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Abstract. There are two popular ways to implement anisotropic diffusion filters
with a diffusion tensor: Explicit finite difference schemesare simple but become
inefficient due to severe time step size restrictions, whilesemi-implicit schemes
are more efficient but require to solve large linear systems of equations. In our
paper we present a novel class of algorithms that combine theadvantages of
both worlds: They are based on simple explicit schemes, while being more effi-
cient than semi-implicit approaches. These so-called fastexplicit diffusion (FED)
schemes perform cycles of explicit schemes with varying time step sizes that may
violate the stability restriction in up to 50 percent of all cases. FED schemes can
be motivated from a decomposition of box filters in terms of explicit schemes for
linear diffusion problems. Experiments demonstrate the advantages of the FED
approach for time-dependent (parabolic) image enhancement problems as well as
for steady state (elliptic) image compression tasks. In thelatter case FED schemes
are speeded up substantially by embedding them in a cascadiccoarse-to-fine ap-
proach.

1 Introduction

Anisotropic diffusion filters with a diffusion tensor instead of a scalar-valued diffusivity
offer additional degrees of freedom that allow to steer themaccording to a task at hand
[1]: Coherence-enhancing diffusion filters, for example, are well-suited for processing
seismic data sets [2], while edge-enhancing diffusion filters have attractive qualities for
lossy image compression [3]. However, since such anisotropic diffusion filters require
a diffusion tensor, their efficient implementation is much more difficult than for their
isotropic counterparts with a scalar-valued diffusivity such as the Perona-Malik filter
[4]. For the latter ones one can use e.g. additive operator splitting (AOS) schemes [5,
6], while there is no efficient full operator splitting in thegeneral anisotropic case.

Although there has been a number of proposals for numerical schemes for aniso-
tropic diffusion processes (see e.g. [7–9]), probably the two most popular ways to
implement anisotropic diffusion filters are explicit and semi-implicit finite difference
schemes. Explicit schemes are very simple to implement and allow a direct computa-
tion of the values at a new time level without solving linear or nonlinear systems of
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equations. However, they suffer from severe time step size restrictions which render
them inefficient. Semi-implicit schemes, on the other hand,permit to use large time
step sizes and can be more efficient than explicit approaches. Unfortunately, they are
more difficult to implement and require to solve a large linear system of equations in
each time step.

Our Contribution. The goal of the present paper is to show that it is possible to com-
bine the advantages of explicit and semi-implicit schemes while avoiding their short-
comings. To this end we introduce a novel class of numerical schemes that we callFast
Explicit Diffusion (FED) Schemes. They perform cycles of explicit diffusion schemes
with varying time step sizes. Since within each cycle up to 50percent of all steps may
violate the stability condition, one can achieve very largediffusion times. In this way
one cycle can become even more efficient than one semi-implicit step. Moreover, we
show that one can embed FED cycles within a coarse-to-fine strategy to solve stationary
problems in an even more efficient way than with multigrid approaches. These findings
are illustrated by applying the FED idea to edge- and coherence-enhancing diffusion
filters. The starting point that has led us to the developmentof FED schemes was the
observation that one can factorise a (stable) 1-D box filter into a cycle of explicit linear
diffusion schemes with stable and unstable time step sizes.This idea can be generalised
in a straightforward way to nonlinear and anisotropic problems in arbitrary dimensions.

Organisation of the Paper. Our paper is organised as follows: In Section 2 we derive
the FED idea from the factorisation of a 1-D box filter into explicit linear diffusion
steps, and we relate this approach to the so-called Super Time Stepping (STS) method of
Gentzsch et al. [10, 11]. In Section 3 we show how FED can be generalised to arbitrary
diffusion processes, and we show in Section 4 how this can be adapted to edge- and
coherence-enhancing diffusion filters. After this, we perform numerical experiments in
Section 5, and we conclude the paper in Section 6.

2 Filter Factorisation

2.1 Equivalence between 1-D Discrete Box Filtering and Linear FED

In order to motivate our FED approach, we restrict ourselvesto the 1-D case first and
consider linear diffusion processes. Since it is well-known that linear diffusion filtering
is equivalent to Gaussian convolution and Gaussians can be approximated by iterated
box filtering, we explore the connection between a box filter and explicit schemes for
linear diffusion.

