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Abstract. There are two popular ways to implement anisotropic diéfadilters
with a diffusion tensor: Explicit finite difference schense simple but become
inefficient due to severe time step size restrictions, wédlimi-implicit schemes
are more efficient but require to solve large linear systefreqaations. In our
paper we present a novel class of algorithms that combinedihantages of
both worlds: They are based on simple explicit schemes.ewdging more effi-
cient than semi-implicit approaches. These so-calledfgsitcit diffusion (FED)
schemes perform cycles of explicit schemes with varying titep sizes that may
violate the stability restriction in up to 50 percent of alses. FED schemes can
be motivated from a decomposition of box filters in terms gileit schemes for
linear diffusion problems. Experiments demonstrate thexathges of the FED
approach for time-dependent (parabolic) image enhandgmneblems as well as
for steady state (elliptic) image compression tasks. Itdtier case FED schemes
are speeded up substantially by embedding them in a casuaatise-to-fine ap-
proach.

1 Introduction

Anisotropic diffusion filters with a diffusion tensor insté of a scalar-valued diffusivity
offer additional degrees of freedom that allow to steer tlaeoording to a task at hand
[1]: Coherence-enhancing diffusion filters, for exampke, @ell-suited for processing
seismic data sets [2], while edge-enhancing diffusiorrfilteve attractive qualities for
lossy image compression [3]. However, since such anisigtidiffusion filters require
a diffusion tensor, their efficient implementation is mucbhrendifficult than for their
isotropic counterparts with a scalar-valued diffusivitick as the Perona-Malik filter
[4]. For the latter ones one can use e.g. additive operatittirsgp (AOS) schemes [5,
6], while there is no efficient full operator splitting in tigeneral anisotropic case.
Although there has been a number of proposals for numeritenses for aniso-
tropic diffusion processes (see e.g. [7-9]), probably the most popular ways to
implement anisotropic diffusion filters are explicit andréemplicit finite difference
schemes. Explicit schemes are very simple to implement hodt a direct computa-
tion of the values at a new time level without solving lineamonlinear systems of
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equations. However, they suffer from severe time step ®swictions which render
them inefficient. Semi-implicit schemes, on the other hgramit to use large time
step sizes and can be more efficient than explicit approathdertunately, they are
more difficult to implement and require to solve a large linggstem of equations in
each time step.

Our Contribution. The goal of the present paper is to show that it is possibleto-c
bine the advantages of explicit and semi-implicit schemb#enavoiding their short-
comings. To this end we introduce a novel class of numerata@ses that we caffast
Explicit Diffusion (FED) Scheme3hey perform cycles of explicit diffusion schemes
with varying time step sizes. Since within each cycle up t@8&fent of all steps may
violate the stability condition, one can achieve very ladg&ision times. In this way
one cycle can become even more efficient than one semi-iingtiép. Moreover, we
show that one can embed FED cycles within a coarse-to-fiategly to solve stationary
problems in an even more efficient way than with multigridr@aeghes. These findings
are illustrated by applying the FED idea to edge- and colweremhancing diffusion
filters. The starting point that has led us to the developroéRED schemes was the
observation that one can factorise a (stable) 1-D box fittier & cycle of explicit linear
diffusion schemes with stable and unstable time step sitgsidea can be generalised
in a straightforward way to nonlinear and anisotropic peofi$ in arbitrary dimensions.

Organisation of the Paper. Our paper is organised as follows: In Section 2 we derive
the FED idea from the factorisation of a 1-D box filter into ksip linear diffusion
steps, and we relate this approach to the so-called SuperSiepping (STS) method of
Gentzsch et al. [10, 11]. In Section 3 we show how FED can bergdised to arbitrary
diffusion processes, and we show in Section 4 how this cardbptad to edge- and
coherence-enhancing diffusion filters. After this, we parf numerical experiments in
Section 5, and we conclude the paper in Section 6.

