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Abstract. The filling-in effect of diffusion processes has been success-
fully used in many image analysis applications. Examples include image
reconstructions in inpainting-based compression or dense optic flow com-
putations. As an interesting side effect of diffusion-based inpainting, the
interpolated data are smooth, even if the known image data are noisy:
Inpainting averages information from noisy sources. Since this effect has
not been investigated for denoising purposes so far, we propose a general
framework for denoising by inpainting. It averages multiple inpainting re-
sults from different selections of known data. We evaluate two concrete
implementations of this framework: The first one specifies known data on
a shifted regular grid, while the second one employs probabilistic densifi-
cation to optimise the known pixel locations w.r.t. the inpainting quality.
For homogeneous diffusion inpainting, we demonstrate that our regular
grid method approximates the quality of its corresponding diffusion filter.
The densification algorithm with homogeneous diffusion inpainting, how-
ever, shows edge-preserving behaviour. It resembles space-variant diffu-
sion and offers better reconstructions than homogeneous diffusion filters.
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1 Introduction

Image inpainting is the task of reconstructing missing image parts from avail-
able known data [2, 10, 17, 25]. Diffusion filters have been proven to be capable
of recovering images from very sparse pixel sets in high quality [7, 13, 16], which
is particularly useful in the context of image compression [12, 24]. This filling-in
effect has also been used successfully for more than three decades in variational
models for optic flow computation such as [14, 18]. Here, dense displacement
vector fields are created by inpainting at locations where no flow can be mea-
sured and the data term vanishes. Surprisingly, these reconstructed parts of the
flow fields are often more reliable than the measured flow vectors, since the
diffusion-based inpainting solution averages information from many noisy data



2 Robin Dirk Adam, Pascal Peter, and Joachim Weickert

in the neighbourhood [3]. One can also observe a similar effect in diffusion-based
compression applications: For low compression rates, the compressed image can
look smoother and visually more pleasing than the original.

Denoising is another classic image processing task that can be solved by dif-
fusion. From the simple original homogeneous diffusion filter [15], a plethora
of fairly sophisticated approaches has evolved; see e.g. [19, 27]. Although nowa-
days non-local denoising methods such as BM3D [9] are very popular, modern
diffusion-reaction models that rely on learning yield competitive results [6]. Both
the classic and the more recent diffusion-based denoising methods have in com-
mon that they approach the task by directly applying smoothing to the image.
To our best knowledge, the potential denoising capabilities of diffusion-based
inpainting, however, have not been investigated so far.

Our Contribution. In order to close this gap, we propose a general frame-
work for denoising by inpainting : In order to denoise an image, we average sev-
eral inpainting results that use different selections of the noisy original pixels
as known data. Moreover, we introduce two different implementations of this
framework that both rely on linear homogeneous diffusion inpainting, but dif-
fer w.r.t. the selection strategy for the known image points. Our investigations
show that inpainting from specified points at shifted, non-overlapping regular
grid positions approximates the quality of linear homogeneous diffusion. We
also propose a more sophisticated probabilistic strategy inspired by the spar-
sification approach of Mainberger et al. [16]: It adapts the locations of known
data to the image structure. Our evaluation reveals that this method possesses
edge-preserving properties similar to space-variant diffusion, while using a space-
invariant differential operator.

Related Work. Our work makes extensive use of diffusion filters. In par-
ticular, our implementations rely on linear homogeneous diffusion, which goes
back to Iijima [15]. We also consider nonlinear isotropic diffusion, which was first
introduced by Perona and Malik [19]. In contrast to linear diffusion, this filter
adapts to the local image structure in order to preserve edges. After these classic
models, many more have been proposed (e.g. [27]), but a full review would be
beyond the scope of this work. Since we are mainly interested in gaining insight
into new applications for inpainting and do not aim to produce state-of-the-art
denoising results, we focus solely on linear homogeneous and nonlinear isotropic
diffusion filters.

Interestingly, diffusion filtering can be related to many other types of denois-
ing methods. For instance, Scherzer and Weickert [23] have shown connections
between variational methods such as Tikhonov [26] or TV regularisation [22]
and fully implicit time discretisations of diffusion filters. Furthermore, a large
variety of diffusion filters for denoising can be interpreted as Bayesian denoising
models; see e.g. [20]. Thereby, they can be seen as special cases of probabilis-
tic approaches such as the field-of-experts model [21]. Also, relations to wavelet
shrinkage have been established [28].