Let f = (fi)i∈N be a discrete 1-D signal given on a grid with mesh sizeh > 0. We
define the discrete box filter of length(2n + 1)h, n ∈ N, as well as the discrete second
order derivative by

(

Bh
2n+1(f)

)

i
:=

1

2n + 1

n
∑

k=−n

fi+k and (∆hf)i :=
fi+1 − 2fi + fi−1

h2
. (1)
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The explicit discretisation of the linear heat equation fora functionu(x, t),

∂tu = ∂xxu , (2)

evaluated at a spatial-time-grid point(xi, tk) with xi :=
(

i − 1
2

)

h and tk := kτ , can
then be formulated as

uk+1
i = (I + τ∆h)uk

i , (3)

whereI is the identity operator,τ > 0 the time step size anduk
i ≈ u(xi, tk) a numer-

ical approximation.
The following theorem states a connection between 1-D discrete box filtering and

explicit schemes with different time step sizes:

Theorem 1. A discrete one-dimensional box filterBh
2n+1 is equivalent to a cycle with

n explicit linear diffusion steps:

Bh
2n+1 =

n−1
∏

i=0

(I + τi∆h) , (4)

with the varying time step sizes

τi =
h2

4 cos2
(

π 2i+1
4n+2

) (5)

and corresponding stopping time

tn :=
n−1
∑

i=0

τi =
h2

3

(

n + 1

2

)

. (6)

The corresponding proof can be found in the Appendix.

We call one cycle of this novel scheme aFast Explicit Diffusion (FED)cycle. Be-
cause of its equivalence to box filtering, FED is also stable.Interestingly, the time step
sizesτi in Eq. (5) partially violate stability conditions. Table 1 shows both the smallest
three and largest three time step sizes for differentn. Since the stability restriction for
the time step size of an explicit scheme in one dimension is given by τ ≤ h2

2 , it is easy
to show that the FED scheme consists of

⌈

n−1
2

⌉

unstable time steps, where⌈a⌉ denotes
the next largest integerk ≥ a. Hence, for evenn, half of the time steps are unstable.
For n ≥ 3, one FED cycle reaches the stopping timetn faster than any other explicit
scheme with stable time step sizesτ ≤ h2

2 .
Since we want to approximate a diffusion process – or equivalently Gaussian con-

volution – one should use several iterated box filters – or equivalently FED cycles. Let
M ≥ 2 denote this number of FED cycles. This numberM of outer cycles should not
be confused with the numbern of inner steps.

Before we explore extensions of FED to nonlinear, anisotropic and multidimen-
sional problems, let us discuss some related work first.
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Table 1: First three and last three step sizes of FED (1-D) with h = 1 (rounded).tn denotes the
stopping time of one FED cycle includingn inner time steps

n 10 25 50 100 250 500 1000

τ0 0.251404 0.250237 0.250060 0.250015 0.250002 0.250001 0.250000
τ1 0.263024 0.252147 0.250545 0.250137 0.250022 0.250006 0.250001
τ2 0.288508 0.256024 0.251518 0.250382 0.250061 0.250015 0.250004
...

τn−3 1.33 7.40 28.79 113.79 706.52 2820.19 11269.25
τn−2 2.88 16.55 64.68 255.93 1589.57 6345.33 25355.72
τn−1 11.25 65.97 258.48 1023.45 6358.01 25381.06 101422.61

tn 18.33 108.33 425.00 1683.33 10458.33 41750.00 166833.33

2.2 Connection to Super Time Stepping

Our FED scheme uses different time step sizes, where some of them may violate stabil-
ity limits. A similar method has been introduced under the nameSuper Time Stepping
(STS)by Gentzsch et al. [10, 11]. Contrary to our derivation, theyused a direct ap-
proach: Gentzsch et al. wanted to find a set of different time step sizes, which keeps
stability after each cycle, and at the same time maximises the stopping time of such
a cycle. Instead of factorising a box filter, one can show thattheir method intends to
factorise the mask

(

1
2 , 0, . . . , 0, 1

2

)

. Since this mask is very sensitive w.r.t. high fre-
quencies, they have to introduce an additional damping parameterν ≥ 0 that ensures
better attenuation properties of high frequencies. This parameter can be seen as a trade-
off between efficiency and damping quality, since larger values forν scale down the
stopping time. In our FED framework, such a damping parameter is not necessary.