2 Filter Factorisation

2.1 Equivalence between 1-D Discrete Box Filtering and Linear FED

In order to motivate our FED approach, we restrict ourselugbe 1-D case first and
consider linear diffusion processes. Since it is well-kndhat linear diffusion filtering
is equivalent to Gaussian convolution and Gaussians capfr®@dmated by iterated
box filtering, we explore the connection between a box filtat explicit schemes for
linear diffusion.

Let f = (fi):en be adiscrete 1-D signal given on a grid with mesh dize 0. We
define the discrete box filter of lengthn + 1)k, n € N, as well as the discrete second
order derivative by

 fiyn = 2fi+ fiza
= = .

(Bhia(F)), = — ()

=g 2 fien and (Anf);
k=—n
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The explicit discretisation of the linear heat equationddunctionu(z, t),
O = Ogat (2)

evaluated at a spatial-time-grid poifit;, tz) with z; := (i — 3) h andt;, := k7, can
then be formulated as
ittt = (I +74,)uf | (3

wherel is the identity operator; > 0 the time step size and? ~ u(z;,t;) a numer-
ical approximation.

The following theorem states a connection between 1-D elisdvox filtering and
explicit schemes with different time step sizes:

Theorem 1. A discrete one-dimensional box filté#}, . , is equivalent to a cycle with
n explicit linear diffusion steps:

n—1
By =] U+m4m), 4)
=0
with the varying time step sizes
h2
Ti= (5)
4 cos? (Wf:l—:;)

and corresponding stopping time

n—1
h? (n+1
by = ;7 §< ) ) (6)

The corresponding proof can be found in the Appendix.

We call one cycle of this novel schemd-ast Explicit Diffusion (FED)ycle. Be-
cause of its equivalence to box filtering, FED is also stdblerestingly, the time step
sizest; in Eq. (5) partially violate stability conditions. Table hawvs both the smallest
three and largest three time step sizes for differer@ince the stability restriction for
the time step size of an explicit scheme in one dimensionviesgy = < B itis easy
to show that the FED scheme consists 85 | unstable time steps, whefe] denotes
the next largest integet > a. Hence, for evem, half of the time steps are unstable.
For n > 3, one FED cycle reaches the stopping titnefaster than any other explicit
scheme with stable time step sizes< %2

Since we want to approximate a diffusion process — or egemibl Gaussian con-
volution — one should use several iterated box filters — oivedgntly FED cycles. Let
M > 2 denote this number of FED cycles. This numbBérof outer cycles should not
be confused with the numberof inner steps.

Before we explore extensions of FED to nonlinear, anisitrepd multidimen-
sional problems, let us discuss some related work first.
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Table 1: First three and last three step sizes of FED (1-0) wit= 1 (rounded).t,, denotes the
stopping time of one FED cycle includinginner time steps

n 10 25 50 100 250 500 1000

To  0.251404 0.250237 0.250060 0.250015 0.250002 0.250001 0.250000
71 0.263024 0.252147 0.250545 0.250137 0.250022 0.250006 0.250001
T2 0.288508 0.256024 0.251518 0.250382 0.250061 0.250015 0.250004

Tn—3 1.33 7.40 28.79 113.79 706.52  2820.19 11269.25

Tn—2 2.88 16.55 64.68 255.93 1589.57  6345.33  25355.72
Tn—1 11.25 65.97 258.48 1023.45 6358.01 25381.06 101422.61

tn 18.33 108.33 425.00 1683.33  10458.33  41750.00 166833.33

2.2 Connection to Super Time Stepping

Our FED scheme uses different time step sizes, where sorhermfrnay violate stabil-
ity limits. A similar method has been introduced under thma&uper Time Stepping
(STS)by Gentzsch et al. [10,11]. Contrary to our derivation, tlhesgd a direct ap-
proach: Gentzsch et al. wanted to find a set of different titep sizes, which keeps
stability after each cycle, and at the same time maximisesstbpping time of such
a cycle. Instead of factorising a box filter, one can show their method intends to
factorise the mask(%, 0,...,0, %) Since this mask is very sensitive w.r.t. high fre-
guencies, they have to introduce an additional dampingnpeter » > 0 that ensures
better attenuation properties of high frequencies. Thiampater can be seen as a trade-
off between efficiency and damping quality, since largeugalforr scale down the
stopping time. In our FED framework, such a damping paranietet necessary.
While the ordering of the explicit diffusion steps does natttar in exact arithmetic,
it can influence the result in practice due to numerical rangérrors whem is large.
In order to improve robustness, Gentzsch et al. have progosearrange the explicit
steps within so-called:-cycles. We will also use this approach. For further details
STS, we refer to the above cited works and e.g. Alexiades. etvab have done an
experimental evaluation [12].