There are also other classes of denoising filters that we cannot discuss in detail
in this work. In particular, non-local methods like BM3D [9] and its successors
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can be regarded as a sophisticated extension of the NL-means filter of Buades et
al. [4]: Such approaches search for similar image patches and average over those
to remove noise. NL-means can also be seen as a specific non-local representative
of a denoising by inpainting strategy, since Buades et al. have been inspired by
the exemplar-based inpainting method of Efros and Leung [10].

With respect to image inpainting, parts of our paper rely on spatial op-
timisation techniques. It has been shown that in cases where a sparse image
representation can be chosen from the fully available original image, the selec-
tion of known data has a significant impact on reconstruction quality [7, 13, 16].
In particular, we focus on the probabilistic sparsification method by Mainberger
et al. [16] that iteratively removes image points which are easy to reconstruct. In
a broad conceptual sense, the sparsification and densification strategies that we
consider in this paper are related to the generalised cross-validation methods by
Craven and Wahba [8], since here also approximation accuracy under removal
of data is considered. However, generalised cross-validation is usually used to
determine model parameters, for instance for denoising based on wavelet shrink-
age [29]. In our application, we iteratively remove known data to obtain sparse
image representations.

Organisation of the Paper. Since the concepts of diffusion-based denoising
and inpainting are integral to our work, we review them in Section 2. In Section 3
we propose our general framework for denoising by inpainting. With an approach
based on regular masks in Section 4 and a densification scheme in Section 5, we
also present two concrete implementations of this framework. Finally, we evaluate
the new denoising methods in Section 6 and conclude our work with a discussion
and an outlook in Section 7.

2 Diffusion-based Denoising and Inpainting

2.1 Diffusion-based Denoising

Our goal is to apply a diffusion filter to a noisy image f : Ω → R that maps the
rectangular image domain Ω ⊂ R2 to the grey value range R. To this end we
start with the initial condition u(x, y, 0) = f(x, y) and compute filtered versions
{u(x, y, t) | (x, y) ∈ Ω, t ≥ 0} of f(x, y) with diffusion time t as solutions of the
following initial boundary value problem:

∂tu = div(g∇u) on Ω × (0,∞), (1)

u(x, y, 0) = f(x, y) on Ω, (2)

∂nu = 0 on ∂Ω × (0,∞). (3)

Here we use the outer normal vector n to the image boundary ∂Ω and the corre-
sponding directional derivative ∂n to specify reflecting boundary conditions. By
∇ = (∂x, ∂y)> we denote the spatial nabla operator, and div is its correspond-
ing divergence operator. The diffusion time t embeds the filtered images u into
a scale-space: Increasing the diffusion time simplifies the image.
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The scalar-valued diffusivity g : [0,∞)→ (0,∞) is a positive function of the local
image structure. The magnitude of g determines how much smoothing the diffu-
sion filter performs at a given l ocation in the image. Three scenarios are relevant
for our paper: homogeneous, linear space-variant, and nonlinear diffusion.

Homogeneous diffusion [15] uses the constant diffusivity g = 1. This leads
to the linear diffusion equation (also known as heat equation) ∂tu = ∆u with
the Laplacian ∆ = ∂xx +∂yy. This evolution generates the well-known Gaussian
scale-space [15]. It is simple to implement and uses no additional parameters
apart from t. Since homogeneous diffusion smoothes equally at all locations of
the image, it is space-invariant. However, as it cannot distinguish between noise
and edges, it also blurs semantically important image edges.

Linear space-variant diffusion [11] avoids this drawback by adapting the
diffusive evolution to the initial image f . This can be achieved by choosing
g = g(|∇f |2) with a decreasing diffusivity function that becomes small at edges
where |∇f | is large. An example is the Charbonnier diffusivity [5]

gC(s2) :=

(
1 +

s2

λ2

)−1/2
. (4)

Note that locations where |∇f | � λ are regarded as edges where the diffusivity
is close to 0, while we have full diffusion in regions with |∇f | � λ. Therefore,
λ > 0 acts as a contrast parameter.