While the ordering of the explicit diffusion steps does not matter in exact arithmetic,
it can influence the result in practice due to numerical rounding errors whenn is large.
In order to improve robustness, Gentzsch et al. have proposed to rearrange the explicit
steps within so-calledκ-cycles. We will also use this approach. For further detailson
STS, we refer to the above cited works and e.g. Alexiades et al., who have done an
experimental evaluation [12].

3 Fast Explicit Diffusion (FED) for Arbitrary Problems

3.1 Extension to Arbitrary Diffusion Problems

While the FED scheme has been motivated in the 1-D setting with linear diffusion filter-
ing, it is actually a general paradigm that can be applied to multidimensional, nonlinear
and anisotropic diffusion processes. This can be seen as follows.

First, let us reconsider the 1-D diffusion equation (2) and its explicit discretisation
(3). By assuming homogeneous Neumann boundary conditions and denotinguk ∈ R

N

as the vector with entriesuk
i , Eq. (3) can be written as a matrix-vector product:

uk+1 = (I + τAh)uk , (7)
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with τ ≤ h2/2. According to Gerschgorin’s theorem, the eigenvalues of the matrix
Ah ∈ R

N×N lie in the interval
[

−4/h2, 0
]

. These eigenvalues determine the stability
in the Euclidean norm: A stable explicit step requires a timestep sizeτ such that all
eigenvalues of the matrixI + τAh lie in the interval[−1, 1].

Keeping this in mind, it is straightforward to replace the matrix Ah by any negative
semidefinite matrixP that results from a discretisation of a diffusion process. This
process can be one- or multidimensional, linear or nonlinear, isotropic or anisotropic.
In this case, one FED cycle is not any more equivalent to box filtering, but it corresponds
to a first order approximation of the above-mentioned diffusion process. All one has to
do is to adapt the time step size limit to the largest modulus of the eigenvalues ofP .
More precisely, letµi ≤ 0 be the eigenvalues ofP and defineµmax := maxi |µi|.
Then the explicit scheme in Eq. (7) withP instead ofAh is stable for time step sizes
τ̃ := c · τ , where

c :=
4

h2 · µmax
(8)

is the adjustment factor. Sinceµmax can easily be estimated using e.g. Gerschgorin’s
theorem, this adaptation is no problem at all in practice. Fig. 1 gives a summary of
the general FED algorithm. Note that it is essentially an explicit scheme with some
overhead that is not time critical.

3.2 Cascadic FED (CFED) for Stationary Problems

So far our FED scheme was designed for diffusion problems where we are interested
in the temporal evolution. This refers to parabolic partialdifferential equations (PDEs)
that are used for denoising and enhancement purposes.

However, in the case of inpainting and PDE-based compression problems, one is
interested in the nontrivial steady state when Dirichlet boundary data are specified.
The corresponding elliptic PDE results from the parabolic evolution for t → ∞. To
reach this steady state as quickly as possible, we embed our FED into a coarse-to-fine
strategy [13], i.e. we use results computed on a coarse scaleas an initialisation for a finer
scale. Therefore, we scale down both the image and the reconstruction mask via area-
based interpolation to a certain coarse level and apply the FED scheme on this image.
Afterwards, we interpolate the corresponding solution andthe mask to the next finer
level and apply again FED on it. We apply this procedure recursively until the finest
level is reached. To simplify matters, we always use the sameparameter settings for the
diffusion process on each level. We call this cascadic fast explicit diffusion approach
CFED. It saves a lot of computational effort, since then a small ormidsize stopping
time is already sufficient on each level.

4 FED and CFED for Anisotropic Diffusion Filtering

In this section we review two specific two-dimensional anisotropic diffusion filters that
we are going to use in our experiments as demonstrators for the potential of the FED
and CFED algorithms.
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1. Input Data:
imagef , stopping timeT , numberM of outer FED cycles, and model parameters

2. Initialisation:
(a) Compute the smallestn such that the stopping timetn of one FED cycle fulfils

tn ≥ T/M , and defineq := T/(M · tn) ≤ 1.
(b) Compute the time step sizes̃τi := q · c · τi with c according to (8), andτi

according to (5).
(c) Choose a suitable ordering for the step sizesτ̃i according to [10].
(d) If the diffusivity or diffusion tensor is constant in time, compute the corresponding

matrixP .

