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Abstract

Variational methods belong to the most successful tech-
niques for computing the displacement field in image se-
quences. In this paper we analyse the different terms in the
energy functional and sketch some of our recent contribu-
tions in this area.

1. Introduction

Already in 1981, Horn and Schunck introduced the first
variational method for computing the displacement field
(optic flow) in an image sequence [15]. This method is
based on two assumptions that are characteristic for many
variational optic flow methods: a brightness constancy as-
sumption and a smoothness assumption. These assump-
tions enter a continuous energy functional whose minimiser
yields the desired optic flow field. Performance evalua-
tions such as [5, 11] showed that variational methods be-
long to the better performing techniques. It is thus not sur-
prising that a lot of research has been carried out in order
to improve these techniques even further: These amend-
ments include refined model assumptions with discontiuity-
preserving constraints [2, 10, 13, 21, 22, 25, 30] or spa-
tiotemporal regularisation [6, 20, 31], improved data terms
with modified constraints [3, 9, 21, 26] or nonquadratic pe-
nalisation [6, 14, 18, 29], and efficient multigrid algorithms
[7, 12, 27, 32] for minimising these energy functionals.

The goal of the present paper is to analyse the data term
and the smoothness term in detail and to survey some recent
results on variational optic flow computation in our group.
The paper is organised as follows: In Section 2 we sketch
the general structure of these techniques. While Section 3
analyses the data term in more detail, a discussion of the
different possibilities for smoothness constraints is given in
Section 4. Algorithmic aspects are outlined in Section 5,
and experiments are presented in Section 6.

2. General Structure
Let f(x1, x2, x3) denote some scalar-valued image se-
quence, where (x1, x2) is the location and x3 denotes time.
Often f is obtained by preprocessing some initial image se-
quence f0 by convolving it with a Gaussian Kσ of standard
deviation σ:

f = Kσ ∗ f0. (1)

Let us assume that Dkf describes the set of all par-
tial (spatial and temporal) derivatives of f of or-
der k, and that the optic flow field u(x1, x2, x3) =
(u1(x1, x2, x3), u2(x1, x2, x3), 1) gives the displacement
rate between subsequent frames. In the present paper we
consider variational methods that are based on the minimi-
sation of the continuous energy functional

E(u) =

∫

Ω

(M(Dkf, u)
︸ ︷︷ ︸

data term

+α S(∇f,∇u)
︸ ︷︷ ︸

regulariser

) dx (2)

where the integration domain Ω is either a spatial or a spa-
tiotemporal domain. In the spatial case we have x :=
(x1, x2)

> and ∇ := ∇2 := (∂x1
, ∂x2

)>, and in the spa-
tiotemporal case we use the notations x := (x1, x2, x3)

>

and ∇ := ∇3 := (∂x1
, ∂x2

, ∂x3
)>. The optic flow

field u(x1, x2, x3) is obtained as a function that minimises
E(u). The energy functional E(u) penalises all devia-
tions from model assumptions. Typically is consists of a
data term M(Dkf, u) which expresses e.g. a brightness
constancy assumption, and a regulariser S(∇f,∇u) with
∇u := (∇u1,∇u2)

> that penalises deviations from (piece-
wise) smoothness. The weight α > 0 serves as regularisa-
tion parameter: Larger values correspond to more simpli-
fied flow fields.

It should be noted that such continuous energy function-
als may be formulated in a rotationally invariant way. Re-
sults from numerical analysis show that consistent discreti-
sations approximate this invariance under rotations arbitrar-
ily well if the sampling is sufficiently fine. Moreover, if
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the energy functional is convex, a unique minimiser exists
that can be found in a relatively simple way by globally
convergent algorithms. Variational optic flow methods are
global methods: If there is not sufficient local information,
the data term M(Dkf, u) is so small that it is dominated
by the smoothness term αS(∇f,∇u) which fills in infor-
mation from more reliable surrounding locations. Thus, in
contrast to local methods, the filling-in effect of global vari-
ational approaches always yields dense flow fields and no
subsequent interpolation steps are necessary: Everything
is automatically accomplished within a single variational
framework.

3. Data Terms
Many differential methods for optic flow are based on
the assumption that the grey values of image objects in
subsequent frames do not change over time. Thus, if
(x1(x3), x2(x3)) denotes the movement of some image
structure, we obtain the following optic flow constraint
(OFC) by applying the chain rule:

0 =
df(x1(x3), x2(x3), x3)

dx3

= fx1
u1 + fx2

u2 + fx3
, (3)

where fxi
:= ∂xi

f . Note that the optic flow field satisfies
(u1, u2, 1)> = (∂x3

x1, ∂x3
x2, 1)>. In order to use Equa-

tion (3) within the energy functional (2), we penalise all
deviations from zero by using the quadratic data term [15]

M1(D
1f, u) := (u>∇3f)2. (4)

This term can be modified in several ways:

1. One may assume that the optic flow is constant within
some neighbourhood of order ρ. This leads to [17]

M2(D
1f, u) := Kρ ∗ ((u> ∇3f)2). (5)

This data term offers advantages when noise is present.