Nonlinear diffusion [19] goes one step further and chooses the diffusivity
as a function of the evolving image u(., t). Using g = g(|∇u|2) instead of g =
g(|∇f |2) introduces a nonlinear feedback into the evolution. Since the evolving
image becomes gradually smoother, one often obtains better denoising results
than for linear space-variant diffusion.

To keep everything simple and focus on structural insights, we do not consider
more advanced diffusion processes that use a diffusion tensor [27].

2.2 Diffusion-based Inpainting

With some small modifications, the diffusion filters from the previous section
can be applied to image inpainting problems. Let the original image f only be
known on the inpainting mask K ⊂ Ω. Our goal is to reconstruct the missing
data in the inpainting domain Ω \K. We achieve this by computing the steady
state (t→∞) of the image evolution of u(x, y, t) that is described by

∂tu = div(g∇u) on Ω \K × (0,∞), (5)

u(x, y, t) = f(x, y) on K × [0,∞), (6)

∂nu = 0 on ∂Ω × (0,∞). (7)

In contrast to Eq. (1)–(3), the diffusion PDE is only applied to the inpainting
domain Ω\K, while Dirichlet boundary conditions fix the known data onK. This
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leads to a non-flat steady state. Equivalently, we can formulate the inpainting
problem with the elliptic PDE

(1− c(x))Lu− c(x)(u− f) = 0 (8)

where Lu := div(g∇u), and c is a binary confidence function that is 1 on K,
and 0 on Ω \K. Note that on ∂Ω, the reflecting boundary conditions still apply.
In the following sections we favour this more compact notation, and we use the
term inpainting mask for both the set K and its associated indicator function c.

3 A General Framework for Denoising by Inpainting

In our new denoising approach we want to exploit that inpainting reconstructions
are smooth, even if we apply the diffusion operator to noisy known data. Thus,
given a confidence mask c as in the previous section, we expect our pixels in the
inpainting domain Ω \K to be more reliable than our known noisy data K.

Obviously this has the undesired effect that all noisy pixels which belong to
our inpainting mask are not affected by the filter at all. To obtain a denoised im-
age u in all pixels, we average n reconstructions (v`)n−1`=0 that are computed with
the same differential operator L, but with different inpainting masks (c`)n−1`=0 .
This leads to the following general formulation:

(1− c`(x))Lv` − c`(x)(v` − f) = 0 , ` ∈ {0, ..., n− 1} , (9)

u =
1

n

n−1∑
`=0

v` . (10)

Compared to standard diffusion-based denoising, we do not have to choose a
diffusion time any more, since all reconstructions correspond to steady states
of the n inpaintings in Eq. (9). Instead, the mask density d (the percentage
of known data points) is the free parameter of our model that determines the
amount of smoothing: Decreasing the mask density leads to more smoothing.

In the following, we introduce two different strategies to choose the mask
locations corresponding to this density parameter. In both cases, we choose L =
∆ as our differential operator, i.e. we use homogeneous diffusion inpainting.

4 Denoising with Regular Masks

For our first inpainting-based denoising model, we choose the masks as shifted
versions of a regular grid. Let the spacing between known pixels in the grid be
given by r in x-direction and s in y-direction. Then we have n := r·s ways to shift
this grid in a non-overlapping way. For a discrete image with resolution M ×N
and grid size h, we define the space-discrete masks c` with ` ∈ {0, ..., n− 1} by

cps+q
i,j = cps+q(ih, jh) :=

{
1 i = pmod r and j = qmod s ,

0 else .
(11)
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original noisy homog. diffusion regular inpainting

σ = 30 MSE: 75.37 MSE: 85.54

Fig. 1. Experiment: Denoising with Inpainting on Regular Masks versus
Homogeneous Diffusion. For this test on trui with Gaussian noise (σ = 30), optimal
diffusion time and grid spacing were chosen for each method respectively. We compare
both methods w.r.t. the mean squared error (MSE).

Here, p ∈ {0, r − 1} and q ∈ {0, ..., s − 1} are the admissible grid offsets. Each
pixel in the image domain Ω is covered by exactly one mask. For our denoising
model, this means that at each location the confidence in the known data is
equal: We always average n− 1 inpainting results and the original pixel.