3. Filtering Loop:
(a) If the diffusivity or diffusion tensor is time-variant,update it and compute the cor-

responding matrixP .
(b) Perform one FED cycle with the above ordering of then explicit time steps̃τi.
(c) Go back to (a), if the stopping timeT is not yet reached.

Fig. 1: General FED algorithm for diffusion filtering

4.1 Edge-Enhancing Diffusion (EED)

Edge-enhancing anisotropic diffusion inhibits diffusionacross edges and instead prefers
smoothing within the image regions [1]. It follows the evolution equation

∂tu = div (D (∇uσ)∇u) , (9)

where D ∈ R
2×2 is the symmetric positive definite diffusion tensor, anduσ is the

imageu convolved with a Gaussian of standard deviationσ. Its diffusion tensor is

D (∇uσ) = g
(

|∇uσ|2
)

· ∇uσ∇u⊤
σ

|∇uσ|2
+ 1 · ∇u⊥

σ ∇u⊥⊤
σ

|∇u⊥
σ |2

, (10)

where ·⊤ means the usual matrix transposition and
(

a
b

)⊥
:=

(−b
a

)

. In our experiments
we shall use the so-called Charbonnier diffusivity function

g
(

s2
)

=
(

1 + s2/λ2
)−1/2

. (11)

It has proven to be highly useful for image interpolation purposes such as the compres-
sion method in [3]. In this case one computes the elliptic steady state solution.

We assume a uniform two-dimensional grid with the mesh sizeshx = hy = 1 and
set the adjustment factorc = 1/(2h2), which is sufficient for stability with respect to
the standard discretisation [14].

4.2 Coherence-Enhancing Diffusion (CED)

Coherence-enhancing diffusion filtering enhances line- and flow-like structures. Its dif-
fusion tensor has the same eigenvectors as the so-called structure tensor

Jρ (∇uσ) := Kρ ∗
(

∇uσ∇u⊤
σ

)

, (12)
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Fig. 2: Test image and reference image computed by a semi-implicit scheme.Left: Original image
(finger,300 × 300, rescaled to [0,255] for better visualisation).Right: CED-filtered reference
image (T = 300, λ = 1, σ = 0.5, ρ = 4, α = 0.001, τ = 0.1), rescaled to [0,255]

whereKρ is a Gaussian of standard deviationρ, and its eigenvalues are given by

λ1 := α (13)

λ2 :=

{

α, if µ1 = µ2 ,

α + (1 − α) exp
(

−λ
(µ1−µ2)2

)

, else
, (14)

whereµ1 andµ2 are the eigenvalues of the structure tensor such thatµ1 ≥ µ2. For
further details we refer to [1]. As a space discretisation for CED, we have used the one
in [9]. It has low dissipativity and allows to use the samec as for the preceding EED
scheme.

5 Experiments

In order to evaluate FED for parabolic problems, we enhance afingerprint test image
with CED. First we compute a reference solution by applying asemi-implicit scheme
with very small time step sizes. The original image and the filtered result can be seen in
Fig. 2.

Our error measure is the relative mean absolute error (RMAE),
∑

i
|ui−ri|
‖r‖

1

with

‖r‖1 :=
∑

i |ri|. The filtered image is denoted byu, andr is the corresponding refer-
ence solution.

Table 2 shows that FED and the semi-implicit method yield comparable results with
respect to the RMAE. In some cases, FED is even better than thesemi-implicit scheme.

In order to show the efficiency of the novel FED compared to semi-implicit meth-
ods, we have conducted an experiment analysing the trade-off between the running time
(CPU: Pentium4, 3.2 GHz) and the RMAE. The result is depicted in Fig. 3. As one can
see, the FED scheme shows a better trade-off, i.e. is more efficient than the usual semi-
implicit scheme with a conjugate gradient (CG) solver.

Let us now consider an elliptic problem, where we evaluate the performance of our
FED and CFED scheme. As a testbed we use an interpolation problem that is relevant
for image compression with EED [3]. For the coarse-to-fine setting, we use three levels:
257 × 257, 129 × 129 and65 × 65 pixels.
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Table 2: Comparison between FED and the
semi-implicit method for different numbers
of FED cycles/semi-implicit steps using the
RMAE

cycles/steps FED semi-impl.