3 Fast Explicit Diffusion (FED) for Arbitrary Problems

3.1 Extension to Arbitrary Diffusion Problems

While the FED scheme has been motivated in the 1-D settirgliniar diffusion filter-
ing, it is actually a general paradigm that can be appliedutiidimensional, nonlinear
and anisotropic diffusion processes. This can be seenlas/fol

First, let us reconsider the 1-D diffusion equation (2) ascdekplicit discretisation
(3). By assuming homogeneous Neumann boundary conditrahdenotingu” ¢ RY
as the vector with entrieg’, Eq. (3) can be written as a matrix-vector product:

ubtt = (I 4+ 74)ub | 7
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with 7 < h?/2. According to Gerschgorin's theorem, the eigenvalues efrtfatrix
Ay € RV*N Jie in the interval[—4/h2,0]. These eigenvalues determine the stability
in the Euclidean norm: A stable explicit step requires a tgtep sizer such that all
eigenvalues of the matriX + 7A4;, lie in the interval—1, 1].

Keeping this in mind, it is straightforward to replace thetrixa4;, by any negative
semidefinite matrixP that results from a discretisation of a diffusion procedsisT
process can be one- or multidimensional, linear or nontjrisatropic or anisotropic.
In this case, one FED cycle is not any more equivalent to bixifilg, but it corresponds
to a first order approximation of the above-mentioned diffugprocess. All one has to
do is to adapt the time step size limit to the largest modufub® eigenvalues of.
More precisely, letu; < 0 be the eigenvalues dP and definejmax = max; |-
Then the explicit scheme in Eq. (7) with instead ofA,, is stable for time step sizes

7:=c- 1, Where A
- 8
h2 * Hmax ( )

is the adjustment factor. Singg,,.x can easily be estimated using e.g. Gerschgorin’s
theorem, this adaptation is no problem at all in practicg. Eigives a summary of
the general FED algorithm. Note that it is essentially anliekpscheme with some
overhead that is not time critical.

C:

3.2 Cascadic FED (CFED) for Stationary Problems

So far our FED scheme was designed for diffusion problemsevive are interested
in the temporal evolution. This refers to parabolic padiffierential equations (PDES)
that are used for denoising and enhancement purposes.

However, in the case of inpainting and PDE-based compregsigblems, one is
interested in the nontrivial steady state when Dirichletitary data are specified.
The corresponding elliptic PDE results from the parabolicletion fort — oco. To
reach this steady state as quickly as possible, we embedEdiiro a coarse-to-fine
strategy [13], i.e. we use results computed on a coarseasaleinitialisation for a finer
scale. Therefore, we scale down both the image and the regotisn mask via area-
based interpolation to a certain coarse level and apply Ei2 $cheme on this image.
Afterwards, we interpolate the corresponding solution tirelmask to the next finer
level and apply again FED on it. We apply this procedure r&ealy until the finest
level is reached. To simplify matters, we always use the qaam@meter settings for the
diffusion process on each level. We call this cascadic fagli@t diffusion approach
CFED. It saves a lot of computational effort, since then a smalinidsize stopping
time is already sufficient on each level.

4 FED and CFED for Anisotropic Diffusion Filtering

In this section we review two specific two-dimensional atrigpic diffusion filters that
we are going to use in our experiments as demonstratorsdagudtential of the FED
and CFED algorithms.
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1. Input Data:
imagef, stopping timel’, numberM of outer FED cycles, and model parameters

2. Initialisation:

(a) Compute the smallest such that the stopping timg, of one FED cycle fulfils
tn, > T/M, and defineg :=T/(M - t,) < 1.