Experimentally, we determine that this scheme with regular masks is indeed
capable of denoising, but performs slightly worse than homogeneous diffusion fil-
tering. For a typical result see Fig. 1. However, both quantitatively and visually,
the results of our regular mask inpainting approach with homogeneous diffu-
sion appear to approximate homogeneous diffusion filtering. In the following, we
justify this behaviour with considerations in the 1-D setting.

1-D Analysis. Let us consider inpainting with 1-D homogenous diffusion
and regular masks with spacing n. For a pixel position i and a mask shifted by
p ∈ {0, ..., n− 1}, we define the offset ` = |i− p|modn relative to i. This implies
that for the mask c` with ` = 0, the location i is known. For general choices
` ∈ {0, ..., n− 1}, the known points that are closest to i are i− ` on the left and
i + n − ` on the right. Since in 1-D, inpainting with homogeneous diffusion is
equivalent to linear interpolation between adjacent known points, we obtain the
reconstruction v` at location i as

v`i =
n− `
n

fi−` +
`

n
fi+n−` . (12)

Now we average our inpainting solutions (v`)n−1`=0 to end up with the denoised
image u. This yields

ui =
1

n

n−1∑
`=0

v`i =
1

n

n−1∑
`=0

(n− `
n

fi−` +
`

n
fi+n−`

)
(13)

=
1

n2

(
n · fi +

n−1∑
`=1

` · (fi−n+` + fi+n−`)
)
. (14)
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For the highest non-trivial regular mask density, which comes down to storing
every second pixel (n = 2), we obtain

ui =
fi−1 + 2fi + fi+1

4
⇐⇒ ui − fi

τ
=
fi+1 − 2fi + fi−1

h2
(15)

with τ := 4
h2 . Since the right equation is an explicit finite difference step of

∂tu = ∂xxu with initial value f and time step size τ , this is equivalent to applying
a homogeneous diffusion filter. For larger choices of n, Eq. 14 corresponds to
convolving the image with a symmetric sampling of a hat function that has
2n+ 1 non-zero samples. This visually resembles Gaussian convolution.

5 Denoising with Adaptive Masks

In order to improve our denoising results compared to the non-adaptive masks
from the previous section, we want to rely on spatial mask optimisation [7, 13,
16], a successful concept in PDE-based compression. Optimising the location of
the known data can improve each individual reconstruction v` and thereby also
the average u. For homogeneous diffusion inpainting, the theory of Belhachmi
et al. [1] recommends to choose locations left and right of image edges. However,
in images with large amounts of noise, edge detection is by no means an easy
task. Moreover, we require multiple different masks for our general denoising by
inpainting framework from Section 3.

Among the wide variety of different approaches for spatial optimisation, the
probabilistic approach by Mainberger et al. [16] seems to be the most promis-
ing for our purpose: It does not rely on edge detection and contains a random
component that we can use to generate different adaptive masks.

Sparsification. The original probabilistic sparsification starts with a mask
that contains all image points and successively reduces the amount of known
pixels until it reaches a target density d. In each iteration, it removes a fixed
percentage α of known data. After inpainting with the resulting smaller mask, it
adds a percentage β of the removed pixels with the highest reconstruction error
back to the mask. Thus, out of α% candidates, we remove the β% pixels that
can be reconstructed best.

Unfortunately, applying sparsification directly to our denoising problem with
homogeneous diffusion yields unsatisfactory results due to its local error compu-
tation: It considers the deviation of each candidate pixel from the corresponding
image point in the noisy input image and preserves those candidates with the
largest deviation. However, a large local difference can not only result from fine
scale detail that should be preserved. Since the original data are noisy, the sparsi-
fication algorithm preserves noise that deviates from the smooth reconstruction.
One solution to avoid this problem is to consider the impact of removing a single
pixel on the overall reconstruction: If the noise has zero mean, computing the
global error between inpainting solution and noisy image should give a better
estimate to the error w.r.t. the unperturbed original. However, even with this
change, sparsification selects noise pixels (see Fig. 2(b)).
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(a) input data (b) sparsification (c) densification

original MSE 76.07 MSE 1.98

noisy (σ = 30) optimised mask optimised mask

Fig. 2. Experiment: Densification versus Sparsification. For both methods, the
mask density d was optimised with a grid search w.r.t. the MSE. The noisy gradient
image is not reconstructed adequately by sparsification, since it prefers to keep noisy
pixels in the first iterations due to localisation. Densification does not suffer from this
problem and thereby achieves a more accurate inpainting.