1 0.028106 0.020914
5 0.010587 0.009639

10 0.007206 0.006638
25 0.003922 0.003731
50 0.002074 0.002234

100 0.001063 0.001265
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Fig. 3: CPU time (seconds) vs. RMAE

Fig. 4: Test setting for EED-based image reconstruction.Left: Original image (trui,257 × 257).
Middle: Inpainting mask where the pixels are specified.Right: Reconstruction with EED-based
inpainting in the unspecified regions (semi-implicit,T = 250000, τ = 2.5, λ = 0.1, σ = 1.5)

Fig. 4 depicts the test setting. We use the same error measureas above and compare
our results to the reference reconstruction shown in Fig. 4.The comparison concerning
the trade-off between the CPU time and the RMAE, which is illustrated in Fig. 5 for
the stopping timeT = 5000, emphasises the superior efficiency of FED and CFED
respectively. In both cases, the corresponding semi-implicit schemes are less efficient.
Moreover, CFED further improves the efficiency of FED. If onewants to have for ex-
ample a solution whose RMAE is below1%, CFED can manage this in less than a
quarter of a second, because already a small stopping ofT = 100 is sufficient.

6 Conclusions and Future Work

We have presented a new framework for explicit diffusion schemes, FED, which has
been derived by the theory of one-dimensional box filters. This means we have es-
tablished an interesting connection between a symmetric linear filter and an explicit
scheme with varying time step sizes that partially violatesstability limits. FED is very
easy to implement, since existing explicit schemes with only few additional code lines
can be used. Furthermore, we have successfully applied FED to anisotropic diffusion
processes and PDE-based image reconstruction, where we have additionally used a
coarse-to-fine strategy. Due to the large time step sizes, explicit schemes can become
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Fig. 5: CPU time (seconds) vs. RMAE forT = 5000. Left: FED and semi-implicit.Right: CFED
and cascadic semi-implicit

more efficient than semi-implicit ones, as we have shown in the experimental section.
The cascadic strategy CFED can even improve the results of FED with respect to in-
painting applications.

In our ongoing work, we are currently working on parallelisation techniques as well
as GPU-based implementations. With the help of them, it might be possible to yield
even faster anisotropic diffusion filtering and real-time decoding with anisotropic dif-
fusion via explicit schemes. Another research field are higher-dimensional problems,
since semi-implicit schemes become cumbersome for such tasks due to the large neigh-
bourhood structure. In this case, the benefit of FED is expected to increase even further.
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Deutsche Forschungsgemeinschaft (DFG), project WE 2602/7-1.
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3. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression

with anisotropic diffusion. Journal of Mathematical Imaging and Vision31(2–3) (July 2008)
255–269

4. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence12 (1990) 629–639
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Appendix: Proof of Theorem 1

After some calculations, one can represent the box filter as afinite operator series:

Bh
2n+1 =

n
∑

m=0

h2m

2m + 1

(

n + m

2m

)

∆m
h , (15)

where ∆0
h := I (identity operator). Replacing∆h by (−z) in Eq. (15) defines the

polynomialpn(z). It follows that pn can be related to the Chebyshev polynomial of
first kind,

C2n+1(x) =
2n + 1

2

n
∑

m=0

(−1)m

2n + 1 − m

(

2n + 1 − m

m

)

(2x)2(n−m)+1 , (16)

and it holds forz > 0:

pn(z) = (−1)n ·
2C2n+1

(

h
√

z
2

)

(2n + 1)h
√

z
. (17)

Hence, the rootszi of pn are related to the firstn (positive) well-known roots ofC2n+1,
namelyx0, . . . , xn−1:

zi =
4

h2
x2

i =
4

h2
· cos2

(

π 2i+1
4n+2

)

> 0 . (18)

Thus, we can representpn as a product ofn linear factors(1 − z/zi) , and by the back
substitution(−z) → ∆h we finally get

Bh
2n+1 =

n−1
∏

i=0

(

I + z−1
i ∆h

)

. (19)
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This shows thatBh
2n+1 is equivalent to an explicit linear diffusion scheme using then

time step sizesτi = z−1
i , and the stopping timetn is equal to the coefficient of∆h

(m = 1) in Eq. (15).