2. Higher robustness under noise can also be achieved by
penalising outliers less severely than a quadratic reg-
ulariser does: One may use a penaliser Ψ(s2) that is
convex in s and increases less rapidly than quadratic
functions, e.g. the regularised TV penaliser [24]

Ψ(s2) =
√

ε2 + s2. (6)

This modification transforms M1 and M2 into

M3(D
1f, u) := Ψ((u>∇3f)2), (7)

M4(D
1f, u) := Ψ(Kρ ∗ ((u>∇3f)2)). (8)

Instead of imposing constancy of the image brightness f

along the path (x1(x3), x2(x3)), we may impose constancy

of the spatial brightness gradient (fx1
, fx2

)> along such a
path [28]. This gives two equations:

u>∇3fx1
= 0, (9)

u>∇3fx2
= 0. (10)

Squaring and adding them produces the data term

M5(D
2f, u) :=

2∑

i=1

(u>∇3fxi
)2. (11)

In a similar way, imposing constancy of the (spatial) Hes-
sian of f gives

M6(D
3f, u) :=

2∑

i=1

2∑

j=1

(u>∇3fxixj
)2, (12)

and constancy of the (spatial) Laplacian ∆2f yields

M7(D
3f, u) := (u>∇3(∆2f))2. (13)

There is no general rule which of these data terms should
be preferred. While higher-order derivatives are more sen-
sitive to noise, the data terms M5, M6 and M7 may offer
advantages over M1 when the brightness is not constant.
On the other hand, M1 and M7 are more appropriate than
M5 and M6 when non-translatory motion dominates. Thus
the choice of the “best” data term will always depend on the
specific problem.

4. Smoothness Terms
A taxonomy of the different possibilities to design smooth-
ness constraints has been presented in [30]. It exploits the
connection between regularisation methods and diffusion
filtering: Minimising the energy functional (2) by means of
steepest descend, we obtain a system of diffusion–reaction
equations, where the diffusion term results from the regu-
lariser S(∇f,∇u), and the reaction term is induced by the
data term M(Dkf, u):

∂tu1 = ∂x1
Su1,x1

+ ∂x2
Su1,x2

− 1

α
∂u1

M, (14)

∂tu2 = ∂x1
Su2,x1

+ ∂x2
Su2,x2

− 1

α
∂u2

M (15)

where Sui,xj
denotes the partial derivative of S with re-

spect to ∂xj
ui. The parameter t in this system of partial

differential equations (PDEs) is a pure numerical parameter
that should not be confused with the time x3 of the image
sequence. For t → ∞, the steady state of the diffusion–
reaction system is given by the Euler–Lagrange equations

0 = ∂x1
Su1x1

+ ∂x2
Su1,x2

− 1

α
∂u1

M, (16)

0 = ∂x1
Su2x1

+ ∂x2
Su2,x2

− 1

α
∂u2

M. (17)
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Table 1: Taxonomy of optic flow regularisers (see [30]).

Name of Regulariser S(∇f,∇u)

homogeneous [15]
2∑

i=1

|∇ui|
2

image-driven, isotropic [2] g(|∇f |2)
2∑

i=1

|∇ui|
2

image-driven, anisotropic [21]
2∑

i=1

∇u>

i D(∇f)∇ui

flow-driven, isotropic [25] Ψ

(
2∑

i=1

|∇ui|
2

)

flow-driven, anisotropic [30] tr Ψ

(
2∑

i=1

∇ui∇u>

i

)

They constitute necessary conditions that a minimiser of
E(u) has to satisfy.

Let us now have a closer look at the impact of the reg-
ulariser. The simplest regulariser is the homogeneous reg-
ularisation of Horn and Schunck [15]. This quadratic reg-
ulariser of type S(∇u) = |∇u1|

2 + |∇u2|
2 penalises all

deviations from smoothness of the flow field. It can be re-
lated to linear diffusion with a constant diffusivity. Thus,
the flow field is blurred in a homogeneous way such that
motion discontinuities may loose sharpness and get dislo-
cated. It is thus not surprising that people have tried to
construct a variety of discontinuity-preserving regularisers.
Depending on the structure of the resulting diffusion term,
we can classify a regulariser S(∇f,∇u) as image-driven or
flow-driven, and isotropic or anisotropic.

For image-driven regularisers, S is not only a function
of the flow gradient ∇u but also of the image gradient ∇f .
This function is chosen in such a way that it respects dis-
continuities in the image data. If only the gradient mag-
nitude |∇f | matters, the method is called isotropic. It can
avoid smoothing at image edges. An anisotropic technique
depends also on the direction of ∇f . Typically it reduces
smoothing across edges of f (i.e. along ∇f ), while smooth-
ing along edges of f is still permitted. Image-driven regu-
larisers can be related to linear diffusion processes.

Flow-driven regularisers take into account discontinu-
ities of the unknown flow field u by preventing smoothing
at or across flow discontinuities. If the resulting diffusion
process uses a scalar-valued diffusivity that only depends
on |∇u|2 := |∇u1|

2 + |∇u2|
2, it is an isotropic process.