The reason for this behaviour is a second source of locality: The influence
of a pixel on the reconstruction result is determined by the mask density of its
surroundings. This is illustrated by two extreme cases: In a mask consisting of
a single pixel, its influence is truly global. It determines the average grey value
of the flat steady state. In contrast, a pixel surrounded entirely by known data
does not influence the inpainting at all. Since we start with a dense pixel mask
in sparsification, each pixel initially has a very small influence which gradually
increases the more points are removed. This leads to the preference of noisy data.

Densification. In order to remove this second source of locality, we instead
propose a densification approach in Algorithm 1. We start with an empty mask
and consider α randomly selected candidates that do not belong to the mask.
We then only add the single pixel that improves the overall reconstruction error
w.r.t. the noisy image the most.

6 Experiments

In the following we evaluate the performance of our two approaches for denoising
by inpainting from Sections 4 and 5. We add Gaussian noise to the test images
trui, peppers, and lena to compare our methods to diffusion filters. In order to
reveal the full potential of each algorithm, we select the respective parameters
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Input: Noisy image f ∈ RMN , number α of candidates, desired final mask density d.
Initialisation: Mask c = 0 is empty.
Compute:

do
1. Choose randomly a set A ⊂ {k ∈ {1, ...,MN} | ck = 0} with α candidates.

for all i ∈ A do
2. Set temporary mask mi such that ∀k ∈ {1, ..., α} \ {i} : mi

k = ck, mi
i = 1.

3. Compute reconstruction ui from mask mi and image data f .
end for

4. Set c = argminmi MSE(ui,f). This adds one mask point to c.
while pixel density of c smaller than d.

Output: Mask c of density d.

Algorithm 1: Mask densification with global error computation.

such that the mean squared error (MSE) w.r.t. the ground truth is minimised.
This includes the stopping time of all diffusion processes, the contrast parameter
λ in the diffusivity (4) for the linear space-variant and nonlinear diffusion models,
as well as the mask density for the inpainting approaches. For this optimisation,
we use a straightforward grid search. For all experiments, we have fixed the
number of different masks in our densification approach to n = 128.

The results in Fig. 1 and Tab. 1 confirm that our inpainting approach with
regular masks approximates the quality of homogeneous diffusion filtering. It is
slightly worse than its diffusion counterpart.

Our densification method, however, proves to be consistently better than
denoising with homogeneous diffusion. Note that it does not only offer a better
quantitative performance: Due to the preservation of edges, the results are also
visually more pleasing (see Fig. 3).

Suprisingly, the densification method is even superior to linear space-variant
diffusion filtering in 8 out of 9 cases considered in Tab. 1. In order to understand
this behaviour, we should remember that the densification method achieves adap-
tivity by searching for the most useful pixels as inpainting data. Typically these
are those pixels which are less degraded by Gaussian noise than their neighbours.
Linear space-variant diffusion lacks such a mechanism to identify the most re-
liable pixels: All edge pixels with the same gradient magnitude are assigned
the same diffusivity, regardless of their individual reliability. This explains the
slightly weaker performance of linear space-variant diffusion. At the same time,
our model is simpler: Since it uses homogeneous diffusion, there is no need to
choose a diffusivity model (e.g. Eq. 4) or the parameter λ.

Finally, comparing the densification method based on homogeneous diffusion
inpainting with a nonlinear diffusion filter shows its limitations, in particular for
high noise levels. This is an unfair comparison: Since the densification approach
lacks a nonlinear feedback mechanism, it is not suprising that its performance
is dominated by nonlinear diffusion filtering.
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trui peppers lena

