
	5.2 Integrodifferential Diffusion
	5.3 Finding Scale-adaptive Parameter Functions
	5.4 Extension to Inpainting
	5.5 Conclusions

	 Mathematically Founded Neural Networks
	6 Mathematical Models and Residual Networks
	6.1 Review: Basic Approaches
	6.2 Translation into Residual Networks
	6.3 Dictionary of Activation Functions
	6.4 Conclusions

	7 Numerical Algorithms and Neural Architectures
	7.1 Review: Generalised One-dimensional Diffusion
	7.2 From Diffusion to Symmetric Residual Networks
	7.3 The Value of Skip Connections
	7.4 Review: Multigrid Solvers and U-nets
	7.5 From Multigrid to U-nets
	7.6 Experimental Evaluations
	7.7 Conclusions

	8 Rotationally Invariant Neural Networks
	8.1 Two Views on Rotational Invariance
	8.2 Towards Rotationally Invariant Networks
	8.3 Discussion
	8.4 Experiments
	8.5 Conclusions

	 Image Inpainting with Hybrid Models
	9 Inpainting with Anisotropic Shepard Interpolation
	9.1 Review: Isotropic Shepard Interpolation
	9.2 Anisotropic Shepard Interpolation
	9.3 Inpainting Experiments
	9.4 Application to Compression
	9.5 Compression Experiments
	9.6 Conclusions

	10 Learning Sparse Masks for Diffusion Inpainting
	10.1 Review: Data Optimisation for Inpainting
	10.2 Sparse Masks with Surrogate Inpainting
	10.3 Experiments
	10.4 Conclusions

	11 Conclusions and Outlook
	11.1 Conclusions
	11.2 Outlook

	A Rotationally Invariant Wavelet Shrinkage
	B Stability of Du Fort–Frankel Schemes
	C Stability of Multiscale Architectures
	D Contributions and Publications
	D.1 Further Contributions
	D.2 List of Publications

	E Bibliography
	F Glossary
	G List of Symbols
	H List of Figures
	I List of Tables
	Colophon