(b) Compute the time step sizes := ¢ - ¢ - ; with ¢ according to (8), andr;
according to (5).

(c) Choose a suitable ordering for the step sizesgccording to [10].

(d) If the diffusivity or diffusion tensor is constant in tencompute the correspondir
matrix P.

«Q

3. Filtering Loop:
(a) If the diffusivity or diffusion tensor is time-varianipdate it and compute the cor
responding matrixP.
(b) Perform one FED cycle with the above ordering of thexplicit time steps;.
(c) Go back to (a), if the stopping tini8is not yet reached.

Fig. 1: General FED algorithm for diffusion filtering

4.1 Edge-Enhancing Diffusion (EED)

Edge-enhancing anisotropic diffusion inhibits diffusamross edges and instead prefers
smoothing within the image regions [1]. It follows the eviiduin equation

O = div (D (Vue) Vu) , 9)

where D € R?*? is the symmetric positive definite diffusion tensor, angdis the
imageu convolved with a Gaussian of standard deviatiotits diffusion tensor is

Vu,Vu, 4 VurVut "

D(Vur) = g (IVuol’) o ot + 1 g

(10)

where-T means the usual matrix transposition a(r‘gc)L := (°). In our experiments
we shall use the so-called Charbonnier diffusivity funatio

g (52) (1 + 52/)\2)

It has proven to be highly useful for image interpolationgmses such as the compres-
sion method in [3]. In this case one computes the elliptiadyestate solution.

We assume a uniform two-dimensional grid with the mesh sizes- h, = 1 and
set the adjustment factar = 1/(2h2), which is sufficient for stability with respect to
the standard discretisation [14].

1z (11)

4.2 Coherence-Enhancing Diffusion (CED)

Coherence-enhancing diffusion filtering enhances lind-feow-like structures. Its dif-
fusion tensor has the same eigenvectors as the so-calletist tensor

Jp (Vug) == K,* (Vu,Vu, ) | (12)
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|

Fig. 2: Testimage and reference image computed by a senticibggchemeL eft: Original image
(finger, 300 x 300, rescaled to [0,255] for better visualisatioRight: CED-filtered reference
image " =300, A =1,0 = 0.5, p =4, @ = 0.001, 7 = 0.1), rescaled to [0,255]

whereK, is a Gaussian of standard deviati@rand its eigenvalues are given by

)\1 =« (13)

a, i = )
Ay = . S (14)
o+ (1 — Oé) exp (W) y else

whereu; and uo are the eigenvalues of the structure tensor such;that ps. For
further details we refer to [1]. As a space discretisatiand&D, we have used the one
in [9]. It has low dissipativity and allows to use the samas for the preceding EED
scheme.

5 Experiments

In order to evaluate FED for parabolic problems, we enharfaggarprint test image
with CED. First we compute a reference solution by applyirsgmi-implicit scheme
with very small time step sizes. The original image and therd result can be seenin
Fig. 2.

Our error measure is the relative mean absolute error (RMAE) lwizril \ith

lI1l4

|l7lly == >, |r:|. The filtered image is denoted by andr is the corresponding refer-
ence solution.

Table 2 shows that FED and the semi-implicit method yield parable results with
respect to the RMAE. In some cases, FED is even better thaetheimplicit scheme.

In order to show the efficiency of the novel FED compared toigemlicit meth-
ods, we have conducted an experiment analysing the trddet@feen the running time
(CPU: Pentiumt, 3.2 GHz) and the RMAE. The result is depicted in Fig. 3. As one can
see, the FED scheme shows a better trade-off, i.e. is moceeeffthan the usual semi-
implicit scheme with a conjugate gradient (CG) solver.