Gaussian noise, σ = 10 Gaussian noise, σ = 20 Gaussian noise, σ = 30

HD, MSE: 24.14 HD, MSE: 60.80 HD, MSE: 131.28

LS, MSE: 19.91 LS, MSE: 52.90 LS, MSE: 126.45

ID, MSE: 20.00 ID, MSE: 50.78 ID, MSE: 121.06

Fig. 3. Comparison of homogeneous diffusion (HD), linear space-variant diffusion (LS),
and denoising by inpainting with densification (ID)
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test image trui peppers lena
noise scale σ 10 20 30 10 20 30 10 20 30

inpainting with reg. masks 27.25 56.81 85.54 35.69 65.94 97.34 44.56 91.79 134.79
inpainting by densification 20.00 44.61 73.18 25.04 50.78 75.10 31.43 76.55 121.06

homogeneous diffusion 24.14 49.73 75.37 32.32 60.80 89.14 43.04 89.58 131.28
linear space-var. diffusion 19.91 46.25 73.51 25.24 52.90 82.98 32.13 77.04 126.45
nonlinear diffusion 16.43 35.12 55.03 22.34 41.17 62.79 28.16 64.28 99.84

Table 1. Denoising Results. We compare our two denoising by inpainting strategies
(that employ homogeneous diffusion inpainting) with three diffusion filters.

7 Conclusions

Our work is the first that explicitly demonstrates the denoising capabilities of
PDE-based inpainting methods. In particular, implementing our general frame-
work with adaptive inpainting masks introduces space-variant behaviour to purely
homogeneous processes. The resulting densification strategy based on homoge-
neous diffusion inpainting does not only outperform homogeneous diffusion fil-
tering, but even linear space-variant diffusion filters. This shows a fundamental
principle for denoising that has been widely ignored: Adaptivity in the filter model
can be replaced by adaptivity of data selection. Exploring this encouraging road
further by gaining more theoretical insights is part of our ongoing work.

References

1. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation
data in images. SIAM Journal on Applied Mathematics 70(1), 333–352 (Jun 2009)

2. Bertalmı́o, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc.
SIGGRAPH 2000. pp. 417–424. New Orleans, LI (Jul 2000)

3. Bruhn, A., Weickert, J.: A confidence measure for variational optic flow methods.
In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties
from Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 283–297.
Springer, Dordrecht (2006)

4. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a
new one. Multiscale Modeling and Simulation 4(2), 490–530 (2005)
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12. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image com-
pression with anisotropic diffusion. Journal of Mathematical Imaging and Vision
31(2–3), 255–269 (Jul 2008)

13. Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse
data for Laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M.,
Tai, X.C. (eds.) Energy Minimization Methods in Computer Vision and Pattern
Recognition, Lecture Notes in Computer Science, vol. 8081, pp. 151–164. Springer,
Berlin (2013)

14. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203
(Aug 1981)

15. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-
dimensional pattern). Bulletin of the Electrotechnical Laboratory 26, 368–388 (Jan
1962), in Japanese

16. Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann,
F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpaint-
ing. In: Bruckstein, A., ter Haar Romeny, B., Bronstein, A., Bronstein, M. (eds.)
Scale Space and Variational Methods in Computer Vision, Lecture Notes in Com-
puter Science, vol. 6667, pp. 26–37. Springer, Berlin (2011)

17. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. 1998 IEEE In-
ternational Conference on Image Processing. vol. 3, pp. 259–263. Chicago, IL (Oct
1998)

18. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the
estimation of displacement vector fields from image sequences. IEEE Transactions
on Pattern Analysis and Machine Intelligence 8, 565–593 (Sep 1986)

19. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (Jul
1990)

20. Peter, P., Weickert, J., Munk, A., Krivobokova, T., Li, H.: Justifying tensor-driven
diffusion from structure-adaptive statistics of natural images. In: Tai, X.C., Bae,
E., Chan, T.F., Lysaker, M. (eds.) Energy Minimization Methods in Computer
Vision and Pattern Recognition, Lecture Notes in Computer Science, vol. 8932,
pp. 263–277. Springer, Berlin (2015)

21. Roth, S., Black, M.J.: Fields of experts. International Journal of Computer Vision
82(2), 205–229 (Apr 2009)

22. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D 60(1), 259–268 (Nov 1992)

23. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering.
Journal of Mathematical Imaging and Vision 12(1), 43–63 (Feb 2000)

24. Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Under-
standing, optimising, and extending data compression with anisotropic diffusion.
International Journal of Computer Vision 108(3), 222–240 (Jul 2014)



Denoising by Inpainting 13

25. Schönlieb, C.B.: Partial Differential Equation Methods for Image Inpainting. Cam-
bridge University Press, Cambridge (2015)

26. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill–Posed Problems. Wiley, Washing-
ton, DC (1977)

27. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
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