Cases where also the direction of ∇u1 and ∇u2 matters are
named anisotropic. Flow-driven regularisers lead to nonlin-
ear diffusion processes.

Table 1 gives an overview of the different regularis-
ers. As a rule of thumb, one can expect that flow-driven
regularisers offer advantages over image-driven ones for
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Figure 1: Example of a full multigrid implementation for
four levels (from [7]). Starting from a coarse scale the solu-
tion is refined step by step.

highly textured sequences, where the numerous texture
edges create an oversegmentation of the flow field. More-
over, anisotropic methods may give somewhat better results
than isotropic ones, since the latter ones are too “lazy” at
noisy discontinuities. More details can be found in [30].

5. Algorithms
For the numerical minimisation of the energy functional (2),
two strategies are used very frequently:

In the first strategy, one discretises the parabolic
diffusion–reaction system (14), (15) and recovers the op-
tic flow field as the steady-state solution for t → ∞. The
simplest numerical scheme would be an explicit (Euler for-
ward) finite difference scheme. More efficient methods
include semi-implicit approaches that offer better stability
properties at the expense of the need to solve linear systems
of equations.

Alternatively, one can directly discretise the elliptic
Euler-Lagrange equations (16), (17). This also requires to
solve large linear or nonlinear systems of equations. Effi-
cient methods for this task include succesive overrelaxation
(SOR) methods, preconditioned conjugate gradient (PCG)
algorithms and multigrid techniques. Figure 1 shows an ex-
ample of a full multigrid cycle with 4 levels. It has been
used in [7, 8] for finding the minimum of a variational ap-
proach with data term M2 and a homogeneous regulariser.
On a 3.06 GHz PC, it was possible to compute up to 40
dense flow fields of size 200 × 200 pixels within a single
second. This shows that computational efficieny is no prob-
lem for variational optic flow methods, when state-of-the-
art numerical methods are used.

It should be noted that for convex energy functionals,
there is no danger that any of these two methods gets
trapped in a local minimum, since only one minimum ex-
ists and the method is globally convergent.

6. Experiments
We start our experiments by evaluating the impact of
the data term. This is done in Table 2 where we
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Table 2: Impact of the data term on the quality of the optic
flow field. We used a spatial energy functional with homo-
geneous regularisation, and computed the average angular
error (AAE) for the Yosemite sequence with clouds. The
parameters σ and α have been optimised.

Constancy Data Term σ α AAE
Brightness M1 1.3 500 7.17◦

Gradient M5 2.1 20 5.91◦

Hessian M6 2.7 1.8 6.46◦

Laplacian M7 2.5 3.0 6.18◦

used the Yosemite sequence with clouds. This syn-
thetic sequence and its ground truth flow field are avail-
able from ftp://csd.uwo.ca under the directory
pub/vision. The experiments in Table 2 show that it
can be worthwhile to replace the commonly used bright-
ness constancy constraint by constraints that involve higher
derivatives.

The influence of the regulariser is studied in Fig-
ure 2, which depicts a zoom into Nagel’s Marble se-
quence (i21www.ira.uka.de/image-sequences)
together with the results for five spatial regularisers. As
expected, homogeneous regularisation is fairly blurry, flow-
driven regularisers offer advantages over image-driven ones
in textured regions, and anisotropic regularisers perform
better than isotropic ones.

Figure 3 presents a comparison between spatial and spa-
tiotemporal energy functionals. It demonstrates that the ad-
ditional assumption of temporal smoothness may lead to
significantly improved results.

In Table 3 we juxtapose the angular errors of a number
of optic flow methods. It shows that the spatiotemporal
method in [29] – which combines the data term M4 with
an isotropic flow-driven regulariser – is one of the two best
performing algorithms.

7. Summary and Extensions

In this paper we have outlined some basic design principles
for variational optic flow methods, sketched their numeri-
cal implementation and studied their performance. Due to
space limitations, we had to restrict ourselves to some of
the most important features. There are several possibili-
ties to improve the performance of these methods even fur-
ther: One may for instance use non-linearised data terms
[3, 6, 21], multilevel strategies that encourage convergence
towards a global minimiser when nonconvex functionals are
applied [3, 4, 18], and consider more sophisticated function-
als in order to cope with occlusion problems [1, 23]. On
the numerical side, parallelisation strategies can be investi-

Figure 2: (a) Top left: Detail from Frame 16 of the Mar-
ble sequence (128 × 128 pixels). (b) Top right: Optic
flow magnitude for homogeneous regularisation. (c) Mid-
dle left: Image-driven isotropic regularisation (d) Middle
right: Image-driven anisotropic regularisation. (e) Bottom
left: Flow-driven isotropic regularisation (f) Bottom right:
Flow-driven anisotropic regularisation. From [30].

gated, e.g. domain decomposition methods [16].
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computation with a spatio-temporal smoothness con-
straint. Journal of Mathematical Imaging and Vision,
14(3):245–255, May 2001.

[32] G. Zini, A. Sarti, and C. Lamberti. Application of
continuum theory and multi-grid methods to motion
evaluation from 3D echocardiography. IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency
Control, 44(2):297–308, March 1997.

6