Let us now consider an elliptic problem, where we evaluagerformance of our
FED and CFED scheme. As a testbed we use an interpolatiotepndbat is relevant
for image compression with EED [3]. For the coarse-to-firiéreg we use three levels:
257 x 257, 129 x 129 and65 x 65 pixels.
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Table 2: Comparison between FED and the *
semi-implicit method for different numbers
of FED cycles/semi-implicit steps using the
RMAE 1or

time [s]

cycles/steps FED semi-impl. 6

1 0.028106 0.020914 4r

5 0.010587 0.009639 2t
10 0.007206 0.006638 oL ‘_ )
25  0.003922  0.003731 o 00 RMAE o0
50 0.002074  0.002234 Fig. 3: CPU time (seconds) vs. RMAE

100 0.001063  0.001265

Fig. 4: Test setting for EED-based image reconstructiafit: Original image (trui257 x 257).
Middle: Inpainting mask where the pixels are specifigéght: Reconstruction with EED-based
inpainting in the unspecified regions (semi-implid@it= 250000, 7 = 2.5, A = 0.1, 0 = 1.5)

Fig. 4 depicts the test setting. We use the same error measatgove and compare
our results to the reference reconstruction shown in Fighé.comparison concerning
the trade-off between the CPU time and the RMAE, which issthated in Fig. 5 for
the stopping timel’ = 5000, emphasises the superior efficiency of FED and CFED
respectively. In both cases, the corresponding semi-gitjgithemes are less efficient.
Moreover, CFED further improves the efficiency of FED. If oments to have for ex-
ample a solution whose RMAE is belowy), CFED can manage this in less than a
quarter of a second, because already a small stoppifg-ef100 is sufficient.

6 Conclusionsand Future Work

We have presented a new framework for explicit diffusionesnbs, FED, which has
been derived by the theory of one-dimensional box filterds Theans we have es-
tablished an interesting connection between a symmetrgati filter and an explicit
scheme with varying time step sizes that partially violatedbility limits. FED is very
easy to implement, since existing explicit schemes witly éalv additional code lines
can be used. Furthermore, we have successfully applied BEDisotropic diffusion
processes and PDE-based image reconstruction, where veealaltionally used a
coarse-to-fine strategy. Due to the large time step sizgdicéxschemes can become
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time [s]
time [s]

00.001 0.01 0.03 0.05 0.07 0.001 0.003 0.005 0.007
RMAE RMAE

Fig. 5: CPU time (seconds) vs. RMAE fér = 5000. L eft: FED and semi-implicitRight: CFED
and cascadic semi-implicit

more efficient than semi-implicit ones, as we have shown énetkperimental section.
The cascadic strategy CFED can even improve the results DfAEh respect to in-
painting applications.

In our ongoing work, we are currently working on paralldiisa techniques as well
as GPU-based implementations. With the help of them, it mighpossible to yield
even faster anisotropic diffusion filtering and real-tinecdding with anisotropic dif-
fusion via explicit schemes. Another research field are dnigtimensional problems,
since semi-implicit schemes become cumbersome for suks ¢t to the large neigh-
bourhood structure. In this case, the benefit of FED is exguctincrease even further.
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Appendix: Proof of Theorem 1

After some calculations, one can represent the box filterfasta operator series:

n

h™ n+m
Bl =) Ap 15
2n+1 — om+1 < om > h > ( )

where AY := [ (identity operator). Replacing\, by (—z) in Eq. (15) defines the
polynomialp, (z). It follows thatp,, can be related to the Chebyshev polynomial of
first kind,

2n+1 = ™ (2n+1—-m I
02n+1( Z on + 1 — ( m >(2:L')2( )+1 7 (16)

m=0

and it holds forz > 0:

200 (£)
S+ 1hyz

Hence, the roots; of p,, are related to the first (positive) well-known roots of’y,, 41,
namelyzg, ..., 2, 1:

pa(z) = (=1)"- 17)

4
z; = ﬁzf =12 cosQ( 2;112) >0. (18)

Thus, we can represepy as a product of. linear factors(1 — z/z;), and by the back
substitution(—z) — A, we finally get

n—1

By, = H (I+z7'4) (19)
i=0
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This shows thaB?, ., is equivalent to an explicit linear diffusion scheme usingt
time step sizesr; = zi_l , and the stopping time, is equal to the coefficient ofy;,
(m =1)in Eq. (15).